1
|
Nechalová L, Bielik V, Hric I, Babicová M, Baranovičová E, Grendár M, Koška J, Penesová A. Gut microbiota and metabolic responses to a 12-week caloric restriction combined with strength and HIIT training in patients with obesity: a randomized trial. BMC Sports Sci Med Rehabil 2024; 16:239. [PMID: 39639405 PMCID: PMC11619444 DOI: 10.1186/s13102-024-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Nowadays, obesity has become a major health issue. In addition to negatively affecting body composition and metabolic health, recent evidence shows unfavorable shifts in gut microbiota in individuals with obesity. However, the effects of weight loss on gut microbes and metabolites remain controversial. Therefore, the purpose of this study was to investigate the effects of a 12-week program on gut microbiota and metabolic health in patients with obesity. METHODS We conducted a controlled trial in 23 male and female patients with obesity. Twelve participants completed a 12-week program of caloric restriction combined with strength and HIIT training (INT, pre-BMI 37.33 ± 6.57 kg/m2), and eleven participants were designated as non-intervention controls (pre-BMI 38.65 ± 8.07 kg/m2). Metagenomic sequencing of the V3-V4 region of the 16S rDNA gene from fecal samples allowed for gut microbiota classification. Nuclear magnetic resonance spectroscopy characterized selected serum and fecal metabolite concentrations. RESULTS Within INT, we observed a significant improvement in body composition; a significant decrease in liver enzymes (AST, ALT, and GMT); a significant increase in the relative abundance of the commensal bacteria (e.g., Akkermansia muciniphila, Parabacteroides merdae, and Phocaeicola vulgatus); and a significant decrease in the relative abundance of SCFA-producing bacteria (e.g., the genera Butyrivibrio, Coprococcus, and Blautia). In addition, significant correlations were found between gut microbes, body composition, metabolic health biomarkers, and SCFAs. Notably, the Random Forest Machine Learning analysis identified predictors (Butyrivibrio fibrisolvens, Blautia caecimuris, Coprococcus comes, and waist circumference) with a moderate ability to discriminate between INT subjects pre- and post-intervention. CONCLUSIONS Our results indicate that a 12-week caloric restriction combined with strength and HIIT training positively influences body composition, metabolic health biomarkers, gut microbiota, and microbial metabolites, demonstrating significant correlations among these variables. We observed a significant increase in the relative abundance of bacteria linked to obesity, e.g., Akkermansia muciniphila. Additionally, our study contributes to the ongoing debate about the role of SCFAs in obesity, as we observed a significant decrease in SCFA producers after a 12-week program. TRIAL REGISTRATION The trial was registered on [05/12/2014] with ClinicalTrials.gov (No: NCT02325804).
Collapse
Affiliation(s)
- Libuša Nechalová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia.
| | - Ivan Hric
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Miriam Babicová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Marián Grendár
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Juraj Koška
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Adela Penesová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| |
Collapse
|
2
|
Vitale G. Highlights of the October-December 2024 issue. Minerva Endocrinol (Torino) 2024; 49:351-352. [PMID: 39903493 DOI: 10.23736/s2724-6507.24.04316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Affiliation(s)
- Giovanni Vitale
- IRCCS Istituto Auxologico Italiano, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Milan, Italy -
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy -
| |
Collapse
|
3
|
Kobyliak N, Khomenko M, Falalyeyeva T, Fedchenko A, Savchuk O, Tseyslyer Y, Ostapchenko L. Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. Crit Rev Microbiol 2024; 50:663-683. [PMID: 37705353 DOI: 10.1080/1040841x.2023.2257776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) and\or pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Maria Khomenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
4
|
Shen X, Ma C, Yang Y, Liu X, Wang B, Wang Y, Zhang G, Bian X, Zhang N. The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review. Foods 2024; 13:2719. [PMID: 39272484 PMCID: PMC11394447 DOI: 10.3390/foods13172719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
5
|
