1
|
Mohebbi R, Shojaa M, Kohl M, von Stengel S, Jakob F, Kerschan-Schindl K, Lange U, Peters S, Thomasius F, Uder M, Kemmler W. Exercise training and bone mineral density in postmenopausal women: an updated systematic review and meta-analysis of intervention studies with emphasis on potential moderators. Osteoporos Int 2023; 34:1145-1178. [PMID: 36749350 PMCID: PMC10282053 DOI: 10.1007/s00198-023-06682-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
The aim of this systematic review and meta-analysis was (1) to determine exercise effects on bone mineral density (BMD) in postmenopausal women and (2) to address the corresponding implication of bone and menopausal status or supervision in postmenopausal women. A comprehensive search of eight electronic databases according to the PRISMA statement up to August 9, 2022, included controlled exercise trials ≥ 6 months. BMD changes (standardized mean differences: SMD) at the lumbar spine (LS), femoral neck (FN), and total hip (TH) were considered as outcomes. Study group comparisons were conducted for osteopenia/osteoporosis versus normal BMD, early versus late postmenopausal women, and predominantly supervised versus predominantly non-supervised study arms. We applied an inverse heterogeneity (IVhet) model. In summary, 80 studies involving 94 training and 80 control groups with a pooled number of 5581 participants were eligible. The IVhet model determined SMDs of 0.29 (95% CI: 0.16-0.42), 0.27 (95% CI: 0.16-0.39), and 0.41 (95% CI: 0.30-0.52) for LS, FN, and THBMD, respectively. Heterogeneity between the trial results varied from low (I2 = 20%, TH BMD) to substantial (I2 = 68%, LS-BMD). Evidence for publication bias/small study effects was negligibly low (FN-, TH-BMD) to high (LSBMD). We observed no significant differences (p > .09) for exercise effects on LS-, FN-, or TH-BMD-LS between studies/study arms with or without osteopenia/osteoporosis, early versus late postmenopausal women, or predominantly supervised versus non-supervised exercise programs. Using robust statistical methods, the present work provides further evidence for a positive effect of exercise on BMD in postmenopausal women. Differences in bone status (osteopenia/osteoporosis versus normal bone), menopausal status (early versus late postmenopausal), and supervision (yes versus no) did not significantly affect the exercise effects on BMD at LS or proximal femur.
Collapse
Affiliation(s)
- Ramin Mohebbi
- Institute of Medical Physics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Mahdieh Shojaa
- Department Population-Based Medicine, Institute of Health Science, University Hospital Tübingen, Tübingen, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Matthias Kohl
- Department of Medical and Life Sciences, University of Furtwangen, Schwenningen, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Simon von Stengel
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Franz Jakob
- Bernhard-Heine-Centrum Für Bewegungsforschung, University of Würzburg, Würzburg, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Katharina Kerschan-Schindl
- Austrian Society for Bone and Mineral Research, Vienna, Austria
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Uwe Lange
- German Society for Physical and Rehabilitative Medicine, Dresden, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Stefan Peters
- German Association for Health-Related Fitness and Exercise Therapy (DVGS), Hürth-Efferen, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Friederike Thomasius
- Osteology Umbrella Association Germany, Austria, Switzerland
- Frankfurt Center of Bone Health, Frankfurt, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany.
- Research Group On Guideline "Exercise and Fracture Prevention, Frankfurt, Germany.
| |
Collapse
|
2
|
Forsyth JJ. Menopause Osteoporosis and Bone Intervention Using Lifestyle Exercise: A Randomized Controlled Study. J Midlife Health 2023; 14:94-100. [PMID: 38029036 PMCID: PMC10664055 DOI: 10.4103/jmh.jmh_27_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background The aim of the study was to examine the feasibility for postmenopausal women of a bone-strengthening jumping intervention, which has been previously successful for premenopausal women. Materials and Methods Forty-nine participants (mean ± standard deviation [SD] age = 57.8 ± 4.3 years) were randomized into either an exercise intervention or sham-control group in a double-blinded fashion. The intervention consisted of 10 maximal, rest-inserted countermovement jumps, performed three times a week on a hard surface without shoes for 8 months. Sham-control participants performed unilateral balance exercises of equivalent duration. Results The jumps were well tolerated, with women in the jumping group completing 95% of the prescribed exercise. Of the participants who completed the study (n = 23 intervention, n = 16 control), there were no significant differences in broadband ultrasound attenuation (BUA) using quantitative ultrasound (QUS) of the calcaneum within and between groups (mean ± SD BUA = 64.9 ± 7.3 and 66.6 ± 6.5 dB/MHz for intervention pre- and post-trial, respectively, versus mean ± SD BUA = 63.6 ± 4.2 and 64.4 ± 4.5 dB/MHz for sham-controls pre- and post-trial, respectively) or for any QUS parameters, although there was a 3% increase in BUA for intervention participants. Conclusions Recruitment and participation rates were feasible for this duration of study and the exercise was acceptable. For a future study of this nature, 48 participants would be required to ensure adequate power, especially as lifestyle variations and post-menopausal hypoestrogenism prevent substantial gains in bone strength with high-impact exercise.
