1
|
Clore J, Scott PJH. [ 68Ga]PSMA-11 for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA)-positive lesions in men with prostate cancer. Expert Rev Mol Diagn 2024; 24:565-582. [PMID: 39054633 DOI: 10.1080/14737159.2024.2383439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Theranostics targeting prostate-specific membrane antigen (PSMA) represent a new targeted approach for prostate cancer care that combines diagnostic and therapeutic radiopharmaceuticals to diagnose and treat the disease. Positron emission tomography (PET) is the imaging method of choice and several diagnostic radiopharmaceuticals for quantifying PSMA have received FDA approval and are in clinical use. [68Ga]Ga-PSMA-11 is one such imaging agent and the focus of this article. One beta-emitting radioligand therapy ([177Lu]Lu-PSMA-617) has also received FDA approval for prostate cancer treatment, and several other alpha- and beta-emitting radioligand therapies are in clinical trials. AREAS COVERED Theranostics targeting PSMA in men with prostate cancer are discussed with a focus on use of [68Ga]Ga-PSMA-11 for imaging PSMA-positive lesions in men with prostate cancer. The review covers [68Ga]Ga-PSMA-11 manufacture, current regulatory status, comparison of [68Ga]Ga-PSMA-11 to other imaging techniques, clinical updates, and emerging applications of artificial intelligence for [68Ga]Ga-PSMA-11 PET. EXPERT OPINION [68Ga]Ga-PSMA-11 is used in conjunction with a PET/CT scan to image PSMA positive lesions in men with prostate cancer. It is manufactured by chelating precursor with68Ga, either from a generator or cyclotron, and has regulatory approval around the world. It is widely used clinically in conjunction with radioligand therapies like [177Lu]Lu-PSMA-617.
Collapse
Affiliation(s)
- Jessica Clore
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Saule L, Radzina M, Liepa M, Roznere L, Lioznovs A, Ratniece M, Mamis E, Vjaters E. Recurrent Prostate Cancer Diagnostics with 18F-PSMA-1007 PET/CT: A Systematic Review of the Current State. Diagnostics (Basel) 2022; 12:diagnostics12123176. [PMID: 36553183 PMCID: PMC9777208 DOI: 10.3390/diagnostics12123176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early diagnosis of recurrent prostate cancer is a cornerstone for further adequate therapy planning. Therefore, clinical practice and research still focuses on diagnostic tools that can detect prostate cancer in early recurrence when it is undetectable in conventional diagnostic imaging. 18F-PSMA-1007 PET/CT is a novel method to evaluate patients with biochemical recurrent PCa. The aim of this review was to evaluate the role of 18F-PSMA-1007 PET/CT in prostate cancer local recurrence, lymph node metastases and bone metastases detection. METHODS Original studies, reviews and five meta-analyses were included in this article. A total of 70 studies were retrieved, 31 were included in the study. RESULTS All patients described in the studies underwent 18F-PSMA-1007 PET/CT. The administered 18F-PSMA-1007 individual dose ranged from 159 ± 31 MBq to 363.93 ± 69.40 MBq. Results showed that 18F-PSMA-1007 PET/CT demonstrates a good detection rate in recurrent prostate cancer. CONCLUSIONS 18F-PSMA-1007 PET/CT appears to achieve reliable performance in detecting recurrent prostate cancer. The high detection rate of 18F-PSMA-1007 PET/CT in recurrent prostate cancer was confirmed, especially in local recurrence and small lymph nodes with non-specific characteristics on conventional diagnostic imaging methods. However, several authors emphasize some limitations for this tracer-for example, non-specific uptake in bone lesions that can mimic bone metastases.
