1
|
Visocchi M. Neurosurgery and Spine Surgery: From Up-to-Date Practitioners, From the Past to the Present. J Clin Med 2024; 13:5840. [PMID: 39407900 PMCID: PMC11477734 DOI: 10.3390/jcm13195840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The Special Issue titled "Neurosurgery and Spine Surgery: From Up-to-Date Prac-titioners" provides a comprehensive overview of the latest advancements and best practices in the fields of neurosurgery and spine surgery [...].
Collapse
Affiliation(s)
- Massimiliano Visocchi
- Institute of Neurosurgery Catholic Fondazione Policlinico Agostino Gemelli, Catholic University Rome, 00153 Rome, Italy;
- Craniovertebral Junction Surgery Operative Unit, Research Center Catholic University, 00168 Rome, Italy
| |
Collapse
|
2
|
Pesce A, Palmieri M, Pietrantonio A, Ciarlo S, Salvati M, Pompucci A. Resection of supratentorial high-grade gliomas availing of neuronavigation matched intraoperative ultrasound and Fluorescein: How far is it safe to push the resection? World Neurosurg X 2024; 23:100379. [PMID: 38645511 PMCID: PMC11027571 DOI: 10.1016/j.wnsx.2024.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background High-Grade Gliomas are the most common primary brain malignancies and despite the multimodal treatment, and the increasing amount of adjuvant treatment options the overall prognosis remains dismal. The present investigation aims to analyze the safety profile of the use of intraoperative ultrasounds (Io-US) in a homogeneous and matched cohort of patients suffering from High-grade gliomas (HGG) operated on with or without the aid of Io-US and Fluorescein in specific relation to the incidence of neurological and functional status sequelae. Methods and materials A retrospective analysis was performed on 74 patients affected by HGG. 22 patients were treated with Io-US matched with neuronavigational system (Group A); 15 patients were treated both with the use of Io-US and Fluorescein matched with neuronavigational system (Group B); 37 patients were treated with the use of the neuronavigational system only (Group C). Primary endpoints were the extent of resection and functional outcome (measured with Karnofski Performance Status). Results Significative differences were observed in terms of a higher extent of resection in Group B. In a multivariate analysis, this data appears to be independent of the location (eloquent/non-eloquent) of the lesion and from its histology. Regarding functional outcomes, no differences were detected between the two groups. Conclusions The present study is the first that analyzes the simultaneous use of Io-US and Fluorescein, and the results demonstrate that these two instruments together could improve the extent of resection in HGG while ensuring good outcomes in terms of functional status.
Collapse
Affiliation(s)
- Alessandro Pesce
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| | - Mauro Palmieri
- Università“La Sapienza” di Roma, Neurosurgery Division - Roma, Viale del Policlinico 155, 00161, Roma, RM, Italy
| | - Andrea Pietrantonio
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| | - Silvia Ciarlo
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| | - Maurizio Salvati
- Department of Neurosurgery, Policlinico “Tor Vergata”, University of Rome “Tor Vergata”, 00133, Rome, RM, Italy
| | - Angelo Pompucci
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| |
Collapse
|
3
|
Demetz M, Krigers A, Moser P, Kerschbaumer J, Thomé C, Freyschlag CF. Same but different. Incidental and symptomatic lower grade gliomas show differences in molecular features and survival. J Neurooncol 2023; 162:397-405. [PMID: 37043120 PMCID: PMC10167120 DOI: 10.1007/s11060-023-04301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE Data on differences in overall survival and molecular characteristics between incidental (iLGG) and symptomatic lower grade Glioma (sLGG) are limited. The aim of this study was to investigate differences between patients with iLGG and sLGG. METHODS All adult patients with a histologically proven diffuse (WHO°II) or anaplastic (WHO°III) glioma who underwent their first surgery at the authors' institution between 2010 and 2019 were retrospectively included. Tumor volume on pre- and postoperative MRI scans was determined. Clinical and routine neuropathological data were gained from patients' charts. If IDH1, ATRX and EGFR were not routinely assessed, they were re-determined. RESULTS Out of 161 patients included, 23 (14%) were diagnosed as incidental findings. Main reasons for obtaining MRI were: headache(n = 12), trauma(n = 2), MRI indicated by other departments(n = 7), staging examination for cancer(n = 1), volunteering for MRI sequence testing(n = 1). The asymptomatic patients were significantly younger with a median age of 38 years (IqR28-48) vs. 50 years (IqR38-61), p = 0.011. Incidental LGG showed significantly lower preoperative tumor volumes in T1 CE (p = 0.008), FLAIR (p = 0.038) and DWI (p = 0.028). Incidental LGG demonstrated significantly lower incidence of anaplasia (p = 0.004) and lower expression of MIB-1 (p = 0.008) compared to sLGG. IDH1-mutation was significantly more common in iLGG (p = 0.024). Incidental LGG showed a significantly longer OS (mean 212 vs. 70 months, p = 0.005) and PFS (mean 201 vs. 61 months, p = 0.001) compared to sLGG. CONCLUSION Our study is the first to depict a significant difference in molecular characteristics between iLGG and sLGG. The findings of this study confirmed and extended the results of previous studies showing a better outcome and more favorable radiological, volumetric and neuropathological features of iLGG.
