1
|
Wang J, Fan Q, Yu T, Zhang Y. Identifying the hub genes and immune cell infiltration in synovial tissue between osteoarthritic and rheumatoid arthritic patients by bioinformatic approach. Curr Pharm Des 2021; 28:497-509. [PMID: 34736376 DOI: 10.2174/1381612827666211104154459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common diseases that result in limb disability and a decrease in quality of life. The major symptoms of OA and RA are pain, swelling, stiffness, and malformation of joints, and each disease also has unique characteristics. OBJECTIVE To compare the pathological mechanisms of OA and RA via weighted correlation network analysis (WGCNA) and immune infiltration analysis and find potential diagnostic and pharmaceutical targets for the treatment of OA and RA. METHODS The gene expression profiles of ten OA and ten RA synovial tissue samples were downloaded from the Gene Expression Omnibus (GEO) database (GSE55235). After obtaining differentially expressed genes (DEGs) via GEO2R, WGCNA was conducted using an R package, and modules and genes that were highly correlated with OA and RA were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network analyses were also conducted. Hub genes were identified using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. Immune infiltration analysis was conducted using the Perl program and CIBERSORT software. RESULTS Two hundred ninety-nine DEGs, 24 modules, 16 GO enrichment terms, 6 KEGG pathway enrichment terms, 10 hub genes (CXCL9, CXCL10, CXCR4, CD27, CD69, CD3D, IL7R, STAT1, RGS1, and ISG20), and 8 kinds of different infiltrating immune cells (plasma cells, CD8 T cells, activated memory CD4 T cells, T helper follicular cells, M1 macrophages, Tregs, resting mast cells, and neutrophils) were found to be involved in the different pathological mechanisms of OA and RA. CONCLUSION Inflammation-associated genes were the top differentially expressed hub genes between OA and RA, and their expression was downregulated in OA. Genes associated with lipid metabolism may have upregulated expression in OA. In addition, immune cells that participate in the adaptive immune response play an important role in RA. OA mainly involves immune cells that are associated with the innate immune response.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao University, Qingdao, Shandong 266000. China
| | - Qin Fan
- Qingdao University, Qingdao, Shandong 266000. China
| | - Tengbo Yu
- Qingdao University, Qingdao, Shandong 266000. China
| | - Yingze Zhang
- Qingdao University, Qingdao, Shandong 266000. China
| |
Collapse
|
2
|
Rowland AL, Miller D, Berglund A, Schnabel LV, Levine GJ, Antczak DF, Watts AE. Cross-matching of allogeneic mesenchymal stromal cells eliminates recipient immune targeting. Stem Cells Transl Med 2020; 10:694-710. [PMID: 33369287 PMCID: PMC8046071 DOI: 10.1002/sctm.20-0435] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Allogeneic mesenchymal stromal cells (MSCs) have been used clinically for decades, without cross-matching, on the assumption that they are immune-privileged. In the equine model, we demonstrate innate and adaptive immune responses after repeated intra-articular injection with major histocompatibility complex (MHC) mismatched allogeneic MSCs, but not MHC matched allogeneic or autologous MSCs. We document increased peri-articular edema and synovial effusion, increased synovial cytokine and chemokine concentrations, and development of donor-specific antibodies in mismatched recipients compared with recipients receiving matched allogeneic or autologous MSCs. Importantly, in matched allogeneic and autologous recipients, but not mismatched allogeneic recipients, there was increased stromal derived factor-1 along with increased MSC concentrations in synovial fluid. Until immune recognition of MSCs can be avoided, repeated clinical use of MSCs should be limited to autologous or cross-matched allogeneic MSCs. When non-cross-matched allogeneic MSCs are used in single MSC dose applications, presensitization against donor MHC should be assessed.
