1
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Biasini GM, Botrè F, de la Torre X, Donati F. Age-Markers on the Red Blood Cell Surface and Erythrocyte Microparticles may Constitute a Multi-parametric Strategy for Detection of Autologous Blood Transfusion. SPORTS MEDICINE - OPEN 2023; 9:113. [PMID: 38038869 PMCID: PMC10692063 DOI: 10.1186/s40798-023-00662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autologous blood transfusion is one of the illicit strategies, banned by the World Anti-Doping Agency, to increase the levels of hemoglobin, with a consequent improvement in the delivery of oxygen to tissues. At present, this practice is detectable exclusively by the individual, longitudinal monitoring of hematological biomarkers, as in the hematological module of the Athlete Biological Passport; but this indirect approach may suffer from different confounding factors. We are presenting a multi-parametric, analytical strategy to detect autologous blood transfusions by targeting the modification of the red blood cells during storage. We focused on the assessment of "storage lesions", targeting (i) membrane proteins: Glycophorin-A and Band 3 complex, (ii) biomarkers of oxidative stress: Peroxiredoxin-2, (iii) biomarkers of senescence: CD47 and Phosphatidylserine, (iv) erythrocytes microparticles. RESULTS All of the above markers were monitored, by immunological and flow cytofluorimetric methods, on samples of stored whole blood collected at different time intervals, and on fresh blood samples, collected for official doping control tests, mixed "ex vivo" to simulate an autotransfusion. Although anonymized before the delivery to the laboratory, it was possible to mix samples belonging to the same subject based on the "athlete biological passport" code. Our results showed that the irreversible alteration of RBCs morphology, the loss of membrane integrity, the occurrence of hemolysis phenomena, and, more in general, the "aging" of the erythrocytes during storage are closely related to: (i) the reduced concentration, on the erythrocyte membrane, of Band 3 protein (decrease of 19% and of 39% after 20 and 40 days of storage respectively) and of glycophorin A (- 47% and - 63% respectively); (ii) the externalization of phosphatidyl serine (with a five-fold increase after 20 days and a further 2× increase after 40 days); (iii) the reduced concentration of CD47; and (iv) increased levels of erythrocyte microparticles. CONCLUSIONS The most promising method to detect the presence of transfused blood in whole blood samples can be based on a multi-parametric strategy, considering jointly both protein expression on RBCs membranes and micro-vesiculation phenomena.
Collapse
Affiliation(s)
- Giorgia M Biasini
- Sapienza University of Rome, Rome, Italy
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
- REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences University of Lausanne, Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
| |
Collapse
|
3
|
Ghodsi M, Cloos AS, Mozaheb N, Van Der Smissen P, Henriet P, Pierreux CE, Cellier N, Mingeot-Leclercq MP, Najdovski T, Tyteca D. Variability of extracellular vesicle release during storage of red blood cell concentrates is associated with differential membrane alterations, including loss of cholesterol-enriched domains. Front Physiol 2023; 14:1205493. [PMID: 37408586 PMCID: PMC10318158 DOI: 10.3389/fphys.2023.1205493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Transfusion of red blood cell concentrates is the most common medical procedure to treat anaemia. However, their storage is associated with development of storage lesions, including the release of extracellular vesicles. These vesicles affect in vivo viability and functionality of transfused red blood cells and appear responsible for adverse post-transfusional complications. However, the biogenesis and release mechanisms are not fully understood. We here addressed this issue by comparing the kinetics and extents of extracellular vesicle release as well as red blood cell metabolic, oxidative and membrane alterations upon storage in 38 concentrates. We showed that extracellular vesicle abundance increased exponentially during storage. The 38 concentrates contained on average 7 × 1012 extracellular vesicles at 6 weeks (w) but displayed a ∼40-fold variability. These concentrates were subsequently classified into 3 cohorts based on their vesiculation rate. The variability in extracellular vesicle release was not associated with a differential red blood cell ATP content or with increased oxidative stress (in the form of reactive oxygen species, methaemoglobin and band3 integrity) but rather with red blood cell membrane modifications, i.e., cytoskeleton membrane occupancy, lateral heterogeneity in lipid domains and transversal asymmetry. Indeed, no changes were noticed in the low vesiculation group until 6w while the medium and the high vesiculation groups exhibited a decrease in spectrin membrane occupancy between 3 and 6w and an increase of sphingomyelin-enriched domain abundance from 5w and of phosphatidylserine surface exposure from 8w. Moreover, each vesiculation group showed a decrease of cholesterol-enriched domains associated with a cholesterol content increase in extracellular vesicles but at different storage time points. This observation suggested that cholesterol-enriched domains could represent a starting point for vesiculation. Altogether, our data reveal for the first time that the differential extent of extracellular vesicle release in red blood cell concentrates did not simply result from preparation method, storage conditions or technical issues but was linked to membrane alterations.
Collapse
Affiliation(s)
- Marine Ghodsi
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anne-Sophie Cloos
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Negar Mozaheb
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Christophe E. Pierreux
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Tomé Najdovski
- Service du Sang, Croix-Rouge de Belgique, Suarlée, Belgium
| | - Donatienne Tyteca
- Cell Biology Unit and Platform for Imaging Cells and Tissues, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Pandey S, Mahato M, Srinath P, Bhutani U, Goap TJ, Ravipati P, Vemula PK. Intermittent scavenging of storage lesion from stored red blood cells by electrospun nanofibrous sheets enhances their quality and shelf-life. Nat Commun 2022; 13:7394. [PMID: 36450757 PMCID: PMC9712616 DOI: 10.1038/s41467-022-35269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Transfusion of healthy red blood cells (RBCs) is a lifesaving process. However, upon storing RBCs, a wide range of damage-associate molecular patterns (DAMPs), such as cell-free DNA, nucleosomes, free-hemoglobin, and poly-unsaturated-fatty-acids are generated. DAMPs can further damage RBCs; thus, the quality of stored RBCs declines during the storage and limits their shelf-life. Since these DAMPs consist of either positive or negative charged species, we developed taurine and acridine containing electrospun-nanofibrous-sheets (Tau-AcrNFS), featuring anionic, cationic charges and an DNA intercalating group on their surfaces. We show that Tau-AcrNFS are efficient in scavenging DAMPs from stored human and mice RBCs ex vivo. We find that intermittent scavenging of DAMPs by Tau-AcrNFS during the storage reduces the loss of RBC membrane integrity and reduces discocytes-to-spheroechinocytes transformation in stored-old-RBCs. We perform RBC-transfusion studies in mice to reveal that intermittent removal of DAMPs enhances the quality of stored-old-RBCs equivalent to freshly collected RBCs, and increases their shelf-life by ~22%. Such prophylactic technology may lead to the development of novel blood bags or medical device, and may therefore impact healthcare by reducing transfusion-related adverse effects.