Collapse
Affiliation(s)
- Jacky J. Forsyth
- Centre for Health and Development, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
3
|
Sun J, Yao C, Wang Z, Wu J, Zhang B, Zhou Z, Liu F, Zhang Y. The beneficial effects of square dance on musculoskeletal system in early postmenopausal Chinese women: a cross-sectional study. BMC Womens Health 2022; 22:247. [PMID: 35729521 PMCID: PMC9215099 DOI: 10.1186/s12905-022-01832-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was set to investigate the correlation between square dance and musculoskeletal system of early postmenopausal Chinese women. METHODS Chinese postmenopausal women, who had been without menstruation for 1-10 years from the onset of menopause were recruited from community centers for this study. A standardized structured face-to-face interview was performed to collect demographic information, life styles, personal medical history, diet and menstrual status. Subjects who had been practicing regular square dance without participated in other sports activities for more than 2 years and over 4 h per week (usually more than 45 min per time and more than 5 times per week) were assigned to square dance group. Those postmenopausal women who had not participated in regular exercises (no more than 0.5 h per week) were recruited as the sedentary control group. Bone mineral density (BMD) of spine, total hip and femoral neck was measured by using dual-energy X-ray absorptiometry. Lower limb muscle strength was measured for the non-dominant leg, body flexibility was measured by a simple trunk bend-and-reach test, and body balance was evaluated using a single-stance test for the non-dominant leg. Independent two-tailed Student's t-test was used for data analysis. RESULTS 152 subjects from community centers were selected for this study and divided into square dance group (n = 74) and control group (n = 78). The square dance subjects had higher lumbar spine BMD (p = 0.01) and total hip BMD (p = 0.02) than control subjects, but there was no significant difference of femoral neck BMD (p = 0.48) between these two groups. Functional testing indicated that square dance subjects had higher lower limb muscle strength (p < 0.01) and longer single-stance time (p = 0.02) than the control subjects, but there was no significant difference in trunk bend-and-reach (p = 0.12) between these two groups. CONCLUSION Our results show that postmenopausal Chinese women can get beneficial effects, like higher BMD, stronger lower limb muscle and improved body balance ability on musculoskeletal system by participating in square dance regularly.
Collapse
Affiliation(s)
- Jie Sun
- Medical School of Nantong University, Nantong City, Jiangsu Province, People's Republic of China.,Department of Orthopaedics, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Chen Yao
- Department of Orthopaedics, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Ziping Wang
- Medical School of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Jiancheng Wu
- Department of Orthopaedics, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Bo Zhang
- Department of Orthopaedics, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Zhenyu Zhou
- Department of Orthopaedics, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Fan Liu
- Department of Orthopaedics, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Yafeng Zhang
- Department of Orthopaedics, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Koshy FS, George K, Poudel P, Chalasani R, Goonathilake MR, Waqar S, George S, Jean-Baptiste W, Yusuf Ali A, Inyang B, Mohammed L. Exercise Prescription and the Minimum Dose for Bone Remodeling Needed to Prevent Osteoporosis in Postmenopausal Women: A Systematic Review. Cureus 2022; 14:e25993. [PMID: 35859964 PMCID: PMC9288128 DOI: 10.7759/cureus.25993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/16/2022] [Indexed: 01/06/2023] Open
Abstract
The aim of this review is to analyze previously conducted randomized controlled trials and investigate the relationship between various exercise regimes and their effect on bone mineral density in postmenopausal women. To determine whether exercise can be used as a non-pharmacological modality for osteoporosis prevention, a thorough search was performed on various databases (PubMed, ScienceDirect, and Google Scholar). Only bone mineral density studies and trials with intervention versus control groups were included, and 13 randomized controlled trials were deemed relevant. The majority of trials concluded that exercise positively impacted bone mineral density in postmenopausal women. High-impact exercises seem to have the most significant effect on bone mineral density due to compression, shear stress, and high loading on the bone, causing bone remodeling. Considering all the limitations, exercise seems to be an effective tool for preventing postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Feeba Sam Koshy
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kitty George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prakar Poudel
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roopa Chalasani
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sara Waqar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheeba George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wilford Jean-Baptiste
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amina Yusuf Ali
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bithaiah Inyang
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
5
|
