1
|
Sun H, Wu Y, Xiong Z, Gu Y, Jia Q, Ru Z, Peng Y, Kang Z, Li Y, Huang Y, Yin S, Guo K, Feng C, Tang J, Gao Z, Wang Y, Yang X. Amphibian-derived peptide RL-RF10 ameliorates paraquat-induced pulmonary fibrosis injury. Biomed Pharmacother 2024; 171:116184. [PMID: 38244328 DOI: 10.1016/j.biopha.2024.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
Pulmonary fibrosis is the result of dysfunctional repair after lung tissue injury, characterized by fibroblast proliferation and massive extracellular matrix aggregation. Once fibrotic lesions develop, effective treatment is difficult, with few drugs currently available. Here, we identified a short cyclic decapeptide RL-RF10 derived from frog skin secretions as a potential novel lead molecule for the amelioration of pulmonary fibrosis. In vivo experiments indicated that RL-RF10 treatment ameliorated lung histopathological damage and fibrogenesis after paraquat (PQ) induction in a concentration-dependent manner. On day 7, bronchoalveolar lavage fluid assays performed on mice showed that RL-RF10 exerted anti-inflammatory effects by decreasing the expression of inflammation-related factors, including transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α, in lung tissue. In addition, RL-RF10 down-regulated the levels of collagen I, collagen III, and vimentin, while increasing the expression of E-cadherin to inhibit epithelial-mesenchymal transition. Further research demonstrated that the SMAD2/3 signaling pathway, which is strongly linked to TGF-β1, played a critical function in enhancing the pulmonary fibrosis relief achieved by RL-RF10. Both in vivo and in vitro assays showed that RL-RF10 treatment led to a significant reduction in the phosphorylation levels of SMAD2 and SMAD3 following PQ induction. Overall, we investigated the protective effects and underlying mechanisms of the RL-RF10 peptide against pulmonary fibrosis and demonstrated its potential as a novel therapeutic drug candidate for the treatment of pulmonary fibrotic diseases.
Collapse
Affiliation(s)
- Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ziqian Xiong
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuanqi Gu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yubing Huang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Kun Guo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chengan Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhenhua Gao
- Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming, Yunnan, 650032, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
2
|
Lu H, Chai J, Xu Z, Wu J, He S, Liao H, Huang P, Huang X, Chen X, Jiang H, Qu S, Xu X. Cath-KP, a novel peptide derived from frog skin, prevents oxidative stress damage in a Parkinson's disease model. Zool Res 2024; 45:108-124. [PMID: 38114437 PMCID: PMC10839659 DOI: 10.24272/j.issn.2095-8137.2023.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αββ conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.
Collapse
Affiliation(s)
- Huanpeng Lu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zijian Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xi Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341001, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| |
Collapse
|
3
|
Liu Y, Liu N, Bian W, Zhang Y, Wu Y, Peng Y, Ru Z, Fu Z, Wang Y, Li C, Yang X, Wang Y. Peptide NCTX15 derived from spider toxin gland effectively relieves hyperuricemia in mice. Biochem Biophys Res Commun 2023; 689:149222. [PMID: 37979330 DOI: 10.1016/j.bbrc.2023.149222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
Hyperuricemia is a clinical disease characterized by a continuous increase in uric acid (UA) due to purine metabolism disorder. As current drug treatments are limited, it is imperative to explore new drugs that offer better safety and efficacy. In this study, Nephila clavata toxin gland homogenates were isolated and purified by exclusion chromatography and high-performance liquid chromatography, resulting in the identification and isolation of a short peptide (NCTX15) with the sequence 'QSGHTFK'. Analysis showed that NCTX15 exhibited no cytotoxicity in mouse macrophages or toxic and hemolytic activity in mice. Notably, NCTX15 inhibited UA production by down-regulating urate transporter 1 and glucose transporter 9 and up-regulating organic anion transporter 1, thus promoting UA excretion. In addition, NCTX15 alleviated the inflammatory response and renal injury by inhibiting the expression of inflammatory factors interleukin-6, interleukin-1β, tumor necrosis factor alpha, NLR family, pyrin domain-containing 3, and pyroptosis-related factor gasdermin D. These results indicate that NCTX15 displayed urate-lowering, anti-inflammatory, and analgesic effects. As the first urate-reducing short peptide isolated from a spider toxin gland homogenate, NCTX15 exhibits considerable potential as a novel drug molecule for anti-gout and hyperuricemia treatment.
