1
|
Liu Y, Lyons CJ, Ayu C, O'Brien T. Recent advances in endothelial colony-forming cells: from the transcriptomic perspective. J Transl Med 2024; 22:313. [PMID: 38532420 PMCID: PMC10967123 DOI: 10.1186/s12967-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Endothelial colony-forming cells (ECFCs) are progenitors of endothelial cells with significant proliferative and angiogenic ability. ECFCs are a promising treatment option for various diseases, such as ischemic heart disease and peripheral artery disease. However, some barriers hinder the clinical application of ECFC therapeutics. One of the current obstacles is that ECFCs are dysfunctional due to the underlying disease states. ECFCs exhibit dysfunctional phenotypes in pathologic states, which include but are not limited to the following: premature neonates and pregnancy-related diseases, diabetes mellitus, cancers, haematological system diseases, hypoxia, pulmonary arterial hypertension, coronary artery diseases, and other vascular diseases. Besides, ECFCs are heterogeneous among donors, tissue sources, and within cell subpopulations. Therefore, it is important to elucidate the underlying mechanisms of ECFC dysfunction and characterize their heterogeneity to enable clinical application. In this review, we summarize the current and potential application of transcriptomic analysis in the field of ECFC biology. Transcriptomic analysis is a powerful tool for exploring the key molecules and pathways involved in health and disease and can be used to characterize ECFC heterogeneity.
Collapse
Affiliation(s)
- Yaqiong Liu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Christine Ayu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Béland S, Désy O, El Fekih R, Marcoux M, Thivierge MP, Desgagné JS, Latulippe E, Riopel J, Wagner E, Rennke HG, Weins A, Yeung M, Lapointe I, Azzi J, De Serres SA. Expression of Class II Human Leukocyte Antigens on Human Endothelial Cells Shows High Interindividual and Intersubclass Heterogeneity. J Am Soc Nephrol 2023; 34:846-856. [PMID: 36758118 PMCID: PMC10125628 DOI: 10.1681/asn.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Donor-specific antibodies against class II HLA are a major cause of chronic kidney graft rejection. Nonetheless, some patients presenting with these antibodies remain in stable histological and clinical condition. This study describes the use of endothelial colony-forming cell lines to test the hypothesis of the heterogeneous expression of HLA molecules on endothelial cells in humans. Flow cytometry and immunofluorescence staining revealed substantial interindividual and interlocus variability, with HLA-DQ the most variable. Our data suggest that the expression of HLA class II is predicted by locus. The measurement of endothelial expression of HLA class II in the graft could present a novel paradigm in the evaluation of the alloimmune risk in transplantation and certain diseases. BACKGROUND HLA antigens are important targets of alloantibodies and allospecific T cells involved in graft rejection. Compared with research into understanding alloantibody development, little is known about the variability in expression of their ligands on endothelial cells. We hypothesized individual variability in the expression of HLA molecules. METHODS We generated endothelial colony forming cell lines from human peripheral blood mononuclear cells ( n =39). Flow cytometry and immunofluorescence staining were used to analyze the cells, and we assessed the relationship between HLA-DQ expression and genotype. Two cohorts of kidney transplant recipients were analyzed to correlate HLA-DQ mismatches with the extent of intragraft microvascular injury. RESULTS Large variability was observed in the expression of HLA class II antigens, not only between individuals but also between subclasses. In particular, HLA-DQ antigens had a low and heterogeneous expression, ranging from 0% to 85% positive cells. On a within-patient basis, this expression was consistent between endothelial cell colonies and antigen-presenting cells. HLA-DQ5 and -DQ6 were associated with higher levels of expression, whereas HLA-DQ7, -DQ8, and -DQ9 with lower. HLA-DQ5 mismatches among kidney transplant recipients were associated with significant increase in graft microvascular. CONCLUSION These data challenge the current paradigm that HLA antigens, in particular HLA class II, are a single genetic and post-translational entity. Understanding and assessing the variability in the expression of HLA antigens could have clinical monitoring and treatment applications in transplantation, autoimmune diseases, and oncology.