Collapse
Affiliation(s)
- Aileen L Rowland
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Donald Miller
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Alix Berglund
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Gwendolyn J Levine
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Menarim BC, Gillis KH, Oliver A, Ngo Y, Werre SR, Barrett SH, Rodgerson DH, Dahlgren LA. Macrophage Activation in the Synovium of Healthy and Osteoarthritic Equine Joints. Front Vet Sci 2020; 7:568756. [PMID: 33324696 PMCID: PMC7726135 DOI: 10.3389/fvets.2020.568756] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Synovitis is a major component of osteoarthritis and is driven primarily by macrophages. Synovial macrophages are crucial for joint homeostasis (M2-like phenotype), but induce inflammation (M1-like) when regulatory functions become overwhelmed. Macrophage phenotypes in synovium from osteoarthritic and healthy joints are poorly characterized; however, comparative knowledge of their phenotypes during health and disease is paramount for developing targeted treatments. This study compared patterns of macrophage activation in healthy and osteoarthritic equine synovium and correlated histology with cytokine/chemokine profiles in synovial fluid. Synovial histology and immunohistochemistry for M1-like (CD86), M2-like (CD206, IL-10), and pan macrophage (CD14) markers were performed on biopsies from 29 healthy and 26 osteoarthritic equine joints. Synovial fluid cytokines (MCP-1, IL-10, PGE2, IL-1β, IL-6, TNF-α, IL-1ra) and growth factors (GM-CSF, SDF-1α+β, IGF-1, and FGF-2) were quantified. Macrophage phenotypes were not as clearly defined in vivo as they are in vitro. All macrophage markers were expressed with minimal differences between OA and normal joints. Expression for all markers increased proportionate to synovial inflammation, especially CD86. Synovial fluid MCP-1 was higher in osteoarthritic joints while SDF-1 and IL-10 were lower, and PGE2 concentrations did not differ between groups. Increased CD14/CD86/CD206/IL-10 expression was associated with synovial hyperplasia, consistent with macrophage recruitment and activation in response to injury. Lower synovial fluid IL-10 could suggest that homeostatic mechanisms from synovial macrophages became overwhelmed preventing inflammation resolution, resulting in chronic inflammation and OA. Further investigations into mechanisms of arthritis resolution are warranted. Developing pro-resolving therapies may provide superior results in the treatment of OA.
Collapse
Affiliation(s)
- Bruno C. Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Kiersten H. Gillis
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Andrea Oliver
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ying Ngo
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sarah H. Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | | | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Menarim BC, Gillis KH, Oliver A, Mason C, Ngo Y, Werre SR, Barrett SH, Luo X, Byron CR, Dahlgren LA. Autologous bone marrow mononuclear cells modulate joint homeostasis in an equine in vivo model of synovitis. FASEB J 2019; 33:14337-14353. [PMID: 31665925 DOI: 10.1096/fj.201901684rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is characterized by macrophage-driven synovitis. Macrophages promote synovial health but become inflammatory when their regulatory functions are overwhelmed. Bone marrow mononuclear cells (BMNCs) are a rich source of macrophage progenitors used for treating chronic inflammation and produce essential molecules for cartilage metabolism. This study investigated the response to autologous BMNC injection in normal and inflamed joints. Synovitis was induced in both radiocarpal joints of 6 horses. After 8 h, 1 inflamed radiocarpal and 1 normal tarsocrural joint received BMNC injection. Contralateral joints were injected with saline. Synovial fluid was collected at 24, 96, and 144 h for cytology, cytokine quantification, and flow cytometry. At 144 h, horses were euthanatized, joints were evaluated, and synovium was harvested for histology and immunohistochemistry. Four days after BMNC treatment, inflamed joints had 24% higher macrophage counts with 10% more IL-10+ cells than saline-treated controls. BMNC-treated joints showed gross and analytical improvements in synovial fluid and synovial membrane, with increasing regulatory macrophages and synovial fluid IL-10 concentrations compared with saline-treated controls. BMNC-treated joints were comparable to healthy joints histologically, which remained abnormal in saline-treated controls. Autologous BMNCs are readily available, regulate synovitis through macrophage-associated effects, and can benefit thousands of patients with OA.-Menarim, B. C., Gillis, K. H., Oliver, A., Mason, C., Ngo, Y., Werre, S. R., Barrett, S. H., Luo, X., Byron, C. R., Dahlgren, L. A. Autologous bone marrow mononuclear cells modulate joint homeostasis in an equine in vivo model of synovitis.