Collapse
Affiliation(s)
- Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, 650504, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Wenxin Bian
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chao Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, 650504, China.
| |
Collapse
|
4
|
Sun D, Guo K, Liu N, Li Y, Li Y, Hu Y, Li S, Fu Z, Wang Y, Wu Y, Zhang Y, Li J, Li C, Wang Z, Kang Z, Sun J, Wang Y, Yang X. Peptide RL-QN15 promotes wound healing of diabetic foot ulcers through p38 mitogen-activated protein kinase and smad3/miR-4482-3p/vascular endothelial growth factor B axis. BURNS & TRAUMA 2023; 11:tkad035. [PMID: 38026443 PMCID: PMC10654477 DOI: 10.1093/burnst/tkad035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/31/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023]
Abstract
Background Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Kun Guo
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yuansheng Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yan Hu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhuo Wang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jun Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan MinZu University, No. 2929 Yuehua Street, Chenggong District, Kunming, 650504, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| |
Collapse
|
5
|
Wang J, Li Y, Feng C, Wang H, Li J, Liu N, Fu Z, Wang Y, Wu Y, Liu Y, Zhang Y, Yin S, He L, Wang Y, Yang X. Peptide OA-VI12 restrains melanogenesis in B16 cells and C57B/6 mouse ear skin via the miR-122-5p/Mitf/Tyr axis. Amino Acids 2023; 55:1687-1699. [PMID: 37794194 DOI: 10.1007/s00726-023-03341-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Excessive melanogenesis leads to hyperpigmentation, which is one of the common skin conditions in humans. Existing whitening cosmetics cannot meet market needs due to their inherent limitations. Thus, the development of novel skin-whitening agents continues to be a challenge. The peptide OA-VI12 from the skin of amphibians at high altitude has attracted attention due to its remarkable anti light damage activity. However, whether OA-VI12 has the skin-whitening effect of inhibiting melanogenesis is still. Mouse melanoma cells (B16) were used to study the effect of OA-VI12 on cell viability and melanin content. The pigmentation model of C57B/6 mouse ear skin was induced by UVB and treated with OA-VI12. Melanin staining was used to observe the degree of pigmentation. MicroRNA sequencing, quantitative real-time PCR (qRT-PCR), immunofluorescence analysis and Western blot were used to detect the change of factor expression. Double luciferase gene report experiment was used to prove the regulatory relationship between miRNA and target genes. OA-VI12 has no effect on the viability of B16 cells in the concentration range of 1-100 μM and significantly inhibits the melanin content of B16 cells. Topical application of OA-VI12, which exerted transdermal potency, prevented UVB-induced pigmentation of ear skin. MicroRNA sequencing and double luciferase reporter analysis results showed that miR-122-5p, which directly regulated microphthalmia-associated transcription factor (Mitf), had significantly different expression before and after treatment with OA-VI12. Mitf is a simple helix loop and leucine zipper transcription factor that regulates tyrosinase (Tyr) expression by binding to the M-box promoter element of Tyr. qRT-PCR, immunofluorescence analysis and Western blot showed that OA-VI12 up-regulated the expression of miR-122-5p and inhibited the expression of Mitf and Tyr. The effects of OA-VI12 on melanogenesis inhibition in vitro and in vivo may involve the miR-122-5p/Mitf/tyr axis. OA-VI12 represents the first report on a natural amphibian-derived peptide with skin-whitening capacity and the first report of miR-122-5p as a target for regulating melanogenesis, thereby demonstrating its potential as a novel skin-whitening agent and highlighting amphibian-derived peptides as an underdeveloped resource.