Collapse
Affiliation(s)
- Laura Saule
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
- Correspondence: ; Tel.: +371-26131556
| | - Maija Radzina
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
| | - Mara Liepa
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| | - Lilita Roznere
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
| | - Andrejs Lioznovs
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| | - Madara Ratniece
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
| | - Edgars Mamis
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
| | - Egils Vjaters
- Medical Faculty, University of Latvia, LV-1004 Riga, Latvia
- Center of Urology, Paula Stradina Clinical University Hospital, LV-1002 Riga, Latvia
| |
Collapse
|
3
|
Liu X, Jiang T, Gao C, Liu H, Sun Y, Zou Q, Tang R, Zeng W. Detection rate of fluorine-18 prostate-specific membrane antigen-1007 PET/CT for prostate cancer in primary staging and biochemical recurrence with different serum PSA levels: A systematic review and meta-analysis. Front Oncol 2022; 12:911146. [PMID: 35936732 PMCID: PMC9353183 DOI: 10.3389/fonc.2022.911146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background We performed a systematic review and meta-analysis to evaluate the detection rate (DR) of fluoro-prostate-specific membrane antigen (18F-PSMA-1007) PET/CT in patients with different serum prostate-specific antigen (PSA) levels in the setting of primary staging of prostate cancer (PCa) or biochemically recurring PCa. Methods A comprehensive electronic literature search of the PubMed, Embase, and Cochrane Library databases was conducted in accordance with the PRISMA statement. This study was registered in the PROSPERO database (registration number: CRD42022331595). We calculated the DR of 18F-PSMA-1007 PET/CT in PCa. Results The final analysis included 15 studies that described 1,022 patients and 2,034 lesions with 18F-PSMA-1007 PET/CT in PCa. The DR of 18F-PSMA-1007 PET/CT in patients with PCa in primary staging ranged from 90% to 100%, with a pooled estimate of 94% (95% CI: 92%–96%). The DR of 18F-PSMA-1007 PET/CT in patients with PCa in BCR ranged from 47% to 100%, with a pooled estimate of 86% (95% CI: 76%–95%). The DRs of PSA levels >2.0, 1.1–2.0, 0.51–1.0, and ≤0.5 ng/ml detected by 18F-PSMA-1007 PET/CT in a patient-based analysis were 97% (95% CI: 93%–99%), 95% (95% CI: 88%–99%), 79% (95% CI: 68%–88%), and 68% (95% CI: 58%–78%), respectively. Conclusion This meta-analysis concluded that 18F-PSMA-1007 PET/CT had a high application value for prostate cancer, including primary tumors and biochemical recurrence. The DR of 18F-PSMA-1007 PET/CT was slightly higher in primary prostate tumors than in biochemical recurrence. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022331595.
Collapse
Affiliation(s)
- Xue Liu
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Tao Jiang
- Department of Nuclear Medicine, The First People’s Hospital of Huaihua City, Hunan, China
| | - CaiLiang Gao
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - HuiTing Liu
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yu Sun
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiao Zou
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Rui Tang
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
| | - WenBing Zeng
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China
- *Correspondence: WenBing Zeng,
| |
Collapse
|
4
|
Rizzo A, Annunziata S, Salvatori M. Side effects of theragnostic agents currently employed in clinical practice. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:315-326. [PMID: 34881848 DOI: 10.23736/s1824-4785.21.03411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear medicine plays an increasingly important role in several neoplasms management through a theragnostic approach by which targeted molecular imaging and radiotherapy are obtained with the use of radionuclide pairs with similar characteristics. In some cases, nuclear theragnostic use a pair of agents with identical chemical and biological characteristics while in others are employed theragnostic molecules which are not chemically or biologically identical but show similar biodistribution (so-called "twins in spirit" radiopharmaceuticals). This strategy was developed for the first time over 75 years ago, when iodine-131 was used for diagnostic imaging, confirmation of target expression and radionuclide therapy of thyroid cancer. Other theragnostic approaches were subsequently introduced with significant clinical results and some of them are currently considered standard treatment for different cancers. However, as any other therapy, also nuclear theragnostic treatment carries the potential risk of early deterministic and late stochastic off-target adverse effects, generally minimal and easily managed. This article reviews the reported side effects and risks of the main radiopharmaceuticals used for nuclear theragnostic in oncology for the treatment of thyroid cancer, neuroendocrine neoplasms, adrenergic tumors, metastatic prostate cancer, and liver tumors. Selecting appropriate patients using a multidisciplinary approach, meticulous pretreatment planning and knowledge of methods permit to decrease the incidence of these potential side effects.