Collapse
Affiliation(s)
- Bruno C Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Kiersten H Gillis
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Andrea Oliver
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Caitlin Mason
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Ying Ngo
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Stephen R Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA; and
| | - Sarah H Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xin Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Christopher R Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Kleine SA, Budsberg SC. Synovial membrane receptors as therapeutic targets: A review of receptor localization, structure, and function. J Orthop Res 2017; 35:1589-1605. [PMID: 28374922 DOI: 10.1002/jor.23568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Joint pathology and degeneration is a significant cause of pain. The synovial membrane plays an important role in maintenance of the joint, contributes to the pathology of many arthropathies and may be adversely affected in joint disease. Improving knowledge of the receptors present within the synovium will aid in a better understanding of joint pathology and the development of new treatments for diseases such as osteoarthritis and rheumatoid arthritis. Knowledge of the location and function of synovial membrane receptors (both in healthy and diseased synovium) may provide important targets in the treatment of various arthropathies. Classic pain receptors such as opioid receptors in the synovium are a mainstay in local and systemic management of chronic pain in many species. In addition to these, many other receptors such as bradykinin, neurokinin, transient receptor potential vanilloid, and inflammatory receptors, such as prostanoid and interleukin receptors have been discovered within the synovial membrane. These receptors are important in pain, inflammation, and in maintenance of normal joint function and may serve as targets for pharmacologic intervention in pathologic states. The goal of this review is to outline synovial membrane receptor localization and local therapeutic modulation of these receptors, in order to stimulate further research into pharmacological management of arthropathies at the local level. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1589-1605, 2017.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| |
Collapse
|
6
|
Scanzello CR. Chemokines and inflammation in osteoarthritis: Insights from patients and animal models. J Orthop Res 2017; 35:735-739. [PMID: 27808445 PMCID: PMC5912941 DOI: 10.1002/jor.23471] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/28/2016] [Indexed: 02/04/2023]
Abstract
Evidence has been building that the pathologic drive for development of osteoarthritis (OA) involves more than simple mechanical "wear and tear." Inflammatory mechanisms play an important role in the tissue response to joint injury, and are involved in development of post-traumatic OA. Inflammation also appears integral to the progression of OA, whether post-traumatic or spontaneous, contributing to the evolution of joint tissue degradation and remodeling as well as joint pain. Both patient-based studies and in vivo models of disease have shed light on a number of inflammatory pathways and mediators that impact various aspects of this disease, both structurally and symptomatically. Recent work in this field has implicated inflammatory chemokines in osteoarthritis pathogenesis. Expression of multiple chemokines and their receptors is modulated during disease in both patients and animal models. Although best known for their effects on leukocyte migration and trafficking within the immune system, chemokines can have a wide variety of effects on both motile and non-motile cell types, impacting proliferation, differentiation, and activation of cellular responses. Their role in OA models has also demonstrated diverse effects on disease that exemplify their wide-ranging effects. Understanding how these important mediators of inflammation impact joint disease, and whether they can be targeted therapeutically, is actively being investigated by many groups in this field. This narrative review focuses on evidence published within the last 5 years highlighting chemokine-mediated pathways with mechanistic involvement in osteoarthritis and joint tissue repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:735-739, 2017.
Collapse
Affiliation(s)
- Carla R. Scanzello
- Corporal Michael J. Cresenz VA Medical Center, Division of Rheumatology and Translational Musculoskeletal Research Center, and University of Pennsylvania Perelman School of Medicine, Division of Rheumatology, 3900 Woodland Ave. Bldg. 21, Rm A213, Philadelphia, Pennsylvania 19104
| |
Collapse
|
7
|
Gruen ME, Messenger KM, Thomson AE, Griffith EH, Paradise H, Vaden S, Lascelles BDX. A comparison of serum and plasma cytokine values using a multiplexed assay in cats. Vet Immunol Immunopathol 2016; 182:69-73. [PMID: 27863553 DOI: 10.1016/j.vetimm.2016.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Degenerative joint disease (DJD) is highly prevalent in cats, and pain contributes to morbidity. In humans, alterations of cytokine concentrations have been associated with joint deterioration and pain. Similar changes have not been investigated in cats. Cytokine concentrations can be measured using multiplex technology with small samples of serum or plasma, however, serum and plasma are not interchangeable for most bioassays. Correlations for cytokine concentrations between serum and plasma have not been evaluated in cats. OBJECTIVE To evaluate the levels of detection and agreement between serum and plasma samples in cats. ANIMALS Paired serum and plasma samples obtained from 38 cats. METHODS Blood was collected into anti-coagulant free and EDTA Vacutainer® tubes, serum or plasma extracted, and samples frozen at -80°C until testing. Duplicate samples were tested using a 19-plex feline cytokine/chemokine magnetic bead panel. RESULTS Agreement between serum and plasma for many analytes was high, however correlation coefficients ranged from -0.01 to 0.97. Results from >50% of samples were below the lower limit of quantification for both serum and plasma for nine analytes, and for an additional three analytes for plasma only. CONCLUSIONS AND CLINICAL IMPORTANCE While serum and plasma agreement was generally good, detection was improved using serum samples.