Collapse
Affiliation(s)
- Junsong Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chengan Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Haoyu Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Zhang H, Zeng W, Zhao MM, Wang J, Wang Q, Chen T, Zhang Y, Lee W, Chen S, Zhang Y, Lan X, Xiang Y. Caenorhabditis elegans LIN-24, a homolog of bacterial pore-forming toxin, protects the host from microbial infection. FASEB J 2023; 37:e23162. [PMID: 37682220 DOI: 10.1096/fj.202300063r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Aerolysin-like pore-forming protein (af-PFP) superfamily members are double-edge swords that assist the bacterial infection but shied bacteria from the host by various mechanisms in some species including the toad Bombina maxima and zebrafish. While members of this family are widely expressed in all kingdoms, especially non-bacteria species, it remains unclear whether their anti-bacterial function is conserved. LIN-24 is an af-PFP that is constitutively expressed throughout the Caenorhabditis elegans lifespan. Here, we observed that LIN-24 knockdown reduced the maximum lifespan of worms. RNA-seq analysis identified 323 differentially expressed genes (DEGs) post-LIN-24 knockdown that were enriched in "immune response" and "lysosome pathway," suggesting a possible role for LIN-24 in resisting microbial infection. In line with this, we found that Pseudomonas aeruginosa 14 (PA14) infection induced LIN-24 expression, and that survival after PA14 infection was significantly reduced by LIN-24 knockdown. In contrast, LIN-24 overexpression (LIN-24-OE) conferred protection against PA14 infection, with worms showing longer survival time and reduced bacterial load. Weighted gene co-expression network analysis of LIN-24-OE worms showed that the highest correlation module was enriched in factors related to immunity and the defense response. Finally, by predicting transcription factors from RNA-seq data and knocking down candidate transcription factors in LIN-24-OE worms, we revealed that LIN-24 may protect worms against bacterial infection by stimulating DAF-16-mediated immune responses. These findings agree with our previous studies showing an anti-microbial role for the amphibian-derived af-PFP complex βγ-CAT, suggesting that af-PFPs may play a conserved role in combatting microbial infections. Further research is needed to determine the roles this protein family plays in other physio-pathological processes, such as metabolism, longevity, and aging.
Collapse
Affiliation(s)
- Huijie Zhang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Weirong Zeng
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Ming-Ming Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jiali Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Qiquan Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Ting Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yuyan Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wenhui Lee
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Shenghan Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Xinqiang Lan
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| |
Collapse
|
7
|
Wang QQ, Lan XQ, Wei XS, Xu SM, Liu LZ, Bian XL, Zeng L, Guo XL, Guo YQ, Lee WH, Xiang Y, Zhang Y. Amphibian pore-forming protein βγ-CAT drives metabolite release from small extracellular vesicles through channel formation. Zool Res 2023; 44:739-742. [PMID: 37443402 PMCID: PMC10415774 DOI: 10.24272/j.issn.2095-8137.2022.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Qi-Quan Wang
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Xin-Qiang Lan
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China
| | - Xue-Song Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Si-Man Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying-Qi Guo
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yang Xiang
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, Jiangxi 330031, China. E-mail:
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
8
|
Wang L, Wang D, Ye Z, Xu J. Engineering Extracellular Vesicles as Delivery Systems in Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300552. [PMID: 37080941 PMCID: PMC10265081 DOI: 10.1002/advs.202300552] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles (EVs) are transport vesicles secreted by living cells and released into the extracellular environment. Recent studies have shown that EVs serve as "messengers" in intercellular and inter-organismal communication, in both normal and pathological processes. EVs, as natural nanocarriers, can deliver bioactivators in therapy with their endogenous transport properties. This review article describes the engineering EVs of sources, isolation method, cargo loading, boosting approach, and adjustable targeting of EVs. Furthermore, the review summarizes the recent progress made in EV-based delivery systems applications, including cancer, cardiovascular diseases, liver, kidney, nervous system diseases, and COVID-19 and emphasizes the obstacles and challenges of EV-based therapies and possible strategies.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Di Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| |