Lang Y, Zhong C, Guo L, Liu Z, Zuo D, Chen X, Ding L, Huang B, Li B, Yuan Y, Niu Y, Qiu J, Qian C. Monoacylglycerol acyltransferase-2 inhibits colorectal carcinogenesis in APC min+/- mice. iScience 2024; 27:110205. [PMID: 39055928 PMCID: PMC11269928 DOI: 10.1016/j.isci.2024.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Monoacylglycerol acyltransferase-2 (MOGAT2), encodes MOGAT enzyme in the re-synthesis of triacylglycerol and protects from metabolism disorders. While, its precise involvement in colorectal cancer (CRC) progression remains inadequately understood. Our study demonstrated that knockout of Mogat2 in Apcmin/+ mice expedited intestinal tumor growth and progression, indicating that Mogat2 plays a tumor-suppressing role in CRC. Mechanically, Mogat2 deletion resulted in a significant alter the gut microbiota, while Fecal Microbiota Transplantation (FMT) experiments demonstrated that the gut microbiota in Mogat2 deleted mice promoted tumor growth. Furthermore, we identified Mogat2 as a functional regulator suppressing CRC cell proliferation and tumor growth by inhibiting the NF-κB signaling pathway in vivo. Collectively, these results provide novel insights into the protective double roles of Mogat2, inhibiting of NF-κB pathway and keeping gut microbiota homeostasis in colorectal cancer, which may help the development of novel cancer treatments for CRC.
Collapse
Affiliation(s)
- Yanhong Lang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Lingling Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhijie Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xi Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Liuyan Ding
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bijun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Chaonan Qian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, 9 Ciji Road, Huangpu District, Guangzhou 510555, P.R. China
| |
Collapse
|
6
|
Zhang J, Hu B, Deng X, Sun R, Zhang R, Chen K, Guo W. Multiomics analysis investigating the impact of a high-fat diet in female Sprague-Dawley rats: alterations in plasma, intestinal metabolism, and microbial composition. Front Nutr 2024; 11:1359989. [PMID: 38646105 PMCID: PMC11026666 DOI: 10.3389/fnut.2024.1359989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction With improvements in living conditions, modern individuals exhibit a pronounced inclination towards a high-fat diet, largely because of its distinctive gustatory appeal. However, the association between high-fat diets and metabolic complications has largely been ignored, and metabolic diseases such as obesity and non-alcoholic fatty liver disease now constitute a major public health concern. Because high-fat diets increase the risk of metabolic diseases, a thorough investigation into the impact of high-fat diets on gut microbiota and metabolism is required. Methods We utilize 16S rRNA sequencing and untargeted metabolomics analysis to demonstrate that SD rats fed a high-fat diet exhibited marked alterations in gut microbiota and plasma, intestinal metabolism. Results Changes in gut microbiota included a decreased abundance at phylum level for Verrucomicrobiota, and a decreased abundance at genus level for Akkermansia, Ralstonia, Bacteroides, and Faecalibacterium. Additionally, significant changes were observed in both intestinal and plasma metabolite levels, including an upregulation of bile acid metabolism, an upregulation of glucose-lipid metabolism, and increased levels of metabolites such as norlithocholic acid, cholic acid, D-fructose, D-mannose, fructose lactate, and glycerophosphocholine. We also investigated the correlations between microbial communities and metabolites, revealing a significant negative correlation between Akkermansia bacteria and cholic acid. Discussion Overall, our findings shed light on the relationship between symbiotic bacteria associated with high-fat diets and metabolic biomarkers, and they provide insights for identifying novel therapeutic approaches to mitigate disease risks associated with a high-fat diet.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Hepatobiliary, Pancreatic and Liver Transplantation Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Sun
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary, Pancreatic and Liver Transplantation Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| |
Collapse
|
7
|
Sochacka K, Kotowska A, Lachowicz-Wiśniewska S. The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence. Nutrients 2024; 16:1039. [PMID: 38613071 PMCID: PMC11013804 DOI: 10.3390/nu16071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.