Collapse
Affiliation(s)
- Subhashini Pandey
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India ,grid.502290.c0000 0004 7649 3040The University of Trans-Disciplinary Health Sciences and Technology, Attur (post), Yelahanka, Bangalore, 560064 Karnataka India
| | - Manohar Mahato
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Preethem Srinath
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Utkarsh Bhutani
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Tanu Jain Goap
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India ,grid.502290.c0000 0004 7649 3040The University of Trans-Disciplinary Health Sciences and Technology, Attur (post), Yelahanka, Bangalore, 560064 Karnataka India
| | - Priusha Ravipati
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Praveen Kumar Vemula
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| |
Collapse
|
5
|
Öhlinger T, Müllner EW, Fritz M, Werning M, Baron-Stefaniak J, Jungbauer C, Baron DM, Salzer U. Storage of packed red blood cells impairs an inherent coagulation property of erythrocytes. Front Physiol 2022; 13:1021553. [PMID: 36505041 PMCID: PMC9732456 DOI: 10.3389/fphys.2022.1021553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Storage of packed red blood cells is associated with changes in erythrocytes that over time increasingly impair cellular function and potentially contribute to adverse effects associated with blood transfusion. Exposure of phosphatidylserine at the outer membrane leaflet of erythrocytes and shedding of microvesicles (MVs) during packed red blood cell storage are alterations assumed to increase the risk of prothrombotic events in recipients. Here, we used rotational thromboelastometry to study the coagulation process in blood samples with erythrocytes from stored PRBCs reconstituted with freshly prepared platelet-rich plasma. We explored the influence of following effects on the coagulation process: 1) PRBC storage duration, 2) differences between erythrocytes from stored PRBCs compared to freshly drawn erythrocytes, and 3) the contribution of added MVs. Interestingly, despite of a higher fraction of PS-positive cells, erythrocytes from PRBCs stored for 6 weeks revealed longer clotting times than samples with erythrocytes stored for 2 or 4 weeks. Further, clotting times and clot formation times were considerably increased in samples reconstituted with erythrocytes from stored PRBCs as compared to fresh erythrocytes. Moreover, MVs added to reconstituted samples elicited only comparably small and ambiguous effects on coagulation. Thus, this study provides no evidence for an amplified clotting process from prolonged storage of PRBCs but on the contrary implicates a loss of function, which may be of clinical significance in massive transfusion. Our observations add to the increasing body of evidence viewing erythrocytes as active players in the clotting process.
Collapse
Affiliation(s)
- Thomas Öhlinger
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria,Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ernst W. Müllner
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria
| | - Magdalena Fritz
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria
| | - Maike Werning
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria
| | - Joanna Baron-Stefaniak
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | - David M. Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Center for Medical Biochemistry, Max Perutz Labs (MPL), Medical University of Vienna, Vienna, Austria,*Correspondence: Ulrich Salzer,
| |
Collapse
|
6
|
Himbert S, Qadri SM, Sheffield WP, Schubert P, D’Alessandro A, Rheinstädter MC. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One 2021; 16:e0259267. [PMID: 34767588 PMCID: PMC8589153 DOI: 10.1371/journal.pone.0259267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022] Open
Abstract
Blood banks around the world store blood components for several weeks ensuring its availability for transfusion medicine. Red blood cells (RBCs) are known to undergo compositional changes during storage, which may impact the cells' function and eventually the recipients' health. We extracted the RBC's cytoplasmic membrane (RBCcm) to study the effect of storage on the membranes' molecular structure and bending rigidity by a combination of X-ray diffraction (XRD), X-ray diffuse scattering (XDS) and coarse grained Molecular Dynamics (MD) simulations. Blood was stored in commercial blood bags for 2 and 5 weeks, respectively and compared to freshly drawn blood. Using mass spectrometry, we measured an increase of fatty acids together with a slight shift towards shorter tail lengths. We observe an increased fraction (6%) of liquid ordered (lo) domains in the RBCcms with storage time, and an increased lipid packing in these domains, leading to an increased membrane thickness and membrane order. The size of both, lo and liquid disordered (ld) lipid domains was found to decrease with increased storage time by up to 25%. XDS experiments reveal a storage dependent increase in the RBCcm's bending modulus κ by a factor of 2.8, from 1.9 kBT to 5.3 kBT. MD simulations were conducted in the absence of proteins. The results show that the membrane composition has a small contribution to the increased bending rigidity and suggests additional protein-driven mechanisms.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Angelo D’Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of Stored Red Blood Cells. Front Physiol 2021; 12:722896. [PMID: 34690797 PMCID: PMC8530101 DOI: 10.3389/fphys.2021.722896] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) deformability refers to the cells’ ability to adapt their shape to the dynamically changing flow conditions so as to minimize their resistance to flow. The high red cell deformability enables it to pass through small blood vessels and significantly determines erythrocyte survival. Under normal physiological states, the RBCs are attuned to allow for adequate blood flow. However, rigid erythrocytes can disrupt the perfusion of peripheral tissues and directly block microvessels. Therefore, RBC deformability has been recognized as a sensitive indicator of RBC functionality. The loss of deformability, which a change in the cell shape can cause, modification of cell membrane or a shift in cytosol composition, can occur due to various pathological conditions or as a part of normal RBC aging (in vitro or in vivo). However, despite extensive research, we still do not fully understand the processes leading to increased cell rigidity under cold storage conditions in a blood bank (in vitro aging), In the present review, we discuss publications that examined the effect of RBCs’ cold storage on their deformability and the biological mechanisms governing this change. We first discuss the change in the deformability of cells during their cold storage. After that, we consider storage-related alterations in RBCs features, which can lead to impaired cell deformation. Finally, we attempt to trace a causal relationship between the observed phenomena and offer recommendations for improving the functionality of stored cells.