Collapse
|
9
|
Liu LZ, Liu L, Shi ZH, Bian XL, Si ZR, Wang QQ, Xiang Y, Zhang Y. Amphibian pore-forming protein βγ-CAT drives extracellular nutrient scavenging under cell nutrient deficiency. iScience 2023; 26:106598. [PMID: 37128610 PMCID: PMC10148134 DOI: 10.1016/j.isci.2023.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Nutrient acquisition is essential for animal cells. βγ-CAT is a pore-forming protein (PFP) and trefoil factor complex assembled under tight regulation identified in toad Bombina maxima. Here, we reported that B. maxima cells secreted βγ-CAT under glucose, glutamine, and pyruvate deficiency to scavenge extracellular proteins for their nutrient supply and survival. AMPK signaling positively regulated the expression and secretion of βγ-CAT. The PFP complex selectively bound extracellular proteins and promoted proteins uptake through endolysosomal pathways. Elevated intracellular amino acids, enhanced ATP production, and eventually prolonged cell survival were observed in the presence of βγ-CAT and extracellular proteins. Liposome assays indicated that high concentration of ATP negatively regulated the opening of βγ-CAT channels. Collectively, these results uncovered that βγ-CAT is an essential element in cell nutrient scavenging under cell nutrient deficiency by driving vesicular uptake of extracellular proteins, providing a new paradigm for PFPs in cell nutrient acquisition and metabolic flexibility.
Collapse
Affiliation(s)
- Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ru Si
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qi-Quan Wang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yang Xiang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
- Corresponding author
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Corresponding author
| |
Collapse
|
10
|
Bian X, Si Z, Wang Q, Liu L, Shi Z, Tian C, Lee W, Zhang Y. IgG Fc-binding protein positively regulates the assembly of pore-forming protein complex βγ-CAT evolved to drive cell vesicular delivery and transport. J Biol Chem 2023; 299:104717. [PMID: 37068610 DOI: 10.1016/j.jbc.2023.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. βγ-CAT, a complex of pore-forming protein (PFP) BmALP1 (two βγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intra- or extra- cellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the βγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for βγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the βγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of βγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a PFP machine evolved to drive cell vesicular delivery and transport.
Collapse
Affiliation(s)
- Xianling Bian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ziru Si
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhihong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
11
|
A Pore Forming Toxin-like Protein Derived from Chinese Red Belly Toad Bombina maxima Triggers the Pyroptosis of Hippomal Neural Cells and Impairs the Cognitive Ability of Mice. Toxins (Basel) 2023; 15:toxins15030191. [PMID: 36977082 PMCID: PMC10054870 DOI: 10.3390/toxins15030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-like proteins and peptides of skin secretions from amphibians play important physiological and pathological roles in amphibians. βγ-CAT is a Chinese red-belly toad-derived pore-forming toxin-like protein complex that consists of aerolysin domain, crystalline domain, and trefoil factor domain and induces various toxic effects via its membrane perforation process, including membrane binding, oligomerization, and endocytosis. Here, we observed the death of mouse hippocampal neuronal cells induced by βγ-CAT at a concentration of 5 nM. Subsequent studies showed that the death of hippocampal neuronal cells was accompanied by the activation of Gasdermin E and caspase-1, suggesting that βγ-CAT induces the pyroptosis of hippocampal neuronal cells. Further molecular mechanism studies revealed that the pyroptosis induced by βγ-CAT is dependent on the oligomerization and endocytosis of βγ-CAT. It is well known that the damage of hippocampal neuronal cells leads to the cognitive attenuation of animals. The impaired cognitive ability of mice was observed after intraperitoneal injection with 10 μg/kg βγ-CAT in a water maze assay. Taken together, these findings reveal a previously unknown toxicological function of a vertebrate-derived pore-forming toxin-like protein in the nerve system, which triggers the pyroptosis of hippocampal neuronal cells, ultimately leading to hippocampal cognitive attenuation.