Collapse
Affiliation(s)
- Klaudia Sochacka
- Faculty of Medicine and Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Agata Kotowska
- Department of Social Policy, Institute of Sociological Sciences, College of Social Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | | |
Collapse
|
8
|
Yang J, Wang J, Wu W, Su C, Wu Y, Li Q. Xylooligosaccharides ameliorate insulin resistance by increasing Akkermansia muciniphila and improving intestinal barrier dysfunction in gestational diabetes mellitus mice. Food Funct 2024; 15:3122-3129. [PMID: 38426554 DOI: 10.1039/d3fo04681h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Little is known regarding the effects of xylooligosaccharides (XOS) on insulin resistance (IR) in gestational diabetes mellitus (GDM). We aimed to investigate this issue and its mechanism. Sixty female mice were randomly allotted to 4 groups (n = 15): control, high fat diet (HFD), GDM, and GDM + XOS. The control mice were fed an AIN-93 diet, while the mice in the other groups were fed 45% HFD. After pregnancy, mice in GDM and GDM + XOS groups were intraperitoneally injected with 30 mg kg-1 streptozocin for 3 days from the first day of pregnancy. Mice in the GDM + XOS group were then fed an HFD containing 2% XOS. Fasting glucose and insulin levels were monitored. The fecal Akkermansia muciniphila (Akk. muciniphila) and Bifidobacterium were measured by qPCR. The Chiu scores were calculated from hematoxylin-eosin (HE)-stained ileal tissues. Phosphorylated Akt in the liver and occludin and ZO-1 in the intestinal tissues were determined by western blotting. XOS reduced (p < 0.05) fasting blood glucose and insulin and HOMA-IR, and increased (p < 0.05) Akt phosphorylation in the livers of GDM mice. Moreover, XOS decreased (p < 0.05) TNFα, IL-1β, IL-15 and LPS in the serum, increased (p < 0.05) fecal Akk. muciniphila abundance, lowered (p < 0.05) Chiu's scores, and enhanced (p < 0.05) occludin and ZO-1 expression. XOS ameliorate IR by increasing Akk. muciniphila and improving intestinal barrier dysfunction in GDM mice.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Weiliang Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, China
- Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Yanhua Wu
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, China
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, China.
| |
Collapse
|
9
|
Shvets Y, Khranovska N, Senchylo N, Ostapchenko D, Tymoshenko I, Onysenko S, Kobyliak N, Falalyeyeva T. Microbiota substances modulate dendritic cells activity: A critical view. Heliyon 2024; 10:e27125. [PMID: 38444507 PMCID: PMC10912702 DOI: 10.1016/j.heliyon.2024.e27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Contemporary research in the field of microbiota shows that commensal bacteria influence physiological activity of different organs and systems of a human organism, such as brain, lungs, immune and metabolic systems. This influence is realized by various processes. One of them is trough modulation of immune mechanisms. Interactions between microbiota and the human immune system are known to be complex and ambiguous. Dendritic cells (DCs) are unique cells, which initiate the development and polarization of adaptive immune response. These cells also interconnect native and specific immune reactivity. A large set of biochemical signals from microbiota in the form of different microbiota associated molecular patterns (MAMPs) and bacterial metabolites that act locally and distantly in the human organism. As a result, commensal bacteria influence the maturity and activity of dendritic cells and affect the overall immune reactivity of the human organism. It then determines the response to pathogenic microorganisms, inflammation, associated with different pathological conditions and even affects the effectiveness of vaccination.