Collapse
Affiliation(s)
- Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, Quebec, Canada
| | - Olivier Désy
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, Quebec, Canada
| | - Rania El Fekih
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Meagan Marcoux
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, Quebec, Canada
| | - Marie-Pier Thivierge
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, Quebec, Canada
| | - Jean-Simon Desgagné
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, Quebec, Canada
| | - Eva Latulippe
- Department of Laboratory Medicine, CHU de Québec—Université Laval, Faculty of Medicine, Québec, Quebec, Canada
| | - Julie Riopel
- Department of Laboratory Medicine, CHU de Québec—Université Laval, Faculty of Medicine, Québec, Quebec, Canada
| | - Eric Wagner
- Immunology and Histocompatibility Laboratory, CHU de Québec—Université Laval, Faculty of Medicine, Laval University, Quebec, Quebec, Canada
| | - Helmut G. Rennke
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Melissa Yeung
- HLA Tissue Typing Laboratory, Brigham and Women's Hospital and Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isabelle Lapointe
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, Quebec, Canada
| | - Jamil Azzi
- Renal Division, Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sacha A. De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, Quebec, Canada
| |
Collapse
|
3
|
Weiss E, Vlahos A, Kim B, Wijegunasekara S, Shanmuganathan D, Aitken T, Joo JHE, Imran S, Shepherd R, Craig JM, Green M, Hiden U, Novakovic B, Saffery R. Transcriptomic Remodelling of Fetal Endothelial Cells During Establishment of Inflammatory Memory. Front Immunol 2021; 12:757393. [PMID: 34867995 PMCID: PMC8640490 DOI: 10.3389/fimmu.2021.757393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory memory involves the molecular and cellular ‘reprogramming’ of innate immune cells following exogenous stimuli, leading to non-specific protection against subsequent pathogen exposure. This phenomenon has now also been described in non-hematopoietic cells, such as human fetal and adult endothelial cells. In this study we mapped the cell-specific DNA methylation profile and the transcriptomic remodelling during the establishment of inflammatory memory in two distinct fetal endothelial cell types – a progenitor cell (ECFC) and a differentiated cell (HUVEC) population. We show that both cell types have a core transcriptional response to an initial exposure to a viral-like ligand, Poly(I:C), characterised by interferon responsive genes. There was also an ECFC specific response, marked by the transcription factor ELF1, suggesting a non-canonical viral response pathway in progenitor endothelial cells. Next, we show that both ECFCs and HUVECs establish memory in response to an initial viral exposure, resulting in an altered subsequent response to lipopolysaccharide. While the capacity to train or tolerize the induction of specific sets of genes was similar between the two cell types, the progenitor ECFCs show a higher capacity to establish memory. Among tolerized cellular pathways are those involved in endothelial barrier establishment and leukocyte migration, both important for regulating systemic immune-endothelial cell interactions. These findings suggest that the capacity for inflammatory memory may be a common trait across different endothelial cell types but also indicate that the specific downstream targets may vary by developmental stage.
Collapse
Affiliation(s)
- Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics & Gynaecology, Medical University of Graz, Graz, Austria
| | - Amanda Vlahos
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Bowon Kim
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sachintha Wijegunasekara
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Dhanya Shanmuganathan
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Thomas Aitken
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Ji-Hoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Samira Imran
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Rebecca Shepherd
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia.,Molecular Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia.,The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Mark Green
- Department of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics & Gynaecology, Medical University of Graz, Graz, Austria
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
4
|
Razazian M, Khosravi M, Bahiraii S, Uzan G, Shamdani S, Naserian S. Differences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cells. World J Stem Cells 2021; 13:971-984. [PMID: 34567420 PMCID: PMC8422932 DOI: 10.4252/wjsc.v13.i8.971] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-marrow-derived mesenchymal stem cells and endothelial progenitor cells have some interesting biological properties that make them unique for cell therapy of degenerative and cardiovascular disorders. Although both cell populations have been already studied and used for their regenerative potentials, recently their special immunoregulatory features have brought much more attention. Mesenchymal stem cells and endothelial progenitor cells have both proangiogenic functions and have been shown to suppress the immune response, particularly T cell proliferation, activation, and cytokine production. This makes them suitable choices for allogeneic stem cell transplantation. Nevertheless, these two cells do not have equal immunoregulatory activities. Many elements including their extraction sources, age/passage, expression of different markers, secretion of bioactive mediators, and some others could change the efficiency of their immunosuppressive function. However, to our knowledge, no publication has yet compared mesenchymal stem cells and endothelial progenitor cells for their immunological interaction with T cells. This review aims to specifically compare the immunoregulatory effect of these two populations including their T cell suppression, deactivation, cytokine production, and regulatory T cells induction capacities. Moreover, it evaluates the implications of the tumor necrosis factor alpha-tumor necrosis factor receptor 2 axis as an emerging immune checkpoint signaling pathway controlling most of their immunological properties.