Collapse
Affiliation(s)
- Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Patrizia Moser
- Department of Neuropathology, University Hospital Innsbruck, Tirol Kliniken, Innsbruck, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria.
| |
Collapse
|
4
|
Giussani C, Carrabba G, Rui CB, Chiarello G, Stefanoni G, Julita C, De Vito A, Cinalli MA, Basso G, Remida P, Citerio G, Di Cristofori A. Perilesional resection technique of glioblastoma: intraoperative ultrasound and histological findings of the resection borders in a single center experience. J Neurooncol 2023; 161:625-632. [PMID: 36690859 PMCID: PMC9992251 DOI: 10.1007/s11060-022-04232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The surgical goal in glioblastoma treatment is the maximal safe resection of the tumor. Currently the lack of consensus on surgical technique opens different approaches. This study describes the "perilesional technique" and its outcomes in terms of the extent of resection, progression free survival and overall survival. METHODS Patients included (n = 40) received a diagnosis of glioblastoma and underwent surgery using the perilesional dissection technique at "San Gerardo Hospital"between 2018 and 2021. The tumor core was progressively isolated using a circumferential movement, healthy brain margins were protected with Cottonoid patties in a "shingles on the roof" fashion, then the tumorwas removed en bloc. Intraoperative ultrasound (iOUS) was used and at least 1 bioptic sample of "healthy" margin of the resection was collected and analyzed. The extent of resection was quantified. Extent of surgical resection (EOR) and progression free survival (PFS)were safety endpoints of the procedure. RESULTS Thirty-four patients (85%) received a gross total resection(GTR) while 3 (7.5%) patients received a sub-total resection (STR), and 3 (7.5%) a partial resection (PR). The mean post-operative residual volume was 1.44 cm3 (range 0-15.9 cm3).During surgery, a total of 76 margins were collected: 51 (67.1%) were tumor free, 25 (32.9%) were infiltrated. The median PFS was 13.4 months, 15.3 in the GTR group and 9.6 months in the STR-PR group. CONCLUSIONS Perilesional resection is an efficient technique which aims to bring the surgeon to a safe environment, carefully reaching the "healthy" brain before removing the tumoren bloc. This technique can achieve excellent tumor margins, extent of resection, and preservation of apatient's functions.
Collapse
Affiliation(s)
- Carlo Giussani
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy. .,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy.
| | - Giorgio Carrabba
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Chiara Benedetta Rui
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Gaia Chiarello
- Neuropathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, MB, 20900, Monza, Italy
| | - Giovanni Stefanoni
- Neurology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Chiara Julita
- Radiotherapy, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Andrea De Vito
- Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Maria Allegra Cinalli
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Gianpaolo Basso
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Paolo Remida
- Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - Giuseppe Citerio
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurointensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Di Cristofori
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900, Monza, MB, Italy
| |
Collapse
|
5
|
Nagy DG, Fedorcsák I, Bagó AG, Gáti G, Martos J, Szabó P, Rajnai H, Kenessey I, Borbély K. Therapy Defining at Initial Diagnosis of Primary Brain Tumor-The Role of 18F-FET PET/CT and MRI. Biomedicines 2023; 11:biomedicines11010128. [PMID: 36672636 PMCID: PMC9855996 DOI: 10.3390/biomedicines11010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Primary malignant brain tumors are heterogeneous and infrequent neoplasms. Their classification, therapeutic regimen and prognosis have undergone significant development requiring the innovation of an imaging diagnostic. The performance of enhanced magnetic resonance imaging depends on blood-brain barrier function. Several studies have demonstrated the advantages of static and dynamic amino acid PET/CT providing accurate metabolic status in the neurooncological setting. The aim of our single-center retrospective study was to test the primary diagnostic role of amino acid PET/CT compared to enhanced MRI. Emphasis was placed on cases prior to intervention, therefore, a certain natural bias was inevitable. In our analysis for newly found brain tumors 18F-FET PET/CT outperformed contrast MRI and PWI in terms of sensitivity and negative predictive value (100% vs. 52.9% and 36.36%; 100% vs. 38.46% and 41.67%), in terms of positive predictive value their performance was roughly the same (84.21 % vs. 90% and 100%), whereas regarding specificity contrast MRI and PWI were superior (40% vs. 83.33% and 100%). Based on these results the superiority of 18F-FET PET/CT seems to present incremental value during the initial diagnosis. In the case of non-enhancing tumors, it should always be suggested as a therapy-determining test.