Collapse
Affiliation(s)
- Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
9
|
Haghbin M, Hashemi Tayer A, Kamravan M, Sotoodeh Jahromi A. Platelet-Derived Procoagulant Microparticles as Blood-based Biomarker of Breast Cancer. Asian Pac J Cancer Prev 2021; 22:1573-1579. [PMID: 34048188 PMCID: PMC8408375 DOI: 10.31557/apjcp.2021.22.5.1573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Breast cancer is the main cause of cancer death in women worldwide. Elevated plasma levels of circulating cell-derived microparticles (MPs) have been reported in various types of cancer, including breast cancer, with the ability to mediate inflammation and thrombosis. Microparticles are bioactive agents, and it has been suggested that MPs can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. The aim of this study was to investigate the levels of platelet-derived MPs (PMPs) in breast cancer patients. Materials and Methods: In this case-control study, 30 patients with breast cancer and 20 normal subjects were sampled after obtaining written consent. MPs were isolated from blood samples by centrifugation technique. CD42b and annexin V markers were used respectively for counting PMPs and procoagulant MPs with flow cytometry. Results: Flow cytometry results showed that the number of PMPs and procoagulant annexin V positive MPs was significantly higher in the breast cancer patients than normal subjects (p<0.001). The number of the annexin V MPs differed significantly in patients with high tumor size (T2) compared to the patients with low tumor size (T1) and controls (p<0.001). Significant and positive correlations were found between PMP levels and tissue-based biomarkers, tumor grading, and distant metastasis (P<0.05). Tumor histological type did not correlate with the numbers of PMPs (p=0.065). Conclusion: Increased levels of PMPs and activity in terms of hemostasis and having a positive and significant relationship with tumor grading and metastasis may indicate the effective role of PMPs in the pathogenesis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Marzieh Haghbin
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Akbar Hashemi Tayer
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Maryam Kamravan
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | | |
Collapse
|
10
|
Fraser M, Matuschewski K, Maier AG. Of membranes and malaria: phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell Mol Life Sci 2021; 78:4545-4561. [PMID: 33713154 PMCID: PMC11071739 DOI: 10.1007/s00018-021-03799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022]
Abstract
Malaria is a vector-borne parasitic disease with a vast impact on human history, and according to the World Health Organisation, Plasmodium parasites still infect over 200 million people per year. Plasmodium falciparum, the deadliest parasite species, has a remarkable ability to undermine the host immune system and cause life-threatening disease during blood infection. The parasite's host cells, red blood cells (RBCs), generally maintain an asymmetric distribution of phospholipids in the two leaflets of the plasma membrane bilayer. Alterations to this asymmetry, particularly the exposure of phosphatidylserine (PS) in the outer leaflet, can be recognised by phagocytes. Because of the importance of innate immune defence numerous studies have investigated PS exposure in RBCs infected with P. falciparum, but have reached different conclusions. Here we review recent advancements in our understanding of the molecular mechanisms which regulate asymmetry in RBCs, and whether infection with the P. falciparum parasite results in changes to PS exposure. On the balance of evidence, it is likely that membrane asymmetry is disrupted in parasitised RBCs, though some methodological issues need addressing. We discuss the potential causes and consequences of altered asymmetry in parasitised RBCs, particularly for in vivo interactions with the immune system, and the role of host-parasite co-evolution. We also examine the potential asymmetric state of parasite membranes and summarise current knowledge on the parasite proteins, which could regulate asymmetry in these membranes. Finally, we highlight unresolved questions at this time and the need for interdisciplinary approaches to uncover the machinery which enables P. falciparum parasites to hide in mature erythrocytes.
Collapse
Affiliation(s)
- Merryn Fraser
- Research School of Biology, The Australian National University, Canberra, Australia
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, Australia.
| |
Collapse
|
11
|
Vahedi A, Bigdelou P, Farnoud AM. Quantitative analysis of red blood cell membrane phospholipids and modulation of cell-macrophage interactions using cyclodextrins. Sci Rep 2020; 10:15111. [PMID: 32934292 PMCID: PMC7492248 DOI: 10.1038/s41598-020-72176-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/21/2020] [Indexed: 01/27/2023] Open
Abstract
The plasma membrane of eukaryotic cells is asymmetric with respect to its phospholipid composition. Analysis of the lipid composition of the outer leaflet is important for understanding cell membrane biology in health and disease. Here, a method based on cyclodextrin-mediated lipid exchange to characterize the phospholipids in the outer leaflet of red blood cells (RBCs) is reported. Methyl-α-cyclodextrin, loaded with exogenous lipids, was used to extract phospholipids from the membrane outer leaflet, while delivering lipids to the cell to maintain cell membrane integrity. Thin layer chromatography and lipidomics demonstrated that the extracted lipids were from the membrane outer leaflet. Phosphatidylcholines (PC) and sphingomyelins (SM) were the most abundant phospholipids in the RBCs outer leaflet with PC 34:1 and SM 34:1 being the most abundant species. Fluorescence quenching confirmed the delivery of exogenous lipids to the cell outer leaflet. The developed lipid exchange method was then used to remove phosphatidylserine, a phagocyte recognition marker, from the outer leaflet of senescent RBCs. Senescent RBCs with reconstituted membranes were phagocytosed in significantly lower amounts compared to control cells, demonstrating the efficiency of the lipid exchange process and its application in modifying cell–cell interactions.