Collapse
Affiliation(s)
- Mehdi Razazian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
| | - Maryam Khosravi
- Microenvironment & Immunity Unit, Institut Pasteur, Paris 75724, France
- Institut national de la santé et de la recherche médicale (Inserm) Unit 1224, Paris 75724, France
| | - Sheyda Bahiraii
- Department of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| | - Georges Uzan
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
| | - Sara Shamdani
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France
| | - Sina Naserian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France.
| |
Collapse
|
5
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
6
|
Proust R, Ponsen AC, Rouffiac V, Schenowitz C, Montespan F, Ser-Le Roux K, De Leeuw F, Laplace-Builhé C, Mauduit P, Carosella ED, Banzet S, Lataillade JJ, Rouas-Freiss N, Uzan G, Peltzer J. Cord blood-endothelial colony forming cells are immunotolerated and participate at post-ischemic angiogenesis in an original dorsal chamber immunocompetent mouse model. Stem Cell Res Ther 2020; 11:172. [PMID: 32381102 PMCID: PMC7206734 DOI: 10.1186/s13287-020-01687-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cardiovascular diseases are the main cause of morbidity and mortality worldwide. Restoring blood supply to ischemic tissues is an essential goal for the successful treatment of these diseases. Growth factor or gene therapy efficacy remains controversial, but stem cell transplantation is emerging as an interesting approach to stimulate angiogenesis. Among the different stem cell populations, cord blood-endothelial progenitor cells (CB-EPCs) and more particularly cord blood-endothelial progenitor cell-derived endothelial colony forming cells (CB-ECFCs) have a great proliferative potential without exhibiting signs of senescence. Even if it was already described that CB-ECFCs were able to restore blood perfusion in hind-limb ischemia in an immunodeficient mouse model, until now, the immunogenic potential of allogenic CB-ECFCs remains controversial. Therefore, our objectives were to evaluate the immune tolerance potency of CB-ECFCs and their capacity to restore a functional vascular network under ischemic condition in immunocompetent mice. METHODS In vitro, the expression and secretion of immunoregulatory markers (HLA-G, IL-10, and TGF-β1) were evaluated on CB-ECFCs. Moreover, CB-ECFCs were co-cultured with activated peripheral blood mononuclear cells (PBMCs) for 6 days. PBMC proliferation was evaluated by [3H]-thymidine incorporation on the last 18 h. In vivo, CB-ECFCs were administered in the spleen and muscle of immunocompetent mice. Tissues were collected at day 14 after surgery. Finally, CB-ECFCs were injected intradermally in C57BL/6JRj mice close to ischemic macrovessel induced by thermal cauterization. Mice recovered until day 5 and were imaged, twice a week until day 30. RESULTS Firstly, we demonstrated that CB-ECFCs expressed HLA-G, IL-10, and TGF-β1 and secreted IL-10 and TGF-β1 and that they could display immunosuppressive properties in vitro. Secondly, we showed that CB-ECFCs could be tolerated until 14 days in immunocompetent mice. Thirdly, we revealed in an original ischemic model of dorsal chamber that CB-ECFCs were integrated in a new functional vascular network. CONCLUSION These results open up new perspectives about using CB-ECFCs as an allogeneic cell therapy product and gives new impulse to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Richard Proust
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Anne-Charlotte Ponsen
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Valérie Rouffiac
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Chantal Schenowitz
- CEA, DRF-IBFJ, Hemato-Immunology Research Unit, INSERM UMR-S 976, IRSL - Paris University, Saint-Louis Hospital, Paris, France
| | - Florent Montespan
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Karine Ser-Le Roux
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Frédéric De Leeuw
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Corinne Laplace-Builhé
- Paris-Saclay University, Paris-Sud University, Gustave Roussy Institute, INSERM, CNRS, Molecular Analysis, Modeling and Imaging of Cancer Disease, Villejuif, France
| | - Philippe Mauduit
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Edgardo D Carosella
- CEA, DRF-IBFJ, Hemato-Immunology Research Unit, INSERM UMR-S 976, IRSL - Paris University, Saint-Louis Hospital, Paris, France
| | - Sébastien Banzet
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Jean-Jacques Lataillade
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-IBFJ, Hemato-Immunology Research Unit, INSERM UMR-S 976, IRSL - Paris University, Saint-Louis Hospital, Paris, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France
| | - Juliette Peltzer
- INSERM UMR-S-MD 1197/Ministry of the Armed Forces, Biomedical Research Institut of the Armed Forces (IRBA), Paul-Brousse Hospital Villejuif and CTSA Clamart, Clamart, France.
