Mostafaee H, Idoon F, Mohasel-Roodi M, Alipour F, Lotfi N, Sadeghi A. The effects of induced type I diabetes on developmental regulation of GDNF, NRTN, and NCAM proteins in the dentate gyrus of male rat offspring.
J Chem Neuroanat 2024;
136:102391. [PMID:
38219812 DOI:
10.1016/j.jchemneu.2024.102391]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND
Maternal diabetes during pregnancy can affect the neurological development of offspring. Glial cell-derived neurotrophic factor (GDNF), neurturin (NRTN), and neural cell adhesion molecules (NCAM) are three important proteins for brain development. Therefore, this study aimed to investigate the impacts of the mentioned neurotrophic factors in the hippocampal dentate gyrus (DG) of rat offspring born to diabetic mothers.
METHODS
Wistar female rats were randomly allocated into diabetic (STZ-D) [(45 mg/kg BW, STZ (Streptozotocin), i.p)], diabetic + NPH insulin (STZ-INS) [(4-6 unit/kg/day SC)], and control groups. The animals in all groups were mated by non-diabetic male rats. Two weeks after birth, male pups from each group were sacrificed and then protein contents of GDNF, NRTN, and NCAM were evaluated using immunohistochemistry.
RESULTS
The study found that the expression of GDNF and NRTN in the hippocampus of diabetic rat offspring was significantly higher compared to the diabetic+ insulin and control groups, respectively (P < 0.01, P < 0.001). Additionally, the expression of NCAM was significantly higher in the diabetic group the diabetic+ insulin and control groups (P < 0.01, P < 0.001).
CONCLUSIONS
The results of the study revealed that diabetes during pregnancy significantly impacts the distribution pattern of GDNF, NRTN, and NCAM in the hippocampus of rat neonates.
Collapse