Collapse
Affiliation(s)
- Amid Vahedi
- Department of Chemical and Biomolecular Engineering, Ohio University, 161 Stocker Center, Athens, OH, 45701, USA
| | - Parnian Bigdelou
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, 161 Stocker Center, Athens, OH, 45701, USA. .,Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
12
|
Lazari D, Freitas Leal JK, Brock R, Bosman G. The Relationship Between Aggregation and Deformability of Red Blood Cells in Health and Disease. Front Physiol 2020; 11:288. [PMID: 32351399 PMCID: PMC7174766 DOI: 10.3389/fphys.2020.00288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/16/2020] [Indexed: 01/08/2023] Open
Abstract
The molecular organization of the membrane of the red blood cell controls cell morphology and function and is thereby a main determinant of red blood cell homeostasis in the circulation. The role of membrane organization is prominently reflected in red blood cell deformation and aggregation. However, there is little knowledge on whether they are controlled by the same membrane property and if so, to what extent. To address the potential interdependence of these two parameters, we measured deformation and aggregation in a variety of physiological as well as pathological conditions. As a first step, we correlated a number of deformability and aggregation parameters in red blood cells from healthy donors, which we obtained in the course of our studies on red blood cell homeostasis in health and disease. This analysis yielded some statistically significant correlations. Also, we found that most of these correlations were absent in misshapen red blood cells that have an inborn defect in the interaction between the membrane and the cytoskeleton. The observations suggest that deformability and aggregation share at least one common, membrane-related molecular mechanism. Together with data obtained after treatment with various agents known to affect membrane organization in vitro, our findings suggest that a phosphorylation-controlled interaction between the cytoskeleton and the integral membrane protein band 3 is part of the membrane-centered mechanism that plays a role in deformability as well as aggregation.
Collapse
Affiliation(s)
- Dan Lazari
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joames Kauffimann Freitas Leal
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giel Bosman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
Freitas Leal J, Vermeer H, Lazari D, van Garsse L, Brock R, Adjobo-Hermans M, Bosman G. The impact of circulation in a heart-lung machine on function and survival characteristics of red blood cells. Artif Organs 2020; 44:892-899. [PMID: 32187389 PMCID: PMC7496153 DOI: 10.1111/aor.13682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
Extracorporeal circulation is accompanied by changes in red blood cell morphology and structural integrity that affect cell function and survival, and thereby may contribute to the various side effects of heart–lung machine‐assisted surgery. Our main objectives were to determine the effect of circulation of red blood cells in a stand‐alone extracorporeal circuit on several parameters that are known to be affected by, as well as contribute to red blood cell aging. As a source of RBCs, we employed blood bank storage units of different ages. In order to assess the relevance of our in vitro observations for the characterization of extracorporal circulation technology, we compared these changes in those of patients undergoing extracorporeal circulation‐assisted cardiac surgery. Our results show that circulation in a heart–lung machine is accompanied by changes in red blood cell volume, an increase in osmotic fragility, changes in deformability and aggregation behavior, and alterations in the exposure of phosphatidylserine and in microvesicle generation. RBCs from 1‐week‐old concentrates showed the highest similarities with the in vivo situation. These changes in key characteristics of the red blood cell aging process likely increase the susceptibility of red blood cells to the various mechanical, osmotic, and immunological stress conditions encountered during and after surgery in the patient’s circulation, and thereby contribute to the side effects of surgery. Thus, aging‐related parameters in red blood cell structure and function provide a foundation for the validation and improvement of extracorporeal circulation technology.
Collapse
Affiliation(s)
| | - Harry Vermeer
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dan Lazari
- Department of Biochemistry, Radboudumc, Nijmegen, The Netherlands
| | - Leen van Garsse
- Department of Cardiothoracic Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboudumc, Nijmegen, The Netherlands
| | | | - Giel Bosman
- Department of Biochemistry, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Freitas Leal JK, Lasonder E, Sharma V, Schiller J, Fanelli G, Rinalducci S, Brock R, Bosman G. Vesiculation of Red Blood Cells in the Blood Bank: A Multi-Omics Approach towards Identification of Causes and Consequences. Proteomes 2020; 8:proteomes8020006. [PMID: 32244435 PMCID: PMC7356037 DOI: 10.3390/proteomes8020006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Microvesicle generation is an integral part of the aging process of red blood cells in vivo and in vitro. Extensive vesiculation impairs function and survival of red blood cells after transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of microvesicle generation are largely unknown. In this study, we combined morphological, immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated understanding of the mechanisms underlying microvesicle generation during the storage of red blood cell concentrates. Our data indicate that changes in membrane organization, triggered by altered protein conformation, constitute the main mechanism of vesiculation, and precede changes in lipid organization. The resulting selective accumulation of membrane components in microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood bank storage and transfusion complications, and for assessing the role of microvesicles in pathologies affecting red blood cells.
Collapse
Affiliation(s)
- Joames K. Freitas Leal
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
| | - Edwin Lasonder
- Department of Applied Sciences, Faculty of Life and Health Sciences, Northumbria University, Newcastle-Upon-Tyne NE1 8ST, UK;
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK;
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 4107 Leipzig, Germany;
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.); (S.R.)
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (G.F.); (S.R.)
| | - Roland Brock
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
| | - Giel Bosman
- Department of Biochemistry (286), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (J.K.F.L.); (R.B.)
- Correspondence:
| |
Collapse
|
15
|
Effects of aged stored autologous red blood cells on human plasma metabolome. Blood Adv 2020; 3:884-896. [PMID: 30890545 DOI: 10.1182/bloodadvances.2018029629] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Cold storage of blood for 5 to 6 weeks has been shown to impair endothelial function after transfusion and has been associated with measures of end-organ dysfunction. Although the products of hemolysis, such as cell-free plasma hemoglobin, arginase, heme, and iron, in part mediate these effects, a complete analysis of transfused metabolites that may affect organ function has not been evaluated to date. Blood stored for either 5 or 42 days was collected from 18 healthy autologous volunteers, prior to and after autologous transfusion into the forearm circulation, followed by metabolomics analyses. Significant metabolic changes were observed in the plasma levels of hemolytic markers, oxidized purines, plasticizers, and oxidized lipids in recipients of blood stored for 42 days, compared with 5 days. Notably, transfusion of day 42 red blood cells (RBCs) increased circulating levels of plasticizers (diethylhexyl phthalate and derivatives) by up to 18-fold. Similarly, transfusion of day 42 blood significantly increased circulating levels of proinflammatory oxylipins, including prostaglandins, hydroxyeicosatrienoic acids (HETEs), and dihydroxyoctadecenoic acids. Oxylipins were the most significantly increasing metabolites (for 9-HETE: up to ∼41-fold, P = 3.7e-06) in day 42 supernatants. Measurements of arginine metabolism confirmed an increase in arginase activity at the expense of nitric oxide synthesis capacity in the bloodstream of recipients of day 42 blood, which correlated with measurements of hemodynamics. Metabolic changes in stored RBC supernatants impact the plasma metabolome of healthy transfusion recipients, with observed increases in plasticizers, as well as vasoactive, pro-oxidative, proinflammatory, and immunomodulatory metabolites after 42 days of storage.