| |
Collapse
|
7
|
Kutikhin AG, Tupikin AE, Matveeva VG, Shishkova DK, Antonova LV, Kabilov MR, Velikanova EA. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells 2020; 9:cells9040876. [PMID: 32260159 PMCID: PMC7226818 DOI: 10.3390/cells9040876] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial colony-forming cells (ECFC) are currently considered as a promising cell population for the pre-endothelialization or pre-vascularization of tissue-engineered constructs, including small-diameter biodegradable vascular grafts. However, the extent of heterogeneity between ECFC and mature vascular endothelial cells (EC) is unclear. Here, we performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC), and human umbilical vein endothelial cells (HUVEC). Characterization of the abovementioned cell populations was carried out by immunophenotyping, tube formation assay, and evaluation of proliferation capability while global gene expression profiling was conducted by means of RNA-seq. ECFC were similar to HUVEC in terms of immunophenotype (CD31+vWF+KDR+CD146+CD34-CD133-CD45-CD90-) and tube formation activity yet had expectedly higher proliferative potential. HCAEC and HUVEC were generally similar to ECFC with regards to their global gene expression profile; nevertheless, ECFC overexpressed specific markers of all endothelial lineages (NRP2, NOTCH4, LYVE1), in particular lymphatic EC (LYVE1), and had upregulated extracellular matrix and basement membrane genes (COL1A1, COL1A2, COL4A1, COL4A2). Proteomic profiling for endothelial lineage markers and angiogenic molecules generally confirmed RNA-seq results, indicating ECFC as an intermediate population between HCAEC and HUVEC. Therefore, gene expression profile and behavior of ECFC suggest their potential to be applied for a pre-endothelialization of bioartificial vascular grafts, whereas in terms of endothelial hierarchy they differ from HCAEC and HUVEC, having a transitional phenotype.
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
- Correspondence: ; Tel.: +7-960-907-70-67
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (A.E.T.); (M.R.K.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Daria K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Larisa V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; (A.E.T.); (M.R.K.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (V.G.M.); (D.K.S.); (L.V.A.); (E.A.V.)
| |
Collapse
|
8
|
Tasev D, Dekker-Vroling L, van Wijhe M, Broxterman HJ, Koolwijk P, van Hinsbergh VWM. Hypoxia Impairs Initial Outgrowth of Endothelial Colony Forming Cells and Reduces Their Proliferative and Sprouting Potential. Front Med (Lausanne) 2018; 5:356. [PMID: 30619865 PMCID: PMC6306419 DOI: 10.3389/fmed.2018.00356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular homeostasis and regeneration in ischemic tissue relies on intrinsic competence of the tissue to rapidly recruit endothelial cells for vascularization. The mononuclear cell (MNC) fraction of blood contains circulating progenitors committed to endothelial lineage. These progenitors give rise to endothelial colony-forming cells (ECFCs) that actively participate in neovascularization of ischemic tissue. To evaluate if the initial clonal outgrowth of ECFCs from cord (CB) and peripheral blood (PB) was stimulated by hypoxic conditions, MNCs obtained from CB and PB were subjected to 20 and 1% O2 cell culture conditions. Clonal outgrowth was followed during a 30 day incubation period. Hypoxia impaired the initial outgrowth of ECFC colonies from CB and also reduced their number that were developing from PB MNCs. Three days of oxygenation (20% O2) prior to hypoxia could overcome the initial CB-ECFC outgrowth. Once proliferating and subcultured the CB-ECFCs growth was only modestly affected by hypoxia; proliferation of PB-ECFCs was reduced to a similar extent (18-30% reduction). Early passages of subcultured CB- and PB-ECFCs contained only viable cells and few if any senescent cells. Tube formation by subcultured PB-ECFCs was also markedly inhibited by continuous exposure to 1% O2. Gene expression profiles point to regulation of the cell cycle and metabolism as major altered gene clusters. Finally we discuss our counterintuitive observations in the context of the important role that hypoxia has in promoting neovascularization.
Collapse
Affiliation(s)
- Dimitar Tasev
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Laura Dekker-Vroling
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Michiel van Wijhe
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Henk J Broxterman
- Department of Medical Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
9
|
Martinez B, Peplow PV. Immunomodulators and microRNAs as neurorestorative therapy for ischemic stroke. Neural Regen Res 2017; 12:865-874. [PMID: 28761412 PMCID: PMC5514854 DOI: 10.4103/1673-5374.208540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most of all strokes are ischemic due to occlusion of a vessel, and comprise two main types, thrombotic and embolic. Inflammation and immune response play an important role in the outcome of ischemic stroke. Pharmaceutical and cell-based therapies with immunomodulatory properties could be of benefit in treating ischemic stroke. Possible changes in microRNAs brought about by immunomodulatory treatments may be important. The pharmaceutical studies described in this review have identified several differentially regulated miRNAs associated with disregulation of mRNA targets or the upregulation of several neuroprotective genes, thereby highlighting the potential neuroprotective roles of specific miRNAs such as miR-762, -1892, -200a, -145. MiR-124, -711, -145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and microglia/macrophage M2-like activation phenotype. The cell-based therapy studies reviewed have mainly utilized mesenchymal stem cells or human umbilical cord blood cells and shown to improve functional and neurological outcomes in stroke animals. MiR-145 and miR-133b were implicated in nerve cell remodeling and functional recovery after stroke. Human umbilical cord blood cells decreased proinflammatory factors and promoted M2 macrophage polarization in stroke diabetic animals.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular and Cellular Biology, University of California, Merced, CA, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|