1
|
Radhakrishnan S, Norley J, Wendt S, LeRoy N, Hall H, Norcross S, Doan S, Snaider J, MacVicar BA, Weake VM, Huang L, Tantama M. Neuron Activity Dependent Redox Compartmentation Revealed with a Second Generation Red-Shifted Ratiometric Sensor. ACS Chem Neurosci 2020; 11:2666-2678. [PMID: 32786310 PMCID: PMC7526680 DOI: 10.1021/acschemneuro.0c00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress is a hallmark of several aging and trauma related neurological disorders, but the precise details of how altered neuronal activity elicits subcellular redox changes have remained difficult to resolve. Current redox sensitive dyes and fluorescent proteins can quantify spatially distinct changes in reactive oxygen species levels, but multicolor probes are needed to accurately analyze compartment-specific redox dynamics in single cells that can be masked by population averaging. We previously engineered genetically encoded red-shifted redox-sensitive fluorescent protein sensors using a Förster resonance energy transfer relay strategy. Here, we developed a second-generation excitation ratiometric sensor called rogRFP2 with improved red emission for quantitative live-cell imaging. Using this sensor to measure activity-dependent redox changes in individual cultured neurons, we observed an anticorrelation in which mitochondrial oxidation was accompanied by a concurrent reduction in the cytosol. This behavior was dependent on the activity of Complex I of the mitochondrial electron transport chain and could be modulated by the presence of cocultured astrocytes. We also demonstrated that the red fluorescent rogRFP2 facilitates ratiometric one- and two-photon redox imaging in rat brain slices and Drosophila retinas. Overall, the proof-of-concept studies reported here demonstrate that this new rogRFP2 redox sensor can be a powerful tool for understanding redox biology both in vitro and in vivo across model organisms.
Collapse
Affiliation(s)
- Saranya Radhakrishnan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jacob Norley
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Stefan Wendt
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nathan LeRoy
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Hana Hall
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
| | - Stevie Norcross
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Sara Doan
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Jordan Snaider
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Brian A. MacVicar
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Vikki M. Weake
- Department of Biochemistry, 175 South University Street, West Lafayette, IN 47907, United States
- Purdue Center for Cancer Research, 175 South University Street, West Lafayette, IN 47907, United States
| | - Libai Huang
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
| | - Mathew Tantama
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Institute for Integrative Neuroscience, 560 Oval Drive, West Lafayette, IN 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, 560 Oval Drive, West Lafayette, IN 47907, United States
- Department of Chemistry, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
- Biochemistry Program, Wellesley College, 106 Central Street, Wellesley, MA 02481, United States
| |
Collapse
|