Collapse
|
16
|
Freitas Leal JK, Preijers F, Brock R, Adjobo-Hermans M, Bosman G. Red Blood Cell Homeostasis and Altered Vesicle Formation in Patients With Paroxysmal Nocturnal Hemoglobinuria. Front Physiol 2019; 10:578. [PMID: 31156458 PMCID: PMC6529780 DOI: 10.3389/fphys.2019.00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
A subset of the red blood cells (RBCs) of patients with paroxysmal nocturnal hemoglobinuria (PNH) lacks GPI-anchored proteins. Some of these proteins, such as CD59, inhibit complement activation and protect against complement-mediated lysis. This pathology thus provides the possibility to explore the involvement of complement in red blood cell homeostasis and the role of GPI-anchored proteins in the generation of microvesicles (MVs) in vivo. Detailed analysis of morphology, volume, and density of red blood cells with various CD59 expression levels from patients with PNH did not provide indications for a major aberration of the red blood cell aging process in patients with PNH. However, our data indicate that the absence of GPI-anchored membrane proteins affects the composition of red blood cell-derived microvesicles, as well as the composition and concentration of platelet-derived vesicles. These data open the way toward a better understanding on the pathophysiological mechanism of PNH and thereby to the development of new treatment strategies.
Collapse
Affiliation(s)
| | - Frank Preijers
- Laboratory for Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Merel Adjobo-Hermans
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giel Bosman
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Bouchard BA, Orfeo T, Keith HN, Lavoie EM, Gissel M, Fung M, Mann KG. Microparticles formed during storage of red blood cell units support thrombin generation. J Trauma Acute Care Surg 2019; 84:598-605. [PMID: 29251713 DOI: 10.1097/ta.0000000000001759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intact red blood cells (RBCs) appear to support thrombin generation in in vitro models of blood coagulation. During storage of RBC units, biochemical, structural, and physiological changes occur including alterations to RBC membranes and release of microparticles, which are collectively known as storage lesion. The clinical consequences of microparticle formation in RBC units are unclear. This study was performed to assess thrombin generation via the prothrombinase complex by washed RBCs and RBC-derived microparticles as a function of RBC unit age. METHODS Well-characterized kinetic and flow cytometric assays were used to quantify and characterize microparticles isolated from leukocyte-reduced RBC units during storage for 42 days under standard blood banking conditions. RESULTS Stored RBCs exhibited known features of storage lesion including decreasing pH, cell lysis, and release of microparticles demonstrated by scanning electron microscopy. The rate of thrombin formation by RBC units linearly increased during storage, with the microparticle fraction accounting for approximately 70% of the prothrombinase activity after 35 days. High-resolution flow cytometric analyses of microparticle isolates identified phosphatidylserine-positive RBC-derived microparticles; however, their numbers over time did not correlate with thrombin formation in that fraction. CONCLUSION Red blood cell-derived microparticles capable of supporting prothrombinase function accumulate during storage, suggesting an increased potential of transfused units as they age to interact in unplanned ways with ongoing hemostatic processes in injured individuals, especially given the standard blood bank practice of using the oldest units available.
Collapse
Affiliation(s)
- Beth A Bouchard
- From the Department of Biochemistry (B.A.B., T.O., H.N.K., E.M.L., M.G., K.G.M.), and Blood Bank and Transfusion Medicine, Department of Pathology (M.F.), The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | |
Collapse
|
18
|
Hashemi Tayer A, Amirizadeh N, Ahmadinejad M, Nikougoftar M, Deyhim MR, Zolfaghari S. Procoagulant Activity of Red Blood Cell-Derived Microvesicles during Red Cell Storage. Transfus Med Hemother 2018; 46:224-230. [PMID: 31700504 DOI: 10.1159/000494367] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/09/2018] [Indexed: 01/03/2023] Open
Abstract
Background Red blood cells (RBCs) undergo structural and biochemical alterations during storage which are collectively called RBC storage lesion and cause a decrease in RBC recovery and survival. During storage, erythrocytes release an increasing number of microvesicles (MVs) that have key roles in biological processes. We aimed to investigate the procoagulant activity (PCA) of RBC-derived MVs during storage. Methods 20 packed RBCs were stored for up to 42 days. Samples were taken at seven different times and evaluated for the presence of RBC-MVs. MVs were separated, and following filtration flow cytometry was used to characterize RBC-MVs based on the expression of glycophorin A (Gly.A) and annexin V (AnnV) antigens. The coagulant activity of RBC-MVs was tested by clotting time (CT) and PCA assays. Results were compared before and after filtration. Results Flow cytometry revealed a 17.6-fold increase in RBC-MVs after 6 weeks of storage. Significant correlations were found between AnnV+ MVs and PCA (r = 0.96; p < 0.001), and CT (r = -0.77; p < 0.001) which was associated with increased PCA and shortened CT with RBC aging. Filtration of samples efficiently removed MVs (p < 0.001) and also reduced in vitro PCA of MVs (p < 0.001). Conclusion RBC-MVs are procoagulant (particularly AnnV+ MVs) Reduction of MVs from RBC concentrates may reduce the risk of transfusion-induced thrombotic complications.
Collapse
Affiliation(s)
- Akbar Hashemi Tayer
- Department of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Minoo Ahmadinejad
- Hematology and Reference Coagulation Lab, Iranian Blood Transfusion Organization, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sima Zolfaghari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
19
|
Barshtein G, Arbell D, Livshits L, Gural A. Is It Possible to Reverse the Storage-Induced Lesion of Red Blood Cells? Front Physiol 2018; 9:914. [PMID: 30087617 PMCID: PMC6066962 DOI: 10.3389/fphys.2018.00914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cold-storage of packed red blood cells (PRBCs) in the blood bank is reportedly associated with alteration in a wide range of RBC features, which change cell storage each on its own timescale. Thus, some of the changes take place at an early stage of storage (during the first 7 days), while others occur later. We still do not have a clear understanding what happens to the damaged PRBC following their transfusion. We know that some portion (from a few to 10%) of transfused cells with a high degree of damage are removed from the bloodstream immediately or in the first hour(s) after the transfusion. The remaining cells partially restore their functionality and remain in the recipient’s blood for a longer time. Thus, the ability of transfused cells to recover is a significant factor in PRBC transfusion effectiveness. In the present review, we discuss publications that examined RBC lesions induced by the cold storage, aiming to offer a better understanding of the time frame in which these lesions occur, with particular emphasis on the question of their reversibility. We argue that transfused RBCs are capable (in a matter of a few hours) of restoring their pre-storage levels of ATP and 2,3-DPG, with subsequent restoration of cell functionality, especially of those properties having a more pronounced ATP-dependence. The extent of reversal is inversely proportional to the extent of damage, and some of the changes cannot be reversed.