Collapse
|
12
|
Li Y, Jin T, Liu N, Wang J, Qin Z, Yin S, Zhang Y, Fu Z, Wu Y, Wang Y, Liu Y, Yang M, Pang A, Sun J, Wang Y, Yang X. A short peptide exerts neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. J Neuroinflammation 2023; 20:53. [PMID: 36855153 PMCID: PMC9972639 DOI: 10.1186/s12974-023-02739-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase β (IKKβ). IKKβ reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.
Collapse
Affiliation(s)
- Yilin Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Tao Jin
- Department of Orthopedics, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, 650032 Yunnan China
| | - Naixin Liu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Junsong Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zihan Qin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Saige Yin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yingxuan Zhang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zhe Fu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yutong Wu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yinglei Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yixiang Liu
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Meifeng Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650031, Yunnan, China.
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
13
|
A pore-forming protein drives macropinocytosis to facilitate toad water maintaining. Commun Biol 2022; 5:730. [PMID: 35869260 PMCID: PMC9307623 DOI: 10.1038/s42003-022-03686-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Maintaining water balance is a real challenge for amphibians in terrestrial environments. Our previous studies with toad Bombina maxima discovered a pore-forming protein and trefoil factor complex βγ-CAT, which is assembled under tight regulation depending on environmental cues. Here we report an unexpected role for βγ-CAT in toad water maintaining. Deletion of toad skin secretions, in which βγ-CAT is a major component, increased animal mortality under hypertonic stress. βγ-CAT was constitutively expressed in toad osmoregulatory organs, which was inducible under the variation of osmotic conditions. The protein induced and participated in macropinocytosis in vivo and in vitro. During extracellular hyperosmosis, βγ-CAT stimulated macropinocytosis to facilitate water import and enhanced exosomes release, which simultaneously regulated aquaporins distribution. Collectively, these findings uncovered that besides membrane integrated aquaporin, a secretory pore-forming protein can facilitate toad water maintaining via macropinocytosis induction and exocytosis modulation, especially in responses to osmotic stress. In addition to membrane-integrated aquaporins, a novel secretory pore-forming protein, βγ-CAT, can facilitate toad water maintaining via macropinocytosis induction and exocytosis modulation, especially in responses to osmotic stress.
Collapse
|
14
|
Shi ZH, Zhao Z, Liu LZ, Bian XL, Zhang Y. Pore-forming protein βγ-CAT promptly responses to fasting with capacity to deliver macromolecular nutrients. FASEB J 2022; 36:e22533. [PMID: 36065711 DOI: 10.1096/fj.202200528r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
During animal fasting, the nutrient supply and metabolism switch from carbohydrates to a new reliance on the catabolism of energy-dense lipid stores. Assembled under tight regulation, βγ-CAT (a complex of non-lens βγ-crystallin and trefoil factor) is a pore-forming protein and trefoil factor complex identified in toad Bombina maxima. Here, we determined that this protein complex is a constitutive component in toad blood, that actively responds to the animal fasting. The protein complex was able to promote cellular albumin and albumin-bound fatty acid (FA) uptake in a variety of epithelial and endothelial cells, and the effects were attenuated by a macropinocytosis inhibitor. Endothelial cell-derived exosomes containing largely enriched albumin and FAs, called nutrisomes, were released in the presence of βγ-CAT. These specific nutrient vesicles were readily taken up by starved myoblast cells to support their survival. The results uncovered that pore-forming protein βγ-CAT is a fasting responsive element able to drive cell vesicular import and export of macromolecular nutrients.