Collapse
Affiliation(s)
- Yuliia Shvets
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Natalia Khranovska
- National Cancer Institute of Ukraine, 33/43 Yuliia Zdanovska Str., Kyiv, Ukraine
| | - Natalia Senchylo
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Danylo Ostapchenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Iryna Tymoshenko
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
| | - Svitlana Onysenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
| | - Nazarii Kobyliak
- Bogomolets National Medical University, 13 Shevchenka Blvd., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., Kyiv, Ukraine
- Medical Laboratory CSD, 22b Zhmerynska Str., Kyiv, Ukraine
| |
Collapse
|
10
|
Savytska M, Kyriienko D, Zaychenko G, Ostapchenko D, Falalyeyeva T, Kobyliak N. Probiotic co-supplementation with absorbent smectite for pancreatic beta-cell function in type 2 diabetes: a secondary-data analysis of a randomized double-blind controlled trials. Front Endocrinol (Lausanne) 2024; 15:1276642. [PMID: 38405158 PMCID: PMC10890794 DOI: 10.3389/fendo.2024.1276642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction There is growing evidence from animal and clinical studies suggesting probiotics can positively affect type 2 diabetes (T2D). In a previous randomized clinical study, we found that administering a live multistrain probiotic and absorbent smectite once a day for eight weeks to patients with T2D could reduce chronic systemic inflammatory state, insulin resistance, waist circumference and improve the glycemic profile. However, there is a lack of evidence supporting the efficacy of probiotic co-supplementation with absorbent smectite on pancreatic β-cell function in T2D. Aim This secondary analysis aimed to assess the effectiveness of an alive multistrain probiotic co-supplementation with absorbent smectite vs placebo on β-cell function in T2D patients. Material and methods We performed a secondary analysis on a previously published randomized controlled trial (NCT04293731, NCT03614039) involving 46 patients with T2D. The main inclusion criteria were the presence of β-cell dysfunction (%B<60%) and insulin therapy alone or combined with oral anti-diabetic drugs. The primary outcome was assessing β-cell function as change C-peptide and %B. Results We observed only a tendency for improving β-cell function (44.22 ± 12.80 vs 55.69 ± 25.75; р=0.094). The effectiveness of the therapy probiotic-smectite group was confirmed by fasting glycemia decreased by 14% (p=0.019), HbA1c - 5% (p=0.007), HOMA-2 - 17% (p=0.003) and increase of insulin sensitivity by 23% (p=0.005). Analysis of the cytokine profile showed that statistical differences after treatment were in the concentration of both pro-inflammatory cytokines: IL-1β (22.83 ± 9.04 vs 19.03 ± 5.57; p=0.045) and TNF-α (31.25 ± 11.32 vs 26.23 ± 10.13; p=0.041). Conclusion Adding a live multistrain probiotic and absorbent smectite supplement slightly improved β-cell function and reduced glycemic-related parameters in patients with T2D. This suggests that adjusting the gut microbiota could be a promising treatment for diabetes and warrants further investigation through more extensive studies.
Collapse
Affiliation(s)
- Maryana Savytska
- Normal Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Ganna Zaychenko
- Pharmacology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Danylo Ostapchenko
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
11
|
Savytska M, Kyriienko D, Komisarenko I, Kovalchuk O, Falalyeyeva T, Kobyliak N. Probiotic for Pancreatic β-Cell Function in Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diabetes Ther 2023; 14:1915-1931. [PMID: 37713103 PMCID: PMC10570251 DOI: 10.1007/s13300-023-01474-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Many clinical studies have proved the effectiveness of probiotics in metabolic disorders associated with insulin resistance. However, the impact of probiotic therapy on pancreatic β-cell function is ambiguous. The influence of probiotic supplementation vs. placebo on β-cell function in people with type 2 diabetes (T2D) was assessed in a double-blind, single-center, randomized, placebo-controlled trial (RCT). METHODS Sixty-eight patients with T2D were selected for participation in the RCT. Patients were randomly allocated to consumption of live multistrain probiotics or a placebo for 8 weeks, administered as a sachet formulation in double-blind treatment. The primary main outcome was the assessment of β-cell function as change in C-peptide and HOMA-β (homeostasis model assessment-estimated β-cell function), which was calculated using the HOMA2 calculator (Diabetes Trials Unit, University of Oxford). Secondary outcomes were the changes in glycemic control-related parameters, anthropomorphic variables, and cytokines levels. Analysis of covariance was used to assess the difference between groups. RESULTS Supplementation with live multiprobiotic was associated with slight significant improvement of β-cell function (HOMA-β increased from 32.48 ± 13.12 to 45.71 ± 25.18; p = 0.003) and reduction of fasting glucose level (13.03 ± 3.46 vs 10.66 ± 2.63 mmol/L and 234.63 ± 62.36 vs 192.07 ± 47.46 mg/dL; p < 0.001) and HbA1c (8.86 ± 1.28 vs 8.48 ± 1.22; p = 0.043) as compared to placebo. Probiotic therapy significantly affects chronic systemic inflammation in people with T2D by reducing pro-inflammatory cytokine levels. CONCLUSIONS Probiotic therapies modestly improved β-cell function in patients with T2D. Modulating the gut microbiota represents a new diabetes treatment and should be tested in more extensive studies. TRIAL REGISTRATION NCT05765292.