Collapse
Affiliation(s)
- Gregory Barshtein
- Faculty of Medicine, Biochemistry Department, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan Arbell
- Pediatric Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Leonid Livshits
- Faculty of Medicine, Biochemistry Department, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Veterinary Physiology, University of Zurich, Zürich, Switzerland
| | - Alexander Gural
- Blood Bank, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
20
|
Tzounakas VL, Gevi F, Georgatzakou HT, Zolla L, Papassideri IS, Kriebardis AG, Rinalducci S, Antonelou MH. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency. Front Med (Lausanne) 2018; 5:16. [PMID: 29459896 PMCID: PMC5807665 DOI: 10.3389/fmed.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Transfusion of fresh frozen plasma (FFP) helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs), numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc.) are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD-), the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD- cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD- males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels. METHODS The quality of n = 12 G6PD- and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools. RESULTS Higher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD- FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD-. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD- FFPs compared with control. CONCLUSION Our results point toward a different redox, lipid metabolism, and EV profile in the G6PD- FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD- FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD-, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies.
Collapse
Affiliation(s)
- Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Hara T. Georgatzakou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Freitas Leal JK, Adjobo-Hermans MJ, Brock R, Bosman GJ. Acetylcholinesterase provides new insights into red blood cell ageing in vivo and in vitro. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:232-238. [PMID: 28518050 PMCID: PMC5448829 DOI: 10.2450/2017.0370-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 04/25/2023]
Abstract
BACKGROUND During its 120 days sojourn in the circulation, the red blood cell (RBC) remodels its membrane. Acetylcholinesterase (AChE) is a glycosylphosphatidylinositol (GPI)-linked enzyme that may serve as a marker for membrane processes occurring this ageing-associated remodelling process. MATERIALS AND METHODS Expression and enzymatic activity of AChE were determined on RBCs of various ages, as obtained by separation based on volume and density (ageing in vivo), and on RBCs of various times of storage in blood bank conditions (ageing in vitro), as well as on RBC-derived vesicles. RESULTS During ageing in vivo, the enzymatic activity of AChE decreases, but not the AChE protein concentration. In contrast, neither AChE activity nor concentration show a consistent, significant decrease during ageing in vitro. CD59, another GPI-linked protein that protects against complement-induced removal, also remains constant during storage. The cellular content of the integral membrane protein glycophorin A, however, decreases with storage time in the more dense RBC fractions. The latter are enriched in echinocytes and other misshapen cells during storage. DISCUSSION Our findings suggest that, during RBC ageing, GPI-linked proteins and integral membrane proteins are differentially sorted. Also, the vesicles that are generated in vitro show a fast and extensive loss of AChE activity, but not of AChE expression. Thus, AChE characteristics may constitute sensitive biomarkers of RBC ageing in vivo, and a source of information on the structural and functional changes that GPI-linked proteins undergo during ageing in vivo and in vitro. This information may help to understand RBC homeostasis and the effects of transfusion, especially in immunologically compromised patients.
Collapse
Affiliation(s)
| | | | | | - Giel J.C.G.M. Bosman
- Correspondence: Giel Bosman, Department of Biochemistry (286), Radboud University Medical Center, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands, e-mail:
| |
Collapse
|
22
|
Orbach A, Zelig O, Yedgar S, Barshtein G. Biophysical and Biochemical Markers of Red Blood Cell Fragility. Transfus Med Hemother 2017. [PMID: 28626369 DOI: 10.1159/000452106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Red blood cells (RBCs) undergo a natural aging process occurring in the blood circulation throughout the RBC lifespan or during routine cold storage in the blood bank. The aging of RBCs is associated with the elevation of mechanical fragility (MF) or osmotic fragility (OF) of RBCs, which can lead to cell lysis. The present study was undertaken to identify RBC properties that characterize their susceptibility to destruction under osmotic/mechanical stress. METHODS RBCs were isolated from freshly donated blood or units of packed RBCs (PRBCs) and suspended in albumin-supplemented phosphate-buffered saline (PBS). In addition, PRBCs were separated by filtration through a microsphere column into two fractions: enriched with rigid (R-fraction) and deformable (D-fraction) cells. The RBCs were subjected to determination of deformability, MF and OF, moreover, the level of cell surface phosphatidylserine (PS) and the stomatin level in isolated RBC membranes were measured. RESULTS In the RBC population, the cells that were susceptible to mechanical and osmotic stress were characterized by low deformability and increased level of surface PS. The OF/MF was higher in the R-fraction than in the D-fraction. Stomatin was depleted in destroyed cells and in the R-fraction. CONCLUSION RBC deformability, the levels of surface PS, and membrane stomatin can be used as markers of RBC fragility.
Collapse
Affiliation(s)
- Ariel Orbach
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orly Zelig
- Blood Bank, Hadassah University Hospital, Jerusalem, Israel
| | - Saul Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gregory Barshtein
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
23
|
Faulks M, Kuit TA, Sophocleous RA, Curtis BL, Curtis SJ, Jurak LM, Sluyter R. P2X7 receptor activation causes phosphatidylserine exposure in canine erythrocytes. World J Hematol 2016; 5:88-93. [DOI: 10.5315/wjh.v5.i4.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/10/2016] [Accepted: 09/22/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To determine if activation of the ATP-gated P2X7 receptor channel induces phosphatidylserine (PS) exposure in erythrocytes from multiple dog breeds.
METHODS Peripheral blood was collected from 25 dogs representing 13 pedigrees and seven crossbreeds. ATP-induced PS exposure on canine erythrocytes in vitro was assessed using a flow cytometric Annexin V binding assay.