Collapse
Affiliation(s)
- Alessio Rizzo
- Candiolo Cancer Institute - FPO-IRCCS, Candiolo, Turin, Italy -
| | - Salvatore Annunziata
- Unit of Nuclear Medicine, TracerGLab, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Massimo Salvatori
- Institute of Nuclear Medicine, Sacred Heart Catholic University, Rome, Italy
| |
Collapse
|
5
|
[Positron emission tomography with computed tomography/magnetic resonance imaging for primary staging of prostate cancer]. Radiologe 2021; 61:818-824. [PMID: 34351430 DOI: 10.1007/s00117-021-00895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
CLINICAL/METHODOLOGICAL ISSUE Prostate cancer is the most common malignancy and the second leading cause of cancer-related death in men. Accurate imaging diagnosis and staging are crucial for patient management and treatment. The role of nuclear medicine in the diagnosis of prostate cancer has evolved rapidly in recent years due to the availability of hybrid imaging with radiopharmaceuticals targeting the prostate-specific membrane antigen (PSMA). STANDARD RADIOLOGICAL PROCEDURES Hybrid imaging provides higher diagnostic accuracy compared to conventional imaging and has a significant impact on clinical management. Numerous radiotracers have been used in clinical applications, with PSMA ligands being the most commonly used. METHODOLOGICAL INNOVATIONS Hybrid imaging provides higher diagnostic accuracy for lymph node and bone metastases compared to conventional imaging and has a significant impact on clinical management. PERFORMANCE The high accuracy for primary staging in high-risk prostate cancer using PSMA ligands has led to the inclusion of PSMA positron emission tomography (PET)/computed tomography (CT) in the new German S3 guideline for primary staging of prostate cancer. PURPOSE The aim of this article is to provide an overview of the use of PET imaging in the primary diagnosis of prostate cancer, to present the most commonly used radiotracers, and to highlight the results of recent studies.
Collapse
|
6
|
Awenat S, Piccardo A, Carvoeiras P, Signore G, Giovanella L, Prior JO, Treglia G. Diagnostic Role of 18F-PSMA-1007 PET/CT in Prostate Cancer Staging: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11030552. [PMID: 33808825 PMCID: PMC8003688 DOI: 10.3390/diagnostics11030552] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The use of prostate-specific membrane antigen (PSMA)-targeted agents for staging prostate cancer (PCa) patients using positron emission tomography/computed tomography (PET/CT) is increasing worldwide. We performed a systematic review on the role of 18F-PSMA-1007 PET/CT in PCa staging to provide evidence-based data in this setting. Methods: A comprehensive computer literature search of PubMed/MEDLINE and Cochrane Library databases for studies using 18F-PSMA-1007 PET/CT in PCa staging was performed until 31 December 2020. Eligible articles were selected and relevant information was extracted from the original articles by two authors independently. Results: Eight articles (369 patients) evaluating the role of 18F-PSMA-1007 PET/CT in PCa staging were selected. These studies were quite heterogeneous, but, overall, they demonstrated a good diagnostic accuracy of 18F-PSMA-1007 PET/CT in detecting PCa lesions at staging. Overall, higher primary PCa aggressiveness was associated with higher 18F-PSMA-1007 uptake. When compared with other radiological and scintigraphic imaging methods, 18F-PSMA-1007 PET/CT had superior sensitivity in detecting metastatic disease and the highest inter-reader agreement. 18F-PSMA-1007 PET/CT showed similar results in terms of diagnostic accuracy for PCa staging compared with PET/CT with other PSMA-targeted tracers. Dual imaging with multi-parametric magnetic resonance imaging and 18F-PSMA-1007 PET/CT may improve staging of primary PCa. Notably, 18F-PSMA-1007-PET/CT may detect metastatic disease in a significant number of patients with negative standard imaging. Conclusions: 18F-PSMA-1007 PET/CT demonstrated a good accuracy in PCa staging, with similar results compared with other PSMA-targeted radiopharmaceuticals. This method could substitute bone scintigraphy and conventional abdominal imaging for PCa staging. Prospective multicentric studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Salam Awenat
- Institute for Radiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany;
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, 16128 Genoa, Italy;
| | | | - Giovanni Signore
- Department of Medicine, Università degli studi della Campania “L. Vanvitelli”, 81100 Caserta, Italy;
| | - Luca Giovanella
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Department of Nuclear Medicine, University Hospital Zürich and University of Zürich, 8091 Zürich, Switzerland
| | - John O. Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Correspondence: ; Tel.: +0041-918118919
| |
Collapse
|
7
|