Collapse
Affiliation(s)
- Maryana Savytska
- Normal Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Iuliia Komisarenko
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine.
- Medical Laboratory CSD, Kyiv, Ukraine.
| |
Collapse
|
12
|
Penchuk Y, Savytska M, Kobyliak N, Ostapchenko D, Kolodiy I, Onysenko S, Tsyryuk O, Korotkyi O, Grygoriev F, Falalyeyeva T. Antimicrobial activity of dietary supplements based on bacterial lysate of Lactobacillus rhamnosus DV. Front Cell Infect Microbiol 2023; 13:1211952. [PMID: 37692171 PMCID: PMC10492581 DOI: 10.3389/fcimb.2023.1211952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction According to WHO, antibiotic resistance is increasing to hazardous levels worldwide. Candidiasis often occurs after taking antibiotics. Therefore, antibiotic resistance is a global problem and searching for antibacterial agents is necessary. Aim To determine the antimicrobial activity of bacterial lysate of Lactobacillus (L.) rhamnosus DV separately and with plant extracts against bacterial and yeast test cultures. Material and methods Antimicrobial activity of Del-Immune V® (cell wall and DNA fragments from a L. rhamnosus DV) separately and with cinnamon, beetroot, and blackcurrant extracts was determined by the minimum inhibitory concentration (MIC). Twofold serial dilutions determined the MIC in previously prepared meat-peptone broth (MPB) for bacteria and liquid wort for yeast. In the study, gram-negative (Escherichia coli IEM-1, Proteus vulgaris PА-12, Pseudomonas sp. MI-2, L. rhamnosus 13/2) and gram-positive (Bacillus (B.) subtilis BТ-2, Staphylococcus aureus BМС-1) bacteria, as well as yeast (Candida (C.) albicans D-6, C. tropicalis PE-2, C. utilis BVS-65) were used as test cultures. Results The MIC for the studied bacterial test cultures after application of L. rhamnosus DV bacterial lysates was from 1.0 ± 0.05 mg/mL to 12.5 ± 0.63 mg/mL, which was significantly less than that of the thermally inactivated control (MIC from 125.0 ± 6.25 mg/mL to 250.0 ± 12.5 mg/mL). B. subtilis BT-2 culture was the least sensitive to the action of the bacterial lysate (MIC-12.5 ± 0.63 mg/mL). It showed the best antibacterial and antifungal effect bacterial lysate with the phytonutrient blackcurrant. Conclusions It was demonstrated that bacterial lysate of lactic acid bacteria L. rhamnosus DV exhibits antibacterial and antifungal properties during direct contact with pathogenic agents.