Collapse
Affiliation(s)
- Dávid Gergő Nagy
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Imre Fedorcsák
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Attila György Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Georgina Gáti
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - János Martos
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | | | - Hajnalka Rajnai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - István Kenessey
- National Cancer Registry, National Institute of Oncology, 1122 Budapest, Hungary
- Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
- Correspondence:
| | - Katalin Borbély
- PET/CT Outpatient Department, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
6
|
Altieri R, Broggi G, Certo F, Pacella D, Cammarata G, Maione M, Garozzo M, Barbagallo D, Purrello M, Caltabiano R, Magro G, Barbagallo G. Anatomical distribution of cancer stem cells between enhancing nodule and FLAIR hyperintensity in supratentorial glioblastoma: time to recalibrate the surgical target? Neurosurg Rev 2022; 45:3709-3716. [PMID: 36171505 DOI: 10.1007/s10143-022-01863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
It is ge nerally accepted that glioblastoma (GBM) arise from cancer stem cells (CSC); however, there is little evidence on their anatomical distribution. We investigated the expression and distribution of SOX-2-positive and CD133-positive CSCs both in the enhancing nodule (EN) of GBM and in the FLAIR hyperintensity zones on a surgical, histopathological series of 33 GBMs. The inclusion criterion was the intraoperative sampling of different tumor regions individualized, thanks to neuronavigation and positivity to intraoperative fluorescence with the use of 5-aminolevulinic acid (5-ALA). Thirty-three patients (20 males and 13 females with a mean age at diagnosis of 56 years) met the inclusion criterion. A total of 109 histological samples were evaluated, 52 for ENs and 57 for FLAIR hyperintensity zone. Considering the quantitative distribution of levels of intensity of staining (IS), ES (extent score), and immunoreactivity score (IRS), no difference was found between ENs and FLAIR regions for both the SOX-2 biomarker (respectively, IS p = 0.851, ES p = 0.561, IRS p = 1.000) and the CD133 biomarker (IS p = 0.653, ES p = 0.409, IRS p = 0.881). This evidence suggests to recalibrate the target of surgery for FLAIRECTOMY and 5-ALA could improve the possibility to achieve this goal.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy.
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Daniela Pacella
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giacomo Cammarata
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Massimiliano Maione
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Marco Garozzo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Davide Barbagallo
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Michele Purrello
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Workflow in the multidisciplinary management of glioma patients in everyday practice: how we do it. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00505-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
The Emerging Roles of circSMARCA5 in Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3015818. [PMID: 35712125 PMCID: PMC9197613 DOI: 10.1155/2022/3015818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/18/2022] [Accepted: 05/21/2022] [Indexed: 12/09/2022]
Abstract
Circular RNAs have a unique covalent closed-loop structure, which is mainly formed by the reverse splicing of exons from a precursor mRNA. With the development of key technologies such as high-throughput sequencing and the advancement of bioinformatics in recent years, our understanding of circular RNAs has become increasingly more detailed, and their abnormal expression in a variety of cancers has attracted increasing attention. Studies have shown that circSNARCA5 not only plays a crucial role in the occurrence and development of cancer but may also serve as a reliable indicator for tumor screening or a good marker for evaluating cancer prognosis. Nevertheless, there are no reviews focusing on the relationship between circSMARCA5 and cancer. Therefore, we will first explain the main biological characteristics of circSMARCA5, such as biogenesis and biological effects. Then, the focus will be on its role and significance in cancer. Finally, we will summarize the known information on circSMARCA5 in cancer and discuss future research prospects.