Wichmann CW, Ackermann U, Poniger S, Young K, Nguyen B, Chan G, Sachinidis J, Scott AM. Automated radiosynthesis of [ 68 Ga]Ga-PSMA-11 and [ 177 Lu]Lu-PSMA-617 on the iPHASE MultiSyn module for clinical applications. J Labelled Comp Radiopharm 2021; 64:140-146. [PMID: 33067810 PMCID: PMC8048907 DOI: 10.1002/jlcr.3889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
Prostate-specific membrane antigen (PSMA)-targeted imaging and therapy of prostate cancer using theranostic pairs is rapidly changing clinical practice. To facilitate clinical trials, fully automated procedures for the radiosyntheses of [68 Ga]Ga-PSMA-11 and [177 Lu]Lu-PSMA-617 were developed from commercially available precursors using the cassette based iPHASE MultiSyn module. Formulated and sterile radiopharmaceuticals were obtained in 76 ± 3% (n = 20) and 91 ± 4% (n = 15) radiochemical yields after 17 and 20 min, respectively. Radiochemical purity was always >95% and molar activities exceeded 792 ± 100 and 88 ± 6 GBq/μmol, respectively. Quality control showed conformity with all relevant release criteria and radiopharmaceuticals were used in the clinic.
Collapse
Affiliation(s)
- Christian W. Wichmann
- Tumor Targeting LaboratoryOlivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
- Department of MedicineUniversity of MelbourneParkvilleVictoriaAustralia
| | - Uwe Ackermann
- Tumor Targeting LaboratoryOlivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
- Department of MedicineUniversity of MelbourneParkvilleVictoriaAustralia
| | - Stan Poniger
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Kenneth Young
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Benjamin Nguyen
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Gordon Chan
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
| | - John Sachinidis
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
| | - Andrew M. Scott
- Tumor Targeting LaboratoryOlivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Department of Molecular Imaging and TherapyAustin HealthHeidelbergVictoriaAustralia
- Department of MedicineUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
8
|
Kwan KH, Burvenich IJG, Centenera MM, Goh YW, Rigopoulos A, Dehairs J, Swinnen JV, Raj GV, Hoy AJ, Butler LM, Scott AM, White JM, Ackermann U. Synthesis and fluorine-18 radiolabeling of a phospholipid as a PET imaging agent for prostate cancer. Nucl Med Biol 2021; 93:37-45. [PMID: 33310350 PMCID: PMC8071757 DOI: 10.1016/j.nucmedbio.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Altered lipid metabolism and subsequent changes in cellular lipid composition have been observed in prostate cancer cells, are associated with poor clinical outcome, and are promising targets for metabolic therapies. This study reports for the first time on the synthesis of a phospholipid radiotracer based on the phospholipid 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (PC44:12) to allow tracking of polyunsaturated lipid tumor uptake via PET imaging. This tracer may aid in the development of strategies to modulate response to therapies targeting lipid metabolism in prostate cancer. METHODS Lipidomics analysis of prostate tumor explants and LNCaP tumor cells were used to identify PC44:12 as a potential phospholipid candidate for radiotracer development. Synthesis of phosphocholine precursor and non-radioactive standard were optimised using click chemistry. The biodistribution of a fluorine-18 labeled analogue, N-{[4-(2-[18F]fluoroethyl)-2,3,4-triazol-1-yl]methyl}-1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine ([18F]2) was determined in LNCaP prostate tumor-bearing NOD SCID gamma mice by ex vivo biodistribution and PET imaging studies and compared to biodistribution of [18F]fluoromethylcholine. RESULTS [18F]2 was produced with a decay-corrected yield of 17.8 ± 3.7% and an average radiochemical purity of 97.00 ± 0.89% (n = 6). Molar activity was 85.1 ± 3.45 GBq/μmol (2300 ± 93 mCi/μmol) and the total synthesis time was 2 h. Ex vivo biodistribution data demonstrated high liver uptake (41.1 ± 9.2%ID/g) and high splenic uptake (10.9 ± 9.1%ID/g) 50 min post-injection. Ex vivo biodistribution showed low absolute tumor uptake of [18F]2 (0.8 ± 0.3%ID/g). However, dynamic PET imaging demonstrated an increase over time of the relative tumor-to-muscle ratio with a peak of 2.8 ± 0.5 reached 1 h post-injection. In contrast, dynamic PET of [18F]fluoromethylcholine demonstrated no increase in tumor-to-muscle ratios due to an increase in both tumor and muscle over time. Absolute uptake of [18F]fluoromethylcholine was higher and peaked at 60 min post injection (2.25 ± 0.29%ID/g) compared to [18F]2 (1.44 ± 0.06%ID/g) during the 1 h dynamic scan period. CONCLUSIONS AND ADVANCES IN KNOWLEDGE This study demonstrates the ability to radiolabel phospholipids and indicates the potential to monitor the in vivo distribution of phospholipids using fluorine-18 based PET.