Collapse
Affiliation(s)
- Yurii Penchuk
- Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maryana Savytska
- Department of Normal Physiology Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- Scientific Department, Medical Laboratory CSD, Kyiv, Ukraine
| | - Danylo Ostapchenko
- Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Igor Kolodiy
- Department of Biotechnology and Microbiology, National University of Food Technologies, Kyiv, Ukraine
| | - Svitlana Onysenko
- Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Tsyryuk
- Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Korotkyi
- Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Tetyana Falalyeyeva
- Educational and Scientific Centre, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Scientific Department, Medical Laboratory CSD, Kyiv, Ukraine
| |
Collapse
|
13
|
Pessoa J, Belew GD, Barroso C, Egas C, Jones JG. The Gut Microbiome Responds Progressively to Fat and/or Sugar-Rich Diets and Is Differentially Modified by Dietary Fat and Sugar. Nutrients 2023; 15:2097. [PMID: 37432234 PMCID: PMC10180990 DOI: 10.3390/nu15092097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
Describing diet-related effects on the gut microbiome is essential for understanding its interactions with fat and/or sugar-rich diets to promote obesity-related metabolic diseases. Here, we sequenced the V3-V4 hypervariable region of the bacterial 16S rRNA gene to study the composition and dynamics of the gut microbiome of adult mice fed diets rich in fat and/or sugar, at 9 and 18 weeks of diet. Under high-fat, high-sugar diet, the abundances of Tuzzerella and Anaerovorax were transiently increased at 9 weeks, while Lactobacillus remained elevated at 9 and 18 weeks. The same diet decreased the abundances of Akkermansia, Paludicola, Eisenbergiella, and Butyricicoccus at 9 and 18 weeks, while Intestinimonas and UCG-009 of the Butyricicoccaceae family responded only at 18 weeks. The high-fat diet decreased the abundances of UBA1819 at 9 weeks, and Gastranaerophilales, Clostridia UCG-014, and ASF356 at 9 and 18 weeks. Those of Marvinbryantia, Harryflintia, Alistipes, Blautia, Lachnospiraceae A2, Eubacterium coprostanoligenes group, and Eubacterium brachy group were lowered only at 18 weeks. Interestingly, these genera were not sensitive to the high-sugar diet. The mouse gut microbiome was differentially affected by diets rich in fat or fat and sugar. The differences observed at 9 and 18 weeks indicate a progressive microbiome response.
Collapse
Affiliation(s)
- João Pessoa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.P.); (G.D.B.); (C.B.); (J.G.J.)
- CIBB—Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Getachew D. Belew
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.P.); (G.D.B.); (C.B.); (J.G.J.)
- CIBB—Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Cristina Barroso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.P.); (G.D.B.); (C.B.); (J.G.J.)
- CIBB—Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Biocant-Technology Transfer Association, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Conceição Egas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.P.); (G.D.B.); (C.B.); (J.G.J.)
- CIBB—Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Biocant-Technology Transfer Association, Biocant Park, 3060-197 Cantanhede, Portugal
| | - John G. Jones
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.P.); (G.D.B.); (C.B.); (J.G.J.)
- CIBB—Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
14
|
Kubáňová L, Bielik V, Hric I, Ugrayová S, Šoltys K, Rádiková Ž, Baranovičová E, Grendár M, Kolisek M, Penesová A. Gut Microbiota and Serum Metabolites in Individuals with Class III Obesity Without Type 2 Diabetes Mellitus: Pilot Analysis. Metab Syndr Relat Disord 2023. [PMID: 37083403 DOI: 10.1089/met.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Gut microbial composition seems to change in association with prediabetes. The purpose of this prospective cross-sectional study was to compare the composition of gut microbiota and energy metabolites between individuals with class III obesity but without type 2 diabetes mellitus (OB) and healthy normal weight controls. Methods: The subjects of this prospective cross-sectional study were participants recruited from a previous clinical trial (No: NCT02325804), with intervention focused on weight loss. We recruited 19 OB [mean age ± standard deviation (SD) was 35.4 ± 7.0 years, mean body mass index (BMI) ± SD was 48.8 ± 6.7 kg/m2] and 23 controls (mean age ± SD was 31.7 ± 14.8 years, mean BMI ± SD was 22.2 ± 1.7 kg/m2). Their fecal microbiota was categorized using specific primers targeting the V1-V3 region of 16S rDNA, whereas serum metabolites were characterized by nuclear magnetic resonance spectroscopy. Multivariate statistical analysis and Random Forest models were applied to discriminate predictors with the highest variable importance. Results: We observed a significantly lower microbial α-diversity (P = 0.001) and relative abundance of beneficial bacterium Akkermansia (P = 0.001) and the short-chain fatty acid-producing bacteria Eubacterium hallii (P = 0.019), Butyrivibrio (P = 0.024), Marvinbryantia (P = 0.010), and Coprococcus (P = 0.050) and a higher abundance of the pathogenic bacteria Bilophila (P = 0.018) and Fusobacterium (P = 0.022) in OB compared with controls. Notably, the Random Forest machine learning analysis identified energy metabolites (citrate and acetate), HOMA-IR, and insulin as important predictors capable of discriminating between OB and controls. Conclusions: Our results suggest that changes in gut microbiota and in serum acetate and citrate are additional promising biomarkers before progression to Type 2 diabetes. The non-invasive manipulation of gut microbiota composition in OB through a healthy lifestyle, thus, offers a new approach for managing class III obesity and associated disorders. ClinicalTrials.gov identifier: NCT02325804.
