1
|
Zhu C, Niu Q, Yuan X, Chong J, Ren L. NonFreezable Preservation of Human Red Blood Cells at -8 °C. ACS Biomater Sci Eng 2022; 8:2644-2653. [PMID: 35536888 DOI: 10.1021/acsbiomaterials.2c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Red blood cell (RBC) preservation is very important in human health. The RBCs are usually preserved at 4 ± 2 °C without freezing or at a very low temperature (-80 °C or liquid nitrogen) with deep freezing. Herein, non freezable preservation of RBCs at a subzero temperature is reported to prolong the preservation time compared with that at 4 ± 2 °C. By adding glycerol and poly(ethylene glycol) (PEG) (average number molecular weight 400, PEG-400) into the preservation solution, the freezing point is decreased and the hemolysis is kept low. The cell metabolism of stored RBCs at -8 °C is reduced, and the shelf life of RBCs extends up to at least 70 days. At the end of preservation, the pH decreases a little bit to demonstrate the low metabolic rate of RBCs stored at subzero temperatures. After quick washing, the RBC survival rate is ca. 95%. The adenosine triphosphate, 2,3-diphosphoglycerate, and cell deformation ability of the washed RBCs are maintained at a high level, while the malondialdehyde is relatively low, which verifies the high quality of RBCs stored at this condition.
Collapse
Affiliation(s)
- Chenhui Zhu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | | | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Murray A, Congdon TR, Tomás RMF, Kilbride P, Gibson MI. Red Blood Cell Cryopreservation with Minimal Post-Thaw Lysis Enabled by a Synergistic Combination of a Cryoprotecting Polyampholyte with DMSO/Trehalose. Biomacromolecules 2022; 23:467-477. [PMID: 34097399 PMCID: PMC7612374 DOI: 10.1021/acs.biomac.1c00599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Indexed: 12/16/2022]
Abstract
From trauma wards to chemotherapy, red blood cells are essential in modern medicine. Current methods to bank red blood cells typically use glycerol (40 wt %) as a cryoprotective agent. Although highly effective, the deglycerolization process, post-thaw, is time-consuming and results in some loss of red blood cells during the washing procedures. Here, we demonstrate that a polyampholyte, a macromolecular cryoprotectant, synergistically enhances ovine red blood cell cryopreservation in a mixed cryoprotectant system. Screening of DMSO and trehalose mixtures identified optimized conditions, where cytotoxicity was minimized but cryoprotective benefit maximized. Supplementation with polyampholyte allowed 97% post-thaw recovery (3% hemolysis), even under extremely challenging slow-freezing and -thawing conditions. Post-thaw washing of the cryoprotectants was tolerated by the cells, which is crucial for any application, and the optimized mixture could be applied directly to cells, causing no hemolysis after 1 h of exposure. The procedure was also scaled to use blood bags, showing utility on a scale relevant for application. Flow cytometry and adenosine triphosphate assays confirmed the integrity of the blood cells post-thaw. Microscopy confirmed intact red blood cells were recovered but with some shrinkage, suggesting that optimization of post-thaw washing could further improve this method. These results show that macromolecular cryoprotectants can provide synergistic benefit, alongside small molecule cryoprotectants, for the storage of essential cell types, as well as potential practical benefits in terms of processing/handling.
Collapse
Affiliation(s)
- Alex Murray
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Thomas R. Congdon
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ruben M. F. Tomás
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| | - Peter Kilbride
- Asymptote, Cytiva, Chivers Way, Cambridge CB24 9BZ, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Bizjak DA, Grolle A, Urena JAN, Bloch W, Deitenbeck R, Grau M. Monitoring of RBC rheology after cryopreservation to detect autologous blood doping in vivo? A pilot study. Clin Hemorheol Microcirc 2020; 76:367-379. [PMID: 32675400 DOI: 10.3233/ch-200887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND: Autologous blood doping (ABD) is applied to improve performance capacity. ABD includes blood donation, red blood cell (RBC) storage at –80°C and re-infusion prior to or during competition. ABD is not directly detectable with current detection techniques. OBJECTIVE: Since cryopreservation is known to affect RBC physiology in vitro, the aim of the study was to examine whether these alterations are detectable in vivo. METHODS: Blood from six healthy male donors was transferred into conventional blood bags, cryopreserved, stored for 18 weeks at –80°C and re-infused with a RBC volume corresponding to ∼4% of total blood volume into respective donor. RBC physiology parameters were measured before blood donation/re-infusion, and 0/1/2/6/24/48/72 h and 1 w post re-infusion. RESULTS: RBC parameters and age markers were unaffected during intervention. RBC deformability increased from pre-blood-sampling to pre-re-infusion while deformability and viscosity values remained unaltered post re-infusion. RBC nitric oxide associated analytes, metabolic parameters and electrolyte concentrations remained unaffected. CONCLUSIONS: The data of this pilot study indicate that the increase in RBC deformability might be related to neoformation of RBC after blood donation. The lack of changes in tested parameters might be related to the low re-infused RBC volume which might explain differences to in vitro results.
Collapse
Affiliation(s)
- Daniel A. Bizjak
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Andreas Grolle
- German Red Cross Blood Donation Service West, Hagen, Germany
| | | | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| | | | - Marijke Grau
- German Sport University Cologne, Department of Molecular and Cellular Sports Medicine, Cologne, Germany
| |
Collapse
|
4
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
5
|
Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J. Cryopreservation and its clinical applications. Integr Med Res 2017; 6:12-18. [PMID: 28462139 PMCID: PMC5395684 DOI: 10.1016/j.imr.2016.12.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cryopreservation is a process that preserves organelles, cells, tissues, or any other biological constructs by cooling the samples to very low temperatures. The responses of living cells to ice formation are of theoretical interest and practical relevance. Stem cells and other viable tissues, which have great potential for use in basic research as well as for many medical applications, cannot be stored with simple cooling or freezing for a long time because ice crystal formation, osmotic shock, and membrane damage during freezing and thawing will cause cell death. The successful cryopreservation of cells and tissues has been gradually increasing in recent years, with the use of cryoprotective agents and temperature control equipment. Continuous understanding of the physical and chemical properties that occur in the freezing and thawing cycle will be necessary for the successful cryopreservation of cells or tissues and their clinical applications. In this review, we briefly address representative cryopreservation processes, such as slow freezing and vitrification, and the available cryoprotective agents. In addition, some adverse effects of cryopreservation are mentioned.
Collapse
Affiliation(s)
| | | | - Ji Hyun Yang
- College of Medicine, Inje University, Busan, Korea
| | | | | | - Ui Seo Park
- College of Medicine, Inje University, Busan, Korea
| | | | - Sung Ryul Lee
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|