Collapse
|
9
|
Guerrini F, Roca E, Spena G. Supramarginal Resection for Glioblastoma: It Is Time to Set Boundaries! A Critical Review on a Hot Topic. Brain Sci 2022; 12:652. [PMID: 35625037 PMCID: PMC9139451 DOI: 10.3390/brainsci12050652] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma are the most common primary malignant brain tumors with a highly infiltrative behavior. The extent of resection of the enhancing component has been shown to be correlated to survival. Recently, it has been proposed to move the resection beyond the contrast-enhanced portion into the MR hyper intense tissue which typically surrounds the tumor, the so-called supra marginal resection (SMR). Though it should be associated with better overall survival (OS), a potential harmful resection must be avoided in order not to create new neurological deficits. Through this work, we aimed to perform a critical review of SMR in patients with Glioblastoma. A Medline database search and a pooled meta-analysis of HRs were conducted; 19 articles were included. Meta-analysis revealed a pooled OS HR of 0.64 (p = 0.052). SMR is generally considered as the resection of any T1w gadolinium-enhanced tumor exceeding FLAIR volume, but no consensus exists about the amount of volume that must be resected to have an OS gain. Equally, the role and the weight of several pre-operative features (tumor volume, location, eloquence, etc.), the intraoperative methods to extend resection, and the post-operative deficits, need to be considered more deeply in future studies.
Collapse
Affiliation(s)
- Francesco Guerrini
- Unit of Neurosurgery, Department of Surgical Sciences, Hospital Santa Maria Goretti, 04100 Latina, Italy
| | - Elena Roca
- Head and Neck Department, Neurosurgery, Istituto Ospedaliero Fondazione Poliambulanza, 25124 Brescia, Italy;
- Technology for Health PhD Program, University of Brescia, 25124 Brescia, Italy
| | | |
Collapse
|
10
|
Chen J, Patel TR, Pinho MC, Choi C, Harrison CE, Baxter JD, Derner K, Pena S, Liticker J, Raza J, Hall RG, Reed GD, Cai C, Hatanpaa KJ, Bankson JA, Bachoo RM, Malloy CR, Mickey BE, Park JM. Preoperative imaging of glioblastoma patients using hyperpolarized 13C pyruvate: Potential role in clinical decision making. Neurooncol Adv 2021; 3:vdab092. [PMID: 34355174 PMCID: PMC8331053 DOI: 10.1093/noajnl/vdab092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Glioblastoma remains incurable despite treatment with surgery, radiation therapy, and cytotoxic chemotherapy, prompting the search for a metabolic pathway unique to glioblastoma cells.13C MR spectroscopic imaging with hyperpolarized pyruvate can demonstrate alterations in pyruvate metabolism in these tumors. Methods Three patients with diagnostic MRI suggestive of a glioblastoma were scanned at 3 T 1–2 days prior to tumor resection using a 13C/1H dual-frequency RF coil and a 13C/1H-integrated MR protocol, which consists of a series of 1H MR sequences (T2 FLAIR, arterial spin labeling and contrast-enhanced [CE] T1) and 13C spectroscopic imaging with hyperpolarized [1-13C]pyruvate. Dynamic spiral chemical shift imaging was used for 13C data acquisition. Surgical navigation was used to correlate the locations of tissue samples submitted for histology with the changes seen on the diagnostic MR scans and the 13C spectroscopic images. Results Each tumor was histologically confirmed to be a WHO grade IV glioblastoma with isocitrate dehydrogenase wild type. Total hyperpolarized 13C signals detected near the tumor mass reflected altered tissue perfusion near the tumor. For each tumor, a hyperintense [1-13C]lactate signal was detected both within CE and T2-FLAIR regions on the 1H diagnostic images (P = .008). [13C]bicarbonate signal was maintained or decreased in the lesion but the observation was not significant (P = .3). Conclusions Prior to surgical resection, 13C MR spectroscopic imaging with hyperpolarized pyruvate reveals increased lactate production in regions of histologically confirmed glioblastoma.