Collapse
Affiliation(s)
- Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Yin S, Pang A, Liu C, Li Y, Liu N, Li S, Li C, Sun H, Fu Z, Wang Y, Zhang Y, Yang M, Sun J, Wang Y, Yang X. Peptide OM-LV20 protects astrocytes against oxidative stress via the 'PAC1R/JNK/TPH1' axis. J Biol Chem 2022; 298:102429. [PMID: 36037970 PMCID: PMC9513268 DOI: 10.1016/j.jbc.2022.102429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke can lead to severe nerve injury and debilitation, resulting in considerable social and economic burdens. Due to the high complexity of post-injury repair mechanisms, drugs approved for use in stroke are extremely scarce, and thus, the discovery of new antistroke drugs and targets is critical. Tryptophan hydroxylase 1 (TPH1) is involved in a variety of mental and neurobehavioral processes, but its effects on stroke have not yet been reported. Here, we used primary astrocyte culture, quantitative real-time PCR, double immunofluorescence assay, lentiviral infection, cell viability analysis, Western blotting, and other biochemical experiments to explore the protective mechanism of peptide OM-LV20, which previously exhibited neuroprotective effects in rats after ischemic stroke via a mechanism that may involve TPH1. First, we showed that TPH1 was expressed in rat astrocytes. Next, we determined that OM-LV20 impacted expression changes of TPH1 in CTX-TNA2 cells and exhibited a protective effect on the decrease in cell viability and catalase (CAT) levels induced by hydrogen peroxide. Importantly, we also found that TPH1 expression induced by OM-LV20 may be related to the level of change in the pituitary adenylate cyclase-activating peptide type 1 receptor (PAC1R) and to the JNK signaling pathways, thereby exerting a protective effect on astrocytes against oxidative stress. The protective effects of OM-LV20 likely occur via the ‘PAC1R/JNK/TPH1’ axis, thus highlighting TPH1 as a novel antistroke drug target.
Collapse
Affiliation(s)
- Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Chengxing Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yilin Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shanshan Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Huilin Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yue Zhang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
16
|
Wang S, Yang M, Yin S, Zhang Y, Zhang Y, Sun H, Shu L, Liu Y, Kang Z, Liu N, Li J, Wang Y, He L, Luo M, Yang X. A new peptide originated from amphibian skin alleviates the ultraviolet B-induced skin photodamage. Biomed Pharmacother 2022; 150:112987. [PMID: 35462334 DOI: 10.1016/j.biopha.2022.112987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although amphibian-derived bioactive peptides have attracted increasing attention for their potential use in the treatment of photodamage, research is still in its infancy. In this study, we obtained a new antioxidant peptide, named OA-GI13 (GIWAPWPPRAGLC), from the skin of the odorous frog Odorrana andersonii and determined its effects on ultraviolet B (UVB)-induced skin photodamage as well as its possible molecular mechanisms. Results showed that OA-GI13 directly scavenged free radicals, maintained the viability of hydrogen peroxide-challenged keratinocytes, promoted the release of superoxide dismutase, catalase, and glutathione, and reduced the level of lactate dehydrogenase. Furthermore, topical application of OA-GI13 in mice alleviated dorsal skin erythema and edema and protected the skin against UVB irradiation by increasing antioxidant levels and decreasing peroxide, malondialdehyde, and 8-hydroxydeoxyguanosine levels. OA-GI13 also alleviated oxidative stress injury in vivo and in vitro, possibly by inhibiting p38 protein phosphorylation. Our study confirmed the anti-photodamage effects of this novel amphibian-derived peptide, thus providing a new molecule for the development of drugs and topical agents for the treatment of skin photodamage.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Mingying Luo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
17
|
Zhao J, Pang A, Yin S, Yang M, Zhang X, Zhang R, Liu J, Gu Y, Li S, Hu Y, Zhang Y, Ba Y, Meng B, Yang X. Peptide OM-LV20 promotes structural and functional recovery of spinal cord injury in rats. Biochem Biophys Res Commun 2022; 598:124-130. [PMID: 35158211 DOI: 10.1016/j.bbrc.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/02/2022]
Abstract