RESULTS ATP induced PS exposure in erythrocytes from all dogs studied. ATP caused PS exposure in a concentration-dependent manner with an EC50 value of 395 μmol/L. The non-P2X7 agonists, ADP or AMP, did not cause PS exposure. The P2X7 antagonist, AZ10606120, but not the P2X1 antagonist, NF449, blocked ATP-induced PS exposure.
CONCLUSION The results indicate that ATP induces PS exposure in erythrocytes from various dog breeds and that this process is mediated by P2X7 activation.
Collapse
|
24
|
Peters AL, Beuger B, Mock DM, Widness JA, de Korte D, Juffermans NP, Vlaar APJ, van Bruggen R. Clearance of stored red blood cells is not increased compared with fresh red blood cells in a human endotoxemia model. Transfusion 2016; 56:1362-9. [PMID: 27040455 DOI: 10.1111/trf.13595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is thought that the clearance of transfused red blood cells (RBCs) is related both to the storage time of the transfusion product and to the inflammatory status of the recipient. We investigated these effects in a randomized, "two-hit," healthy volunteer transfusion model, comparing autologous RBCs that were stored for 35 days with those that were stored for 2 days. STUDY DESIGN AND METHODS Healthy male volunteers donated 1 unit of autologous RBCs either 2 days (2D) or 35 days (35D) before the study date. The experiment was started by infusion of 2 ng/kg lipopolysaccharide ("first hit"). Two hours later, the stored RBCs ("second hit") were reinfused, followed by the labeling of RBCs with biotin. Clearance of biotin-labeled RBCs (BioRBCs) was measured during the 5-hour posttransfusion endotoxemia period along with measurements of phosphatidylserine (PS) exposure, lactadherin binding, and expression of CD47 (cluster of differentiation 47; a transmembrane protein encoded by the CD47 gene). RESULTS In the 2D stored RBCs group, 1.5% ± 3.4% of infused BioRBCs were cleared from the circulation 5 hours posttransfusion versus 4.8% ± 4.0% in the 35D stored RBCs group (p = 0.1). There were no differences in PS exposure, lactadherin binding, or CD47 expression between fresh and stored RBCs or between pretransfusion and posttransfusion measurements. CONCLUSION Our study shows a low clearance of RBCs even during endotoxemia. Furthermore, short-term clearance of BioRBCs during endotoxemia was not related to storage duration. Consistent with these observations, PS exposure, lactadherin binding, and CD47 expression did not differ between 2D and 35D stored cells before or after transfusion. We conclude that, in the presence of endotoxemia, clearance of 35D stored autologous RBCs is not increased compared with 2D stored fresh RBCs.
Collapse
Affiliation(s)
- Anna L Peters
- Laboratory of Experimental Intensive Care and Anesthesia.,Department of Intensive Care, Academic Medical Center
| | - Boukje Beuger
- Sanquin Blood Supply, Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Donald M Mock
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John A Widness
- Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa
| | - Dirk de Korte
- Sanquin Blood Supply, Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands.,Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesia.,Department of Intensive Care, Academic Medical Center
| | - Alexander P J Vlaar
- Laboratory of Experimental Intensive Care and Anesthesia.,Department of Intensive Care, Academic Medical Center
| | - Robin van Bruggen
- Sanquin Blood Supply, Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane. BBA CLINICAL 2016; 5:186-92. [PMID: 27200268 PMCID: PMC4864322 DOI: 10.1016/j.bbacli.2016.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/25/2022]
Abstract
Background Reduced erythrocyte survival and deformability may contribute to the so-called anemia of inflammation observed in septic patients. Erythrocyte structure and function are affected by both the membrane lipid composition and the organization. We therefore aimed to determine whether these parameters are affected during systemic inflammation. Methods A sensitive matrix-assisted laser desorption and ionization time-of-flight mass spectrometric method was used to investigate the effect of plasma components of 10 patients with septic shock and of 10 healthy volunteers subjected to experimental endotoxemia on erythrocyte membrane lipid composition. Results Incubation of erythrocytes from healthy control donors with plasma from patients with septic shock resulted in membrane phosphatidylcholine hydrolysis into lysophosphatidylcholine (LPC). Plasma from volunteers undergoing experimental human endotoxemia did not induce LPC formation. The secretory phospholipase A2 IIA concentration was enhanced up to 200-fold in plasma of septic patients and plasma from endotoxin-treated subjects, but did not correlate with the ability of these plasmas to generate LPC. Erythrocyte phosphatidylserine exposure increased up to two-fold during experimental endotoxemia. Conclusions Erythrocyte membrane lipid remodeling as reflected by LPC formation and/or PS exposure occurs during systemic inflammation in a secretory phospholipase A2 IIA-independent manner. General significance Sepsis-associated inflammation induces a lipid remodeling of the erythrocyte membrane that is likely to affect erythrocyte function and survival, and that is not fully mimicked by experimental endotoxemia. Erythrocyte membrane lipid remodeling occurs during systemic inflammation. Erythrocyte phosphatidylcholine hydrolysis during sepsis does not rely on SPLA2 IIA. Experimental endotoxemia does not fully mimic the effects of sepsis on erythrocytes.
Collapse
|
26
|
Antosik A, Czubak K, Gajek A, Marczak A, Glowacki R, Borowczyk K, Zbikowska HM. Influence of Pre-Storage Irradiation on the Oxidative Stress Markers, Membrane Integrity, Size and Shape of the Cold Stored Red Blood Cells. Transfus Med Hemother 2015. [PMID: 26195927 DOI: 10.1159/000371596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. METHODS The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. RESULTS Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. CONCLUSION Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving.
