1
|
Raheem MA, Rahim MA, Gul I, Reyad-Ul-Ferdous M, Zhang CY, Yu D, Pandey V, Du K, Wang R, Han S, Han Y, Qin P. COVID-19: Post infection implications in different age groups, mechanism, diagnosis, effective prevention, treatment, and recommendations. Life Sci 2024:122861. [PMID: 38925222 DOI: 10.1016/j.lfs.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
SARS-CoV-2 is a highly contagious pathogen that predominantly caused the COVID-19 pandemic. The persistent effects of COVID-19 are defined as an inflammatory or host response to the virus that begins four weeks after initial infection and persists for an undetermined length of time. Chronic effects are more harmful than acute ones thus, this review explored the long-term effects of the virus on various human organs, including the pulmonary, cardiovascular, and neurological, reproductive, gastrointestinal, musculoskeletal, endocrine, and lymphoid systems and found that SARS-CoV-2 adversely affects these organs of older adults. Regarding diagnosis, the RT-PCR is a gold standard method of diagnosing COVID-19; however, it requires specialized equipment and personnel for performing assays and a long time for results production. Therefore, to overcome these limitations, artificial intelligence employed in imaging and microfluidics technologies is the most promising in diagnosing COVID-19. Pharmacological and non-pharmacological strategies are the most effective treatment for reducing the persistent impacts of COVID-19 by providing immunity to post-COVID-19 patients by reducing cytokine release syndrome, improving the T cell response, and increasing the circulation of activated natural killer and CD8 T cells in blood and tissues, which ultimately reduces fever, nausea, fatigue, and muscle weakness and pain. Vaccines such as inactivated viral, live attenuated viral, protein subunit, viral vectored, mRNA, DNA, or nanoparticle vaccines significantly reduce the adverse long-term virus effects in post-COVID-19 patients; however, no vaccine was reported to provide lifetime protection against COVID-19; consequently, protective measures such as physical separation, mask use, and hand cleansing are promising strategies. This review provides a comprehensive knowledge of the persistent effects of COVID-19 on people of varying ages, as well as diagnosis, treatment, vaccination, and future preventative measures against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Muhammad Ajwad Rahim
- College of Animal Science and Technology, Ahnui Agricultural University, Hefei, PR China
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Md Reyad-Ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Yuxing Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
2
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
3
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Murugan C, Ramamoorthy S, Kuppuswamy G, Murugan RK, Sivalingam Y, Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int J Biol Macromol 2021; 193:1165-1200. [PMID: 34710479 PMCID: PMC8545698 DOI: 10.1016/j.ijbiomac.2021.10.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies effectively. Herein, we have discussed in detail about the genome structure of SARS-CoV-2 and its role in the proteomic rational spread of different muted species and pathogenesis in infecting the host cells. The mechanisms behind the viral outbreak and its immune response, the availability of existing diagnostics techniques, the treatment efficacy of repurposed drugs and the emerging vaccine trials for the SARS-CoV-2 outbreak also have been highlighted. Furthermore, the possible antiviral effects of various herbal products and their extracted molecules in inhibiting SARS-CoV-2 replication and cellular entry are also reported. Finally, we conclude our opinion on current challenges involved in the drug development, bulk production of drug/vaccines and their storage requirements, logistical procedures and limitations related to dosage trials for larger population.
Collapse
Affiliation(s)
- Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Guruprasad Kuppuswamy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Rajesh Kumar Murugan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; Department of Chemical Engineering, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
6
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
7
|
Rahimi H, Salehiabar M, Barsbay M, Ghaffarlou M, Kavetskyy T, Sharafi A, Davaran S, Chauhan SC, Danafar H, Kaboli S, Nosrati H, Yallapu MM, Conde J. CRISPR Systems for COVID-19 Diagnosis. ACS Sens 2021; 6:1430-1445. [PMID: 33502175 PMCID: PMC7860143 DOI: 10.1021/acssensors.0c02312] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RT-qPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPR-based diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system.
Collapse
Affiliation(s)
- Hossein Rahimi
- Department of Medical Biotechnology, School of
Medicine, Zanjan University of Medical Sciences, Zanjan,
Iran
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
| | - Marziyeh Salehiabar
- Drug Applied Research Center, Tabriz
University of Medical Sciences, P.O. Box 51656-65811, Tabriz,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Murat Barsbay
- Hacettepe University,
Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | | | - Taras Kavetskyy
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
- Department of Surface Engineering, The
John Paul II Catholic University of Lublin, 20-950 Lublin,
Poland
- Drohobych Ivan Franko State Pedagogical
University, 82100 Drohobych, Ukraine
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz
University of Medical Sciences, P.O. Box 51656-65811, Tabriz,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of
Medicine, University of Texas Rio Grande Valley, McAllen, Texas
78504, United States
- South Texas Center of Excellence in Cancer Research,
School of Medicine, University of Texas Rio Grande Valley,
McAllen, Texas 78504, United States
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of
Medicine, Zanjan University of Medical Sciences, Zanjan,
Iran
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center,
Zanjan University of Medical Sciences, Zanjan,
Iran
- Joint Ukraine−Azerbaijan
International Research and Education Center of Nanobiotechnology and Functional
Nanosystems, Drohobych, Ukraine; Baku, Azerbaijan
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of
Medicine, University of Texas Rio Grande Valley, McAllen, Texas
78504, United States
- South Texas Center of Excellence in Cancer Research,
School of Medicine, University of Texas Rio Grande Valley,
McAllen, Texas 78504, United States
| | - João Conde
- NOVA Medical School, Faculdade de Ciências
Médicas, Universidade Nova de Lisboa, Lisboa,
Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics),
Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências
Médicas, Universidade Nova de Lisboa, Lisboa,
Portugal
| |
Collapse
|