At present, there are no satisfactory therapeutic drugs for the functional recovery of spinal cord injury (SCI). We previously identified a novel peptide (OM-LV20) that accelerated the regeneration of injured skin tissues of mice and exerts neuroprotective effects against cerebral ischemia/reperfusion injury in rats. Here, the intraperitoneal injection of OM-LV20 (1 μg/kg) markedly improved motor function recovery in the hind limbs of rats with traumatic SCI, and further enhanced spinal cord repair. Administration of OM-LV20 increased the number of surviving neuron bodies, as well as the expression levels of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB). In the acute stage of SCI, OM-LV20 treatment also increased superoxide dismutase and glutathione content but decreased the levels of malonaldehyde and nitric oxide. Thus, OM-LV20 significantly promoted structural and functional recovery of SCI in adult rats by increasing neuronal survival and BDNF and TrkB expression, and thereby regulating the balance of oxidative stress. Based on our knowledge, this research is the first report on the effects of amphibian-derived peptide on the recovery of SCI and our results highlight the potential of peptide OM-LV20 administration in the acceleration of the recovery of SCI.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ailang Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xuemei Zhang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Rong Zhang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jingfei Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuanqi Gu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shanshan Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Hu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yue Zhang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yingchun Ba
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Buliang Meng
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
18
|
Fu Y, Li C, Li X, Zeng L, Wang Y, Fu Z, Shu L, Liu Y, Liu N, Yang Y, Tang J, Wang Y, Yang X. Amphibian-derived peptide homodimer promotes regeneration of skin wounds. Biomed Pharmacother 2021; 146:112539. [PMID: 34923337 DOI: 10.1016/j.biopha.2021.112539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the increasing treatments in skin wound repair, existing therapeutic drugs cannot meet current needs. As such, skin wound repair remains a considerable clinical challenge, and thus the discovery of new pro-healing agents is crucial. Here, we identified the first naturally occurring peptide homodimer named as OA-GP11 dimer (OA-GP11d) from Odorrana andersonii (odorous frog) through the combinational methods of peptidomics and genomics. OA-GP11d was linked by the intramolecular disulfide formed by the 10th cysteine residues from the monomer of peptide with sequence of GPLSGINAECM, which effectively promoted the repair of full-thickness and burn wounds in mice. The underlying molecular mechanisms revealed that OA-GP11d not only accelerated the migration and cell-scratch healing of mouse keratinocytes, but also activated the mitogen-activated protein kinases (MAPKs) signaling pathway (phosphorylation of p38 and ERK subgroups) in immortalized human keratinocytes (HaCaT). Besides, OA-GP11d reduced the phosphorylation of nuclear factor-κB (NF-κB) and inhibitor of NF-κB (I-κB) induced by lipopolysaccharide stimulation in mouse macrophages, and inhibited the release of associated inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-6. OA-GP11d is the first identified naturally occurring peptide dimer with significant pro-healing potency. Our results highlight the importance of amphibians as a source of novel pro-healing agents and suggest OA-GP11d as a potential new pro-regenerative drug candidate.
Collapse
Affiliation(s)
- Yang Fu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Yang
- Endocrinnology Department of affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China.
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
19
|
Xie C, Fan Y, Yin S, Li Y, Liu N, Liu Y, Shu L, Fu Z, Wang Y, Zhang Y, Li X, Wang Y, Sun J, Yang X. Novel amphibian-derived antioxidant peptide protects skin against ultraviolet irradiation damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112327. [PMID: 34628205 DOI: 10.1016/j.jphotobiol.2021.112327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Given the adverse impact of ultraviolet irradiation on human skin, as well as currently limited interventions, the discovery of new molecules with anti-photodamage potency remains critical. In this research, we obtained a new bioactive peptide (named OS-LL11, amino acid sequence 'LLPPWLCPRNK') from Odorrana schmackeri. Results showed that OS-LL11 could directly scavenge free radicals and sustain the viability of mouse keratinocytes challenged by ultraviolet B (UVB) irradiation or hydrogen peroxide (H2O2) by decreasing the levels of lipid peroxidation, malondialdehyde, and reactive oxygen species while increasing the level of catalase, Keap-1, HO-1, GCLM, and NQO1. Interestingly, topical application of OS-LL11 protected mouse skin against UVB irradiation damage by up-regulating the levels of superoxide dismutase, glutathione, and nitric oxide, but down-regulating the levels of H2O2, IL-1α, IL-1β, IL-6, TNF-α, 8-OHdG, Bcl-2, and Bax, as well as the number of apoptotic bodies. Our research demonstrated the anti-photodamage activity of a novel amphibian-derived peptide and the potential underlying mechanisms related to its free radical scavenging ability and antioxidant, anti-inflammatory, and anti-apoptotic activities. This study provides a new molecule for the development of anti-skin photodamage drugs or cosmetics and highlights the prospects of amphibian-derived peptides in photodamaged skin intervention.