Collapse
Affiliation(s)
- Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Toral R Patel
- Department of Neurosurgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marco C Pinho
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Changho Choi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Crystal E Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeannie D Baxter
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kelley Derner
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Salvador Pena
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jaffar Raza
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | - Ronald G Hall
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Dallas, Texas, USA
| | | | - Chunyu Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert M Bachoo
- Department of Neurosurgery and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce E Mickey
- Department of Neurosurgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
11
|
Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, Mirabella F, Broggi G, Altieri R, Certo F, Caltabiano R, Barbagallo GMV, Musumeci P, Ragusa M, Pietro CD, Libra M, Purrello M, Barbagallo D. Serum Extracellular Vesicle-Derived circHIPK3 and circSMARCA5 Are Two Novel Diagnostic Biomarkers for Glioblastoma Multiforme. Pharmaceuticals (Basel) 2021; 14:ph14070618. [PMID: 34198978 PMCID: PMC8308516 DOI: 10.3390/ph14070618] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and deadly human brain cancer. Early diagnosis through non-invasive biomarkers may render GBM more easily treatable, improving the prognosis of this currently incurable disease. We suggest the use of serum extracellular vesicle (sEV)-derived circular RNAs (circRNAs) as highly stable minimally invasive diagnostic biomarkers for GBM diagnosis. EVs were isolated by size exclusion chromatography from sera of 23 GBM and 5 grade 3 glioma (GIII) patients, and 10 unaffected controls (UC). The expression of two candidate circRNAs (circSMARCA5 and circHIPK3) was assayed by droplet digital PCR. CircSMARCA5 and circHIPK3 were significantly less abundant in sEVs from GBM patients with respect to UC (fold-change (FC) of -2.15 and -1.92, respectively) and GIII (FC of -1.75 and -1.4, respectively). Receiver operating characteristic curve (ROC) analysis, based on the expression of sEV-derived circSMARCA5 and circHIPK3, allowed us to distinguish GBM from UC (area under the curve (AUC) 0.823 (0.667-0.979) and 0.855 (0.704 to 1.000), with a 95% confidence interval (CI), respectively). Multivariable ROC analysis, performed by combining the expression of sEV-derived circSMARCA5 and circHIPK3 with preoperative neutrophil to lymphocyte (NLR), platelet to lymphocyte (PLR) and lymphocyte to monocyte (LMR) ratios, three known diagnostic and prognostic GBM markers, allowed an improvement in the GBM diagnostic accuracy (AUC 0.901 (0.7912 to 1.000), 95% CI). Our data suggest sEV-derived circSMARCA5 and circHIPK3 as good diagnostic biomarkers for GBM, especially when associated with preoperative NLR, PLR and LMR.
Collapse
Affiliation(s)
- Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Roberto Altieri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Francesco Certo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.)
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Neurological Surgery, Policlinico “Rodolico-San Marco” University Hospital, University of Catania, 95123 Catania, Italy; (R.A.); (F.C.); (G.M.V.B.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Paolo Musumeci
- Department of Physics and Astronomy, University of Catania, 95123 Catania, Italy;
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of Pathology, University of Catania, 95123 Catania, Italy; (L.F.); (G.G.); (M.L.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy; (M.S.); (A.C.); (C.B.); (R.B.); (F.M.); (M.R.); (C.D.P.); (M.P.)
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-0953782089
| |
Collapse
|
12
|
Barbagallo GMV, Altieri R, Garozzo M, Maione M, Di Gregorio S, Visocchi M, Peschillo S, Dolce P, Certo F. High Grade Glioma Treatment in Elderly People: Is It Different Than in Younger Patients? Analysis of Surgical Management Guided by an Intraoperative Multimodal Approach and Its Impact on Clinical Outcome. Front Oncol 2021; 10:631255. [PMID: 33718122 PMCID: PMC7943843 DOI: 10.3389/fonc.2020.631255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Age is considered a negative prognostic factor for High Grade Gliomas (HGGs) and many neurosurgeons remain skeptical about the benefits of aggressive treatment. New surgical and technological improvements may allow extended safe resection, with lower level of post-operative complications. This opportunity opens the unsolved question about the most appropriate HGG treatment in elderly patients. The aim of this study is to analyze if HGG maximal safe resection guided by an intraoperative multimodal imaging protocol coupled with neuromonitoring is associated with differences in outcome in elderly patients versus younger ones. METHODS We reviewed 100 patients, 53 (53%) males and 47 (47%) females, with median (IQR) age of 64 (57; 72) years. Eight patients were diagnosed with Anaplastic Astrocytoma (AA), 92 with Glioblastoma (GBM). Surgery was aimed to achieve safe maximal resection. An intraoperative multimodal imaging protocol, including neuronavigation, neurophysiological monitoring, 5-ALA fluorescence, 11C MET-PET, navigated i-US system and i-CT, was used, and its impact on EOTR and clinical outcome in elderly patients was analyzed. We divided patients in two groups according to their age: <65 and >65 years, and surgical and clinical results (EOTR, post-operative KPS, OS and PFS) were compared. Yet, to better understand age-related differences, the same patient cohort was also divided into <70 and >70 years and all the above data reanalyzed. RESULTS In the first cohort division, we did not found KPS difference over time and survival analysis did not show significant difference between the two groups (p = 0.36 for OS and p = 0.49 for PFS). Same results were obtained increasing the age cut-off for age up to 70 years (p = 0.52 for OS and p = 0.92 for PFS). CONCLUSIONS Our data demonstrate that there is not statistically significant difference in post-operative EOTR, KPS, OS, and PFS between younger and elderly patients treated with extensive tumor resection aided by a intraoperative multimodal protocol.