Kistler-Fischbacher M, Weeks BK, Beck BR. The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis. Bone 2021; 143:115697. [PMID: 33357834 DOI: 10.1016/j.bone.2020.115697] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Previous reviews have concluded that exercise has only modest effects on bone mineral density (BMD) in postmenopausal women. Despite the well-recognized strong positive relationship between load magnitude and bone response observed from animal research, the majority of human trials have examined the effects of only low to moderate intensity exercise on bone. We speculated that meta-analysing according to intensity may reveal a more potent exercise effect at higher intensity. OBJECTIVES To determine the effects of low, moderate and high intensity exercise on BMD at the spine and hip in postmenopausal women. METHODS Electronic databases and reference lists were searched for RCTs that examined the effect of exercise compared to control on DXA-derived lumbar spine, femoral neck or total hip BMD in healthy postmenopausal women. Interventions were classified as low, moderate or high intensity and pooled based on classification. Mean differences (MD) were calculated using random effects models and a risk of bias analysis was undertaken. To determine the effect of different exercise types (resistance and impact training) on BMD outcomes, subgroup analyses for all intensity categories and outcomes were conducted. Separate meta-analyses were undertaken to examine the influence of adding exercise to a bone medication intervention and to examine exercise effects on fracture risk. RESULTS Fifty-three trials, testing 63 interventions (19 low, 40 moderate, 4 high intensity) were included. At the lumbar spine, high intensity exercise yielded greater BMD effects (MD = 0.031 g/cm2 95% CI [0.012, 0.049], p = 0.002) than moderate (MD = 0.012 g/cm2 95% CI [0.008, 0.017], p < 0.001) and low intensity (MD = 0.010 g/cm2 95% CI [0.005, 0.015], p < 0.001). Low and moderate intensity exercise was equally effective at the femoral neck (low: 0.011 g/cm2 95% CI [0.006, 0.016], p < 0.001; moderate: 0.011 g/cm2 95% CI [0.007, 0.015], p < 0.001), but no effect of high-intensity exercise was observed. Moderate intensity exercise increased total hip BMD (0.008 g/cm2 95% CI [0.004, 0.012], p < 0.001), but low intensity did not. There were insufficient data to meta-analyse the effect of high intensity exercise at the total hip. Resistance training, potentially in combination with impact training, appears to be the most effective osteogenic stimulus at the spine and hip. Findings from meta-regression analyses were not informative and no influence of exercise on medication efficacy was observed. Risk of bias was mainly low or unclear due to insufficient information reported. CONCLUSION High intensity exercise is a more effective stimulus for lumbar spine BMD than low or moderate intensity, but not femoral neck BMD, however, the latter finding may be due to lack of power. While data from high-intensity exercise interventions are limited, the current comprehensive meta-analysis demonstrates the same positive relationship between load magnitude and bone response in humans that is observed in animal research. Findings have implications for optimal exercise prescription for osteoporosis in postmenopausal women. STUDY REGISTRATION Registered on PROSPERO (CRD42018117254).
Collapse
Affiliation(s)
- Melanie Kistler-Fischbacher
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia
| | - Benjamin K Weeks
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia
| | - Belinda R Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; The Bone Clinic, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Kistler-Fischbacher M, Weeks BK, Beck BR. The effect of exercise intensity on bone in postmenopausal women (part 1): A systematic review. Bone 2021; 143:115696. [PMID: 33357833 DOI: 10.1016/j.bone.2020.115696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous systematic reviews and meta-analyses of exercise effects on bone have reported null or modest effect sizes. While animal research has determined that a strong positive relationship exists between load magnitude/intensity and bone adaptation, nevertheless many human exercise interventions have been applied at low intensity. Meta-analytic pooling of exercise interventions irrespective of intensity dilutes the ability to detect efficacy of any one training regimen. Parsing out efficacy of low, moderate and high intensity exercise interventions will assist the determination of optimal exercise prescription for bone. OBJECTIVES First, to summarise and critically evaluate existing evidence of exercise effect on bone mass, bone structure and bone turnover markers (BTMs) in healthy postmenopausal women. Second, to examine the influence of intensity on bone response to exercise. METHODS Electronic databases (Embase, Scopus, CINAHL Plus, SPORTDiscus), database platforms (PubMed, Cochrane CENTRAL, ProQuest Central, Web of Science) and reference lists of included studies were searched for controlled trials and randomised controlled trials that described the effect of any exercise intervention compared to control on bone mass, bone structure or BTMs in healthy postmenopausal women. Fracture incidence was included as an exploratory endpoint. Data was extracted and weighed against the results of a comprehensive risk of bias analysis. RESULTS One hundred trials were included, investigating a total of 120 exercise interventions. Of those, 57 interventions were low intensity, 57 were moderate, and six were high intensity. On balance, low intensity exercise was not an effective stimulus to increase bone mass. Higher quality evidence suggests moderate to high intensity interventions, particularly those that combined high intensity resistance and impact training, were most beneficial for bone mass. Only high intensity exercise appears to improve structural parameters of bone strength, however, data are limited. Only low and moderate intensity interventions have measured BTMs and no notable benefits have been observed. The quality of trials varied greatly, and risk of bias determinations were frequently limited by insufficiently reported detail. CONCLUSION Heterogeneity in both study quality and outcomes limits the ability to draw strong conclusions from this comprehensive systematic review of RCT and CT reports. Nevertheless, there is a tendency in the higher quality data to indicate exercise intensity is positively related to the adaptive bone response. Part 2 of this review series reports a meta-analysis of the RCT data in order to draw quantitative conclusions from the higher quality trials. STUDY REGISTRATION Registered on PROSPERO (CRD42018117254).
Collapse
Affiliation(s)
- Melanie Kistler-Fischbacher
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia
| | - Benjamin K Weeks
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia
| | - Belinda R Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; School of Allied Health Sciences, Griffith University, Gold Coast campus, Gold Coast, QLD, Australia; The Bone Clinic, Brisbane, QLD, Australia.
| |
Collapse
|