Collapse
Affiliation(s)
- Chun Xie
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Fan
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China..
| | - Jun Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China..
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China..
| |
Collapse
|
20
|
Qin P, Meng Y, Yang Y, Gou X, Liu N, Yin S, Hu Y, Sun H, Fu Z, Wang Y, Li X, Tang J, Wang Y, Deng Z, Yang X. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 show potential for skin wound therapy. J Nanobiotechnology 2021; 19:309. [PMID: 34627291 PMCID: PMC8501717 DOI: 10.1186/s12951-021-01051-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Skin wound healing remains a considerable clinical challenge, thus stressing the urgent need for the development of new interventions to promote repair. Recent researches indicate that both peptides and nanoparticles may be potential therapies for the treatment of skin wounds. METHODS In the current study, the mesoporous polydopamine (MPDA) nanoparticles were prepared and the peptide RL-QN15 that was previously identified from amphibian skin secretions and exhibited significant potential as a novel prohealing agent was successfully loaded onto the MPDA nanoparticles, which was confirmed by results of analysis of scanning electron microscopy and fourier transform infrared spectroscopy. The encapsulation efficiency and sustained release rate of RL-QN15 from the nanocomposites were determined. The prohealing potency of nanocomposites were evaluated by full-thickness injured wounds in both mice and swine and burn wounds in mice. RESULTS Our results indicated that, compared with RL-QN15 alone, the prohealing potency of nanocomposites of MPDA and RL-QN15 in the full-thickness injured wounds and burn wounds in mice was increased by up to 50 times through the slow release of RL-QN15. Moreover, the load on the MPDA obviously increased the prohealing activities of RL-QN15 in full-thickness injured wounds in swine. In addition, the obvious increase in the prohealing potency of nanocomposites of MPDA and RL-QN15 was also proved by the results from histological analysis. CONCLUSIONS Based on our knowledge, this is the first research to report that the load of MPDA nanoparticles could significantly increase the prohealing potency of peptide and hence highlighted the promising potential of MPDA nanoparticles-carrying peptide RL-QN15 for skin wound therapy.
Collapse
Affiliation(s)
- Pan Qin
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yi Meng
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Second People's Hospital of Yunnan Province and Affiliated Hospital of Yunnan University, Kunming, Yunnan, 650021, China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Hu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Huiling Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission and Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
21
|
Sun H, Wang Y, He T, He D, Hu Y, Fu Z, Wang Y, Sun D, Wang J, Liu Y, Shu L, He L, Deng Z, Yang X. Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds. J Nanobiotechnology 2021; 19:304. [PMID: 34600530 PMCID: PMC8487533 DOI: 10.1186/s12951-021-01049-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing.
Collapse
Affiliation(s)
- Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Tiantian He
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dingwei He
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Hu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dandan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Junsong Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
22
|
Liu L, Deng CJ, Duan YL, Ye CJ, Gong DH, Guo XL, Lee WH, Zhou J, Li SA, Zhang Y. An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1. THE JOURNAL OF IMMUNOLOGY 2021; 207:888-901. [PMID: 34290105 DOI: 10.4049/jimmunol.2001056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Li Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen-Jun Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dao-Hua Gong
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China;
| | - Sheng-An Li
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China; and
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|