Collapse
Affiliation(s)
- Adam Antosik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Kamila Czubak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Agnieszka Marczak
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Rafal Glowacki
- Department of Environmental Chemistry, University of Lodz, Lodz, Poland
| | - Kamila Borowczyk
- Department of Environmental Chemistry, University of Lodz, Lodz, Poland
| | - Halina Malgorzata Zbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Alterations in red blood cell deformability during storage: a microfluidic approach. BIOMED RESEARCH INTERNATIONAL 2014; 2014:764268. [PMID: 25295273 PMCID: PMC4176636 DOI: 10.1155/2014/764268] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022]
Abstract
Red blood cells (RBCs) undergo extensive deformation when travelling through the microcapillaries. Deformability, the combined result of properties of the membrane-cytoskeleton complex, the surface area-to-volume ratio, and the hemoglobin content, is a critical determinant of capillary blood flow. During blood bank storage and in many pathophysiological conditions, RBC morphology changes, which has been suggested to be associated with decreased deformability and removal of RBC. While various techniques provide information on the rheological properties of stored RBCs, their clinical significance is controversial. We developed a microfluidic approach for evaluating RBC deformability in a physiologically meaningful and clinically significant manner. Unlike other techniques, our method enables a high-throughput determination of changes in deformation capacity to provide statistically significant data, while providing morphological information at the single-cell level. Our data show that, under conditions that closely mimic capillary dimensions and flow, the capacity to deform and the capacity to relax are not affected during storage in the blood bank. Our data also show that altered cell morphology by itself does not necessarily affect deformability.
Collapse
|
28
|
Zeiler T, Lander-Kox J, Alt T. Blood donation by elderly repeat blood donors. ACTA ACUST UNITED AC 2014; 41:242-50. [PMID: 25254019 DOI: 10.1159/000365401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/24/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Upper age limits for blood donors are intended to protect elderly blood donors from donor reactions. However, due to a lack of data about adverse reactions in elderly blood donors, upper age limits are arbitrary and vary considerably between different countries. METHODS Here we present data from 171,231 voluntary repeat whole blood donors beyond the age of 68 years. RESULTS Blood donations from repeat blood donors beyond the age of 68 years increased from 2,114 in 2005 to 38,432 in 2012 (from 0,2% to 4.2% of all whole blood donations). Adverse donor reactions in repeat donors decreased with age and were lower than in the whole group (0.26%), even in donors older than 71 years (0.16%). However, from the age of 68 years, the time to complete recovery after donor reactions increased. Donor deferrals were highest in young blood donors (21.4%), but increased again in elderly blood donors beyond 71 years (12.6%). CONCLUSION Blood donation by regular repeat blood donors older than 71 years may be safely continued. However, due to a lack of data for donors older than 75 years, blood donation in these donors should be handled with great caution.
Collapse
Affiliation(s)
- Thomas Zeiler
- DRK-Blutspendedienst West gGmbH, Zentrum für Transfusionsmedizin Breitscheid, Ratingen, Germany
| | - Jutta Lander-Kox
- DRK-Blutspendedienst West gGmbH, Zentrum für Transfusionsmedizin Breitscheid, Ratingen, Germany
| | - Timo Alt
- DRK-Blutspendedienst West gGmbH, Zentrum für Transfusionsmedizin Bad Kreuznach, Bad Kreuznach, Germany
| |
Collapse
|
29
|
Flatt JF, Bawazir WM, Bruce LJ. The involvement of cation leaks in the storage lesion of red blood cells. Front Physiol 2014; 5:214. [PMID: 24987374 PMCID: PMC4060409 DOI: 10.3389/fphys.2014.00214] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
Stored blood components are a critical life-saving tool provided to patients by health services worldwide. Red cells may be stored for up to 42 days, allowing for efficient blood bank inventory management, but with prolonged storage comes an unwanted side-effect known as the "storage lesion", which has been implicated in poorer patient outcomes. This lesion is comprised of a number of processes that are inter-dependent. Metabolic changes include a reduction in glycolysis and ATP production after the first week of storage. This leads to an accumulation of lactate and drop in pH. Longer term damage may be done by the consequent reduction in anti-oxidant enzymes, which contributes to protein and lipid oxidation via reactive oxygen species. The oxidative damage to the cytoskeleton and membrane is involved in increased vesiculation and loss of cation gradients across the membrane. The irreversible damage caused by extensive membrane loss via vesiculation alongside dehydration is likely to result in immediate splenic sequestration of these dense, spherocytic cells. Although often overlooked in the literature, the loss of the cation gradient in stored cells will be considered in more depth in this review as well as the possible effects it may have on other elements of the storage lesion. It has now become clear that blood donors can exhibit quite large variations in the properties of their red cells, including microvesicle production and the rate of cation leak. The implications for the quality of stored red cells from such donors is discussed.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK
| | - Waleed M Bawazir
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK ; School of Biochemistry, University of Bristol Bristol, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK
| |
Collapse
|
30
|
Bosman GJCGM. Survival of red blood cells after transfusion: processes and consequences. Front Physiol 2013; 4:376. [PMID: 24391593 PMCID: PMC3866658 DOI: 10.3389/fphys.2013.00376] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/02/2013] [Indexed: 12/30/2022] Open
Abstract
THE CURRENTLY AVAILABLE DATA SUGGEST THAT EFFORTS TOWARD IMPROVING THE QUALITY OF RED BLOOD CELL (RBC) BLOOD BANK PRODUCTS SHOULD CONCENTRATE ON: (1) preventing the removal of a considerable fraction of the transfused RBCs that takes place within the first hours after transfusion; (2) minimizing the interaction of the transfused RBCs with the patient's immune system. These issues are important in reducing the number and extent of the damaging side effects of transfusions, such as generation of alloantibodies and autoantibodies and iron accumulation, especially in transfusion-dependent patients. Thus, it becomes important for blood bank research not only to assess the classical RBC parameters for quality control during storage, but even more so to identify the parameters that predict RBC survival, function and behavior in the patient after transfusion. These parameters are likely to result from elucidation of the mechanisms that underly physiological RBC aging in vivo, and that lead to the generation of senescent cell antigens and the accumulation of damaged molecules in vesicles. Also, study of RBC pathology-related mechanisms, such as encountered in various hemoglobinopathies and membranopathies, may help to elucidate the mechanisms underlying a storage-associated increase in susceptibility to physiological stress conditions. Recent data indicate that a combination of new approaches in vitro to mimick RBC behavior in vivo, the growing knowledge of the signaling networks that regulate RBC structure and function, and the rapidly expanding set of proteomic and metabolomic data, will be instrumental to identify the storage-associated processes that control RBC survival after transfusion.
Collapse
Affiliation(s)
- Giel J C G M Bosman
- Department of Biochemistry, Radboud University Medical Centre Nijmegen, Netherlands
| |
Collapse
|