Collapse
Affiliation(s)
- Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Marco Garozzo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | - Massimiliano Maione
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | - Stefania Di Gregorio
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | | | - Simone Peschillo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
| | - Pasquale Dolce
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico" University Hospital, Catania, Italy
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Cifarelli CP, Jacques A, Bobko A. Heterogeneity of radiation response in mesenchymal subtype glioblastoma: molecular profiling and reactive oxygen species generation. J Neurooncol 2021; 152:245-255. [PMID: 33566263 DOI: 10.1007/s11060-021-03707-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Radiotherapy-induced tumor death remains critical in the successful first-line management of glioblastoma, whereas resistance to radiation serves as a major factor in disease progression. Mesenchymal shift has been identified as a driver in GBM recurrence, with gene expression associated with enhanced repair of macromolecular damage caused by radiation. METHODS Using distinct mesenchymal subtype GBM cells lines, radiation response was assessed by clonogenic assay and orthotopic mouse tumor model. RNA-sequencing was performed in the setting of increasing radiation dosing while real-time assessment of ROS generation was achieved by the measurement of hydroxyl spin trap adducts via electron paramagnetic resonance. RESULTS Radiation-induced cell death determined by clonogenic assay was significantly different at low dose (4-8 Gy) between the resistant U3035 cells and the sensitive U3020 cells. Similar trends were present in the in vivo NSG mouse model following radiation dosing on post-implantation day 7-10, with the rate of reduction in tumor bioluminescence reversing between the U3020 and U3035 cells after the third dose of radiation. Changes in gene expression following radiation determined by RNA-sequencing indicate both U3035 and U3020 cells demonstrate a shift toward more mesenchymal profiles, with concurrent shift away from pro-neural subtype gene expression in the U3020 cells that appeared to develop resistance to radiation in vivo. Persistence of ROS generated following radiation was greater in U3020 cells shown to be more sensitive to radiation. CONCLUSIONS Despite the same molecular classification, distinct GBM cell lines can demonstrate differential response to radiation and potential for mesenchymal shift associated with radiation resistance.
Collapse
Affiliation(s)
- Christopher P Cifarelli
- Department of Neurosurgery, West Virginia University, 1 Medical Center Drive, Suite 4300, Morgantown, WV, 26506-9183, USA. .,Department of Radiation Oncology, West Virginia University, Morgantown, WV, USA.
| | - Angelica Jacques
- Department of Neurosurgery, West Virginia University, 1 Medical Center Drive, Suite 4300, Morgantown, WV, 26506-9183, USA
| | - Andrey Bobko
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
14
|
Altieri R, Barbagallo D, Certo F, Broggi G, Ragusa M, Di Pietro C, Caltabiano R, Magro G, Peschillo S, Purrello M, Barbagallo G. Peritumoral Microenvironment in High-Grade Gliomas: From FLAIRectomy to Microglia-Glioma Cross-Talk. Brain Sci 2021; 11:200. [PMID: 33561993 PMCID: PMC7915863 DOI: 10.3390/brainsci11020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular composition and molecular signatures of the glioma core compared with infiltrative margins are different, and it is well known that the tumor edge is enriched in microglia. In this review of the literature, we summarize the role of the peritumoral area in high-grade gliomas (HGGs) from surgical and biological points of view. There is evidence on the dual role of microglia in HGGs-a scavenger-tumoricidal role when microglia are activated in an M1 phenotype and a role favoring tumor growth and infiltration/migration when microglia are activated in an M2 phenotype. Microglia polarization is mediated by complex pathways involving cross-talk with glioma cells. In this scenario, extracellular vesicles and their miRNA cargo seem to play a central role. The switch to a specific phenotype correlates with prognosis and the pathological assessment of a specific microglial setting can predict a patient's outcome. Some authors have designed an engineered microglial cell as a biologically active vehicle for the delivery of intraoperative near-infrared fluorescent dye with the aim of helping surgeons detect peritumoral infiltrated areas during resection. Furthermore, the pharmacological modulation of microglia-glioma cross-talk paves the way to more effective therapies.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| | - Davide Barbagallo
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Marco Ragusa
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.B.); (R.C.); (G.M.)
