1
|
Zhang X, Heo GS, Li A, Lahad D, Detering L, Tao J, Gao X, Zhang X, Luehmann H, Sultan D, Lou L, Venkatesan R, Li R, Zheng J, Amrute J, Lin CY, Kopecky BJ, Gropler RJ, Bredemeyer A, Lavine K, Liu Y. Development of a CD163-Targeted PET Radiotracer That Images Resident Macrophages in Atherosclerosis. J Nucl Med 2024; 65:775-780. [PMID: 38548349 PMCID: PMC11064833 DOI: 10.2967/jnumed.123.266910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Indexed: 05/03/2024] Open
Abstract
Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.
Collapse
Affiliation(s)
- Xiuli Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Joan Tao
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - Xuefeng Gao
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lanlan Lou
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Rajiu Venkatesan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Ran Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Junedh Amrute
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin J Kopecky
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
5
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Toner YC, Ghotbi AA, Naidu S, Sakurai K, van Leent MMT, Jordan S, Ordikhani F, Amadori L, Sofias AM, Fisher EL, Maier A, Sullivan N, Munitz J, Senders ML, Mason C, Reiner T, Soultanidis G, Tarkin JM, Rudd JHF, Giannarelli C, Ochando J, Pérez-Medina C, Kjaer A, Mulder WJM, Fayad ZA, Calcagno C. Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Sci Rep 2022; 12:6185. [PMID: 35418569 PMCID: PMC9007951 DOI: 10.1038/s41598-022-09590-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
In recent years, cardiovascular immuno-imaging by positron emission tomography (PET) has undergone tremendous progress in preclinical settings. Clinically, two approved PET tracers hold great potential for inflammation imaging in cardiovascular patients, namely FDG and DOTATATE. While the former is a widely applied metabolic tracer, DOTATATE is a relatively new PET tracer targeting the somatostatin receptor 2 (SST2). In the current study, we performed a detailed, head-to-head comparison of DOTATATE-based radiotracers and [18F]F-FDG in mouse and rabbit models of cardiovascular inflammation. For mouse experiments, we labeled DOTATATE with the long-lived isotope [64Cu]Cu to enable studying the tracer's mode of action by complementing in vivo PET/CT experiments with thorough ex vivo immunological analyses. For translational PET/MRI rabbit studies, we employed the more widely clinically used [68Ga]Ga-labeled DOTATATE, which was approved by the FDA in 2016. DOTATATE's pharmacokinetics and timed biodistribution were determined in control and atherosclerotic mice and rabbits by ex vivo gamma counting of blood and organs. Additionally, we performed in vivo PET/CT experiments in mice with atherosclerosis, mice subjected to myocardial infarction and control animals, using both [64Cu]Cu-DOTATATE and [18F]F-FDG. To evaluate differences in the tracers' cellular specificity, we performed ensuing ex vivo flow cytometry and gamma counting. In mice subjected to myocardial infarction, in vivo [64Cu]Cu-DOTATATE PET showed higher differential uptake between infarcted (SUVmax 1.3, IQR, 1.2-1.4, N = 4) and remote myocardium (SUVmax 0.7, IQR, 0.5-0.8, N = 4, p = 0.0286), and with respect to controls (SUVmax 0.6, IQR, 0.5-0.7, N = 4, p = 0.0286), than [18F]F-FDG PET. In atherosclerotic mice, [64Cu]Cu-DOTATATE PET aortic signal, but not [18F]F-FDG PET, was higher compared to controls (SUVmax 1.1, IQR, 0.9-1.3 and 0.5, IQR, 0.5-0.6, respectively, N = 4, p = 0.0286). In both models, [64Cu]Cu-DOTATATE demonstrated preferential accumulation in macrophages with respect to other myeloid cells, while [18F]F-FDG was taken up by macrophages and other leukocytes. In a translational PET/MRI study in atherosclerotic rabbits, we then compared [68Ga]Ga-DOTATATE and [18F]F-FDG for the assessment of aortic inflammation, combined with ex vivo radiometric assays and near-infrared imaging of macrophage burden. Rabbit experiments showed significantly higher aortic accumulation of both [68Ga]Ga-DOTATATE and [18F]F-FDG in atherosclerotic (SUVmax 0.415, IQR, 0.338-0.499, N = 32 and 0.446, IQR, 0.387-0.536, N = 27, respectively) compared to control animals (SUVmax 0.253, IQR, 0.197-0.285, p = 0.0002, N = 10 and 0.349, IQR, 0.299-0.423, p = 0.0159, N = 11, respectively). In conclusion, we present a detailed, head-to-head comparison of the novel SST2-specific tracer DOTATATE and the validated metabolic tracer [18F]F-FDG for the evaluation of inflammation in small animal models of cardiovascular disease. Our results support further investigations on the use of DOTATATE to assess cardiovascular inflammation as a complementary readout to the widely used [18F]F-FDG.
Collapse
Affiliation(s)
- Yohana C Toner
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adam A Ghotbi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Sonum Naidu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ken Sakurai
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Farideh Ordikhani
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Letizia Amadori
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- New York University Cardiovascular Research Center, Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Alexandros Marios Sofias
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Elizabeth L Fisher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Maier
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University, University of Freiburg, Freiburg, Germany
| | - Nathaniel Sullivan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max L Senders
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Christian Mason
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Radiology and Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Georgios Soultanidis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Chiara Giannarelli
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- New York University Cardiovascular Research Center, Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Pérez-Medina
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, PO Box: 1234, New York, NY, 10029, USA.
- Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|