Collapse
Affiliation(s)
- Kim H Kwan
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Ingrid J G Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia.
| | - Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Yit Wooi Goh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center at Dallas, TX, USA; Department of Pharmacology, UT Southwestern Medical Center at Dallas, TX, USA
| | - Andrew J Hoy
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia; Department of Medicine, Melbourne University, Melbourne, Australia
| | - Jonathan M White
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Uwe Ackermann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Australia; Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia; Department of Medicine, Melbourne University, Melbourne, Australia.
| |
Collapse
|
9
|
Cardinale J, Roscher M, Schäfer M, Geerlings M, Benešová M, Bauder-Wüst U, Remde Y, Eder M, Nováková Z, Motlová L, Barinka C, Giesel FL, Kopka K. Development of PSMA-1007-Related Series of 18F-Labeled Glu-Ureido-Type PSMA Inhibitors. J Med Chem 2020; 63:10897-10907. [PMID: 32852205 DOI: 10.1021/acs.jmedchem.9b01479] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, a number of drugs targeting the prostate-specific membrane antigen (PSMA) have become important tools in the diagnosis and treatment of prostate cancer. In the present work, we report on the synthesis and preclinical evaluation of a series of 18F-labeled PSMA ligands for diagnostic application based on the theragnostic ligand PSMA-617. By applying modifications to the linker structure, insight into the structure-activity relationship could be gained, highlighting the importance of hydrophilicity and stereoselectivity on interaction with PSMA and hence the biodistribution. Selected compounds were co-crystallized with the PSMA protein and analyzed by X-rays with mixed results. Among these, PSMA-1007 (compound 5) showed the best interaction with the PSMA protein. The respective radiotracer [18F]PSMA-1007 was translated into the clinic and is, in the meantime, subject of advanced clinical trials.
Collapse
Affiliation(s)
- Jens Cardinale
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Mareike Roscher
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Martin Schäfer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Max Geerlings
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Martina Benešová
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Yvonne Remde
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Matthias Eder
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Zora Nováková
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Lucia Motlová
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| |
Collapse
|
10
|
Positron Emission Tomography-Based Response to Target and Immunotherapies in Oncology. ACTA ACUST UNITED AC 2020; 56:medicina56080373. [PMID: 32722205 PMCID: PMC7466359 DOI: 10.3390/medicina56080373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is a promising tool to support the evaluation of response to either target therapies or immunotherapy with immune checkpoint inhibitors both in clinical trials and, in selected patients, at the single patient's level. The present review aims to discuss available evidence related to the use of [18F]FDG PET (Positron Emission Tomography) to evaluate the response to target therapies and immune checkpoint inhibitors. Criteria proposed for the standardization of the definition of the PET-based response and complementary value with respect to morphological imaging are commented on. The use of PET-based assessment of the response through metabolic pathways other than glucose metabolism is also relevant in the framework of personalized cancer treatment. A brief discussion of the preliminary evidence for the use of non-FDG PET tracers in the evaluation of the response to new therapies is also provided.