| | - Simone Peschillo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
| | - Michele Purrello
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics Giovanni Sichel, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (S.P.); (G.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy; (D.B.); (M.R.); (M.P.)
| |
Collapse
|
15
|
Lim J, Park Y, Ahn JW, Hwang SJ, Kwon H, Sung KS, Cho K. Maximal surgical resection and adjuvant surgical technique to prolong the survival of adult patients with thalamic glioblastoma. PLoS One 2021; 16:e0244325. [PMID: 33539351 PMCID: PMC7861362 DOI: 10.1371/journal.pone.0244325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The importance of maximal resection in the treatment of glioblastoma (GBM) has been reported in many studies, but maximal resection of thalamic GBM is rarely attempted due to high rate of morbidity and mortality. The purpose of this study was to investigate the role of surgical resection in adult thalamic glioblastoma (GBM) treatment and to identify the surgical technique of maximal safety resection. In case of suspected thalamic GBM, surgical resection is the treatment of choice in our hospital. Biopsy was considered when there was ventricle wall enhancement or multiple enhancement lesion in a distant location. Navigation magnetic resonance imaging, diffuse tensor tractography imaging, tailed bullets, and intraoperative computed tomography and neurophysiologic monitoring (transcranial motor evoked potential and direct subcortical stimulation) were used in all surgical resection cases. The surgical approach was selected on the basis of the location of the tumor epicenter and the adjacent corticospinal tract. Among the 42 patients, 19 and 23 patients underwent surgical resection and biopsy, respectively, according to treatment strategy criteria. As a result, the surgical resection group exhibited a good response with overall survival (OS) (median: 676 days, p < 0.001) and progression-free survival (PFS) (median: 328 days, p < 0.001) compared with each biopsy groups (doctor selecting biopsy group, median OS: 240 days and median PFS: 134 days; patient selecting biopsy group, median OS: 212 days and median PFS: 118 days). The surgical resection groups displayed a better prognosis compared to that of the biopsy groups for both the O6-methylguanine-DNA methyltransferase unmethylated (log-rank p = 0.0035) or methylated groups (log-rank p = 0.021). Surgical resection was significantly associated with better prognosis (hazard ratio: 0.214, p = 0.006). In case of thalamic GBM without ventricle wall-enhancing lesion or multiple lesions, maximal surgical resection above 80% showed good clinical outcomes with prolonged the overall survival compared to biopsy. It is helpful to use adjuvant surgical techniques of checking intraoperative changes and select the appropriate surgical approach for reducing the surgical morbidity.