Collapse
Affiliation(s)
- Libuša Kubáňová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivan Hric
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Simona Ugrayová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Žofia Rádiková
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marián Grendár
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Adela Penesová
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
15
|
Tkach S, Dorofeyev A, Kuzenko I, Falalyeyeva T, Tsyryuk O, Kovalchuk O, Kobyliak N, Abenavoli L, Boccuto L. Efficacy and safety of fecal microbiota transplantation via colonoscopy as add-on therapy in patients with mild-to-moderate ulcerative colitis: A randomized clinical trial. Front Med (Lausanne) 2023; 9:1049849. [PMID: 36714101 PMCID: PMC9877446 DOI: 10.3389/fmed.2022.1049849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Growing evidence supports the effectiveness of fecal microbiota transplantation (FMT) in treating ulcerative colitis (UC), although its effects seem to depend on the method of introduction, the number of procedures, the donor material, and the severity of UC. Aim This study aimed to assess FMT's clinical and microbiological efficacy, tolerability, and safety in patients with mild-to-moderate UC. Material and methods Patients with mild-to-moderate UC were randomized into two groups. The first group (standard-care, n = 27) was treated with basic therapy-mesalazine-at a daily dose of 3 g (2 g orally + 1 g rectally). In the second group (FMT group, n = 26), while taking mesalazine at the indicated dose, each patient with UC as add-on therapy underwent a single FMT procedure with fresh material delivered by colonoscopy from a healthy donor. The clinical efficacy of treatment in both groups was evaluated after 4 and 8 weeks. The primary outcome was remission of UC, defined as a partial Mayo score ≤2, and decreased fecal calprotectin. All patients underwent bacteriological examination of feces for quantitative microbiota composition changes. Results Clinical response in the form of a significant decrease in stool frequency and a tendency to normalize its consistency after 4 weeks was detected in 14 (51.9%) patients of the standard care group and 16 patients (61.5%) of the FMT group (p = 0.583). The Mayo score in the standard care group was 3.59 ± 1.21 and in the FMT group-3.15±1.04 (p=0.166). After 8 weeks, the main primary endpoint was achieved in 70.4% of the standard-care group patients as compared to 84.6% of participants who received FMT as add-on therapy (p = 0.215). A more pronounced decrease in Mayo score was observed in the FMT group compared to the standard-care group (1.34 ± 1.44 vs. 2.14 ± 1.4; p = 0.045). All patients also showed a significant decrease in fecal calprotectin levels, which correlated with clinical data, stool frequency, and clinical remission. An improvement in gut microbiota composition was noted in both groups, albeit it was significantly more pronounced in the FMT group. Conclusions FTM in patients with mild-to-moderate UC is a well-tolerated, effective, and safe method of treatment in comparison to basic therapy. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT05538026?term=kobyliak&draw=2&rank=4, identifier: NCT05538026.
Collapse
Affiliation(s)
- Sergii Tkach
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Andrii Dorofeyev
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Iurii Kuzenko
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine,Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Tsyryuk
- Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Kovalchuk
- Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine,Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine,Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, United States,Clemson University School of Health Research, Clemson, SC, United States,*Correspondence: Luigi Boccuto ✉
| |
Collapse
|
16
|
Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Curr Microbiol 2023; 80:38. [DOI: 10.1007/s00284-022-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
|