Collapse
|
11
|
Quesada-Olarte JM, Allaf ME, Alvarez-Maestro M, Martínez-Piñeiro L. Molecular imaging of prostate cancer: Review of imaging agents, modalities, and current status. Actas Urol Esp 2020; 44:386-399. [PMID: 32709428 DOI: 10.1016/j.acuro.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The clinical course of Prostate cancer (PCa) are markedly diverse, ranging from indolent to highly aggressive disseminated disease. Molecular imaging techniques are playing an increasing role in early PCa detection, staging and disease recurrence. There are some molecular imaging modalities, radiotracers agents and its performance are important in current clinical practice PCa. OBJECTIVE This review summarizes the latest information regarding molecular imaging of PCa and is designed to assist urologists with ordering and interpreting these modalities and different radiotracers for different patients. EVIDENCE ACQUISITION A PubMed-based literature search was conducted up to September 2019. We selected the most recent and relevant original articles, metanalysis and reviews that have provided relevant information to guide molecular imaging modalities and radiotracers use. EVIDENCE SYNTHESIS In this review, we discuss 3 main molecular imaging modalities and 7 radiotracer technologies available. CONCLUSIONS The use molecular imaging modalities and radiotracers has a unique role in biochemical recurrence and diagnosis of ganglionar and bone progression of PCa. In the present time, no one of these molecular imaging modalities can be recommended over the classical work-up of abdominopelvic CT scan and bone scan, and large-scale and multi-institutional studies are required to validate the efficacy and cost utility of these new technologies.
Collapse
Affiliation(s)
| | - M E Allaf
- Departamento de Urología, Johns Hopkins University Hospital, Baltimore, Estados Unidos
| | | | | |
Collapse
|
12
|
Evaluation of PSMA expression changes on PET/CT before and after initiation of novel antiandrogen drugs (enzalutamide or abiraterone) in metastatic castration-resistant prostate cancer patients. Ann Nucl Med 2019; 33:945-954. [DOI: 10.1007/s12149-019-01404-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
|
13
|
Gallium-68 prostate-specific membrane antigen PET-CT and the clinical management of prostate cancer. Nucl Med Commun 2019; 40:913-919. [DOI: 10.1097/mnm.0000000000001047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol Diagn Ther 2019; 23:1-26. [PMID: 30411216 DOI: 10.1007/s40291-018-0366-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present era of precision medicine sees 'cancer' as a consequence of molecular derangements occurring at the commencement of the disease process, with morphologic changes happening much later in the process of tumorigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), play an integral role in the detection of disease at a macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumorigenesis, and thus has the potential to play a key role in heralding the transition from the concept of 'one size fits all' to 'precision medicine'. Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called 'radiogenomics', which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning, and artificial intelligence (AI), the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, a majority of these require validation before clinical translation is possible. In this two-part review, we discuss the systematic collaboration across structural, anatomical, and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
|
15
|
Detection Rate of 18F-Labeled PSMA PET/CT in Biochemical Recurrent Prostate Cancer: A Systematic Review and a Meta-Analysis. Cancers (Basel) 2019; 11:cancers11050710. [PMID: 31126071 PMCID: PMC6562935 DOI: 10.3390/cancers11050710] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/15/2023] Open
Abstract
Background: The use of radiolabeled prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) for biochemical recurrent prostate cancer (BRPCa) is increasing worldwide. Recently, 18F-labeled PSMA agents have become available. We performed a systematic review and meta-analysis regarding the detection rate (DR) of 18F-labeled PSMA PET/CT in BRPCa to provide evidence-based data in this setting. Methods: A comprehensive literature search of PubMed/MEDLINE, EMBASE, and Cochrane Library databases through 23 April 2019 was performed. Pooled DR was calculated on a per-patient basis, with pooled proportion and 95% confidence interval (95% CI). Furthermore, pooled DR of 18F-PSMA PET/CT using different cut-off values of prostate-specific antigen (PSA) was obtained. Results: Six articles (645 patients) were included in the meta-analysis. The pooled DR of 18F-labeled PSMA PET/CT in BRPCa was 81% (95% CI: 71–88%). The pooled DR was 86% for PSA ≥ 0.5 ng/mL (95% CI: 78–93%) and 49% for PSA < 0.5 ng/mL (95% CI: 23–74%). Statistical heterogeneity was found. Conclusions: 18F-labeled PSMA PET/CT demonstrated a good DR in BRPCa. DR of 18F-labeled PSMA PET/CT is related to PSA values with significant lower DR in patients with PSA < 0.5 ng/mL. Prospective multicentric trials are needed to confirm these findings.
Collapse
|
16
|
|