Collapse
Affiliation(s)
- Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - YoungJoon Park
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
- Dermay Research Center, Dongtan, Republic of Korea
| | - Ju Won Ahn
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - So Jung Hwang
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - Hyouksang Kwon
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Republic of Korea
- * E-mail: (KC); (KSS)
| | - Kyunggi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
- * E-mail: (KC); (KSS)
| |
Collapse
|
16
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
17
|
Radiological evaluation of ex novo high grade glioma: velocity of diametric expansion and acceleration time study. Radiol Oncol 2020; 55:26-34. [PMID: 33885243 PMCID: PMC7877266 DOI: 10.2478/raon-2020-0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/16/2020] [Indexed: 12/03/2022] Open
Abstract
Background One of the greatest neuro-oncological concern remains the lack of knowledge about the etiopathogenesis and physiopathology of gliomas. Several studies reported a strict correlation between radiological features and biological behaviour of gliomas; in this way the velocity of diametric expansion (VDE) correlate with lower grade glioma aggressiveness. However, there are no the same strong evidences for high grade gliomas (HGG) because of the lack of several preoperative MRI. Patients and methods We describe a series of 4 patients affected by HGG followed from 2014 to January 2019. Two patients are male and two female; two had a pathological diagnosis of glioblastoma (GBM), one of anaplastic astrocytoma (AA) and one had a neuroradiological diagnosis of GBM. The VDE and the acceleration time (AT) was calculated for fluid attenuated inversion recovery (FLAIR) volume and for the enhancing nodule (EN). Every patients underwent sequential MRI study along a mean period of 413 days. Results Mean VDE evaluated on FLAIR volume was 39.91 mm/year. Mean percentage ratio between peak values and mean value of acceleration was 282.7%. Median appearance time of EN after first MRI scan was 432 days. Mean VDE was 45.02 mm/year. Mean percentage ratio between peak values and mean value of acceleration was 257.52%. Conclusions To our knowledge, this is the first report on VDE and acceleration growth in HGG confirming their strong aggressiveness. In a case in which we need to repeat an MRI, time between consecutive scans should be reduced to a maximum of 15–20 days and surgery should be executed as soon as possible.
Collapse
|
18
|
Garcia-Garcia S, García-Lorenzo B, Ramos PR, Gonzalez-Sanchez JJ, Culebras D, Restovic G, Alcover E, Pons I, Torales J, Reyes L, Sampietro-Colom L, Enseñat J. Cost-Effectiveness of Low-Field Intraoperative Magnetic Resonance in Glioma Surgery. Front Oncol 2020; 10:586679. [PMID: 33224884 PMCID: PMC7667256 DOI: 10.3389/fonc.2020.586679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 12/01/2022] Open
Abstract
Object Low-field intraoperative magnetic resonance (LF-iMR) has demonstrated a slight increase in the extent of resection of intra-axial tumors while preserving patient`s neurological outcomes. However, whether this improvement is cost-effective or not is still matter of controversy. In this clinical investigation we sought to evaluate the cost-effectiveness of the implementation of a LF-iMR in glioma surgery. Methods Patients undergoing LF-iMR guided glioma surgery with gross total resection (GTR) intention were prospectively collected and compared to an historical cohort operated without this technology. Socio-demographic and clinical variables (pre and postoperative KPS; histopathological classification; Extent of resection; postoperative complications; need of re-intervention within the first year and 1-year postoperative survival) were collected and analyzed. Effectiveness variables were assessed in both groups: Postoperative Karnofsky performance status scale (pKPS); overall survival (OS); Progression-free survival (PFS); and a variable accounting for the number of patients with a greater than subtotal resection and same or higher postoperative KPS (R-KPS). All preoperative, procedural and postoperative costs linked to the treatment were considered for the cost-effectiveness analysis (diagnostic procedures, prosthesis, operating time, hospitalization, consumables, LF-iMR device, etc). Deterministic and probabilistic simulations were conducted to evaluate the consistency of our analysis. Results 50 patients were operated with LF-iMR assistance, while 146 belonged to the control group. GTR rate, pKPS, R-KPS, PFS, and 1-year OS were respectively 13,8% (not significative), 7 points (p < 0.05), 17% (p < 0.05), 38 days (p < 0.05), and 3.7% (not significative) higher in the intervention group. Cost-effectiveness analysis showed a mean incremental cost per patient of 789 € in the intervention group. Incremental cost-effectiveness ratios were 111 € per additional point of pKPS, 21 € per additional day free of progression, and 46 € per additional percentage point of R-KPS. Conclusion Glioma patients operated under LF-iMR guidance experience a better functional outcome, higher resection rates, less complications, better PFS rates but similar life expectancy compared to conventional techniques. In terms of efficiency, LF-iMR is very close to be a dominant technology in terms of R-KPS, PFS and pKPS.
Collapse
Affiliation(s)
| | - Borja García-Lorenzo
- Assessment of Innovations and New Technologies Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | | | - Diego Culebras
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| | - Gabriela Restovic
- Assessment of Innovations and New Technologies Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Estanis Alcover
- Economic and Financial Management Department, Hospital Clinic, Barcelona, Spain
| | - Imma Pons
- Economic and Financial Management Department, Hospital Clinic, Barcelona, Spain
| | - Jorge Torales
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| | - Luis Reyes
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| | - Laura Sampietro-Colom
- Assessment of Innovations and New Technologies Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Joaquim Enseñat
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| |
Collapse
|