Collapse
Affiliation(s)
- Margaret E Gruen
- Comparative Pain Research Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.
| | - Kristen M Messenger
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA; Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, Raleigh, NC, USA.
| | - Andrea E Thomson
- Comparative Pain Research Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695, USA.
| | - Hayley Paradise
- Comparative Pain Research Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Shelly Vaden
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, Raleigh, NC, USA.
| | - B D X Lascelles
- Comparative Pain Research Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA; Center for Pain Research and Innovation, University of North Carolina School of Dentistry, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Bay-Jensen AC, Reker D, Kjelgaard-Petersen CF, Mobasheri A, Karsdal MA, Ladel C, Henrotin Y, Thudium CS. Osteoarthritis year in review 2015: soluble biomarkers and the BIPED criteria. Osteoarthritis Cartilage 2016; 24:9-20. [PMID: 26707988 DOI: 10.1016/j.joca.2015.10.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review and summarize biomarker data published from April 2014 to May 2015 to provide insight to the ongoing work in the field of osteoarthritis (OA). Furthermore, to summarize the BIPED criteria and set it in context of the medical needs of 2015. METHODS PubMed was used as searching machine: Time period 2014/04/01-2015/05/01, MeSH term [Biomarker] AND [Osteoarthritis], Language; English, Full text available. Reviews were excluded. Only papers describing protein based biomarkers measured in human body fluids from OA patients were included. RESULTS Biomarkers of joint tissue turnover, cytokines, chemokines and peptide arrays were measured in different cohorts and studies. Amongst those were previously tested biomarkers such as osteocalcin, Carboxy-terminal cross-linked fragment of type II collagen (CTX-II) and cartilage oligomeric matrix protein (COMP). A majority of the biomarker were classified as I, B or B biomarkers according to the BIPED criteria. Work is continuing on testing biomarkers in OA. There is still a huge, unmet medical need to identify, test, validate and qualify novel and well-known biomarkers. A pre-requisite for this is better characterization and classification of biomarkers to their needs, which may not be reached before higher understanding of OA phenotypes has been gained. In addition, we provide some references to some recent guidelines from Food and Drug Administration (FDA) and European Medicines Agency (EMA) on qualification and usage of biomarkers for drug development and personalized medicine, which may provide value to the field.
Collapse
Affiliation(s)
- A C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - D Reker
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | | | - A Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, Saudi Arabia
| | - M A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - C Ladel
- OA Research & Early Clinical Development, Merck KGaA, Darmstadt, Germany
| | - Y Henrotin
- Bone and Cartilage Research Unit, Arthropole Liège, University of Liège, Institute of Pathology, Liège, Belgium
| | - C S Thudium
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
9
|
Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23:1825-34. [PMID: 26521728 PMCID: PMC4630675 DOI: 10.1016/j.joca.2015.08.015] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
Inflammation is a variable feature of osteoarthritis (OA), associated with joint symptoms and progression of disease. Signs of inflammation can be observed in joint fluids and tissues from patients with joint injuries at risk for development of post-traumatic osteoarthritis (PTOA). Furthermore, inflammatory mechanisms are hypothesized to contribute to the risk of OA development and progression after injury. Animal models of PTOA have been instrumental in understanding factors and mechanisms involved in chronic progressive cartilage degradation observed after a predisposing injury. Specific aspects of inflammation observed in humans, including cytokine and chemokine production, synovial reaction, cellular infiltration and inflammatory pathway activation, are also observed in models of PTOA. Many of these models are now being utilized to understand the impact of post-injury inflammatory response on PTOA development and progression, including risk of progressive cartilage degeneration and development of chronic symptoms post-injury. As evidenced from these models, a vigorous inflammatory response occurs very early after joint injury but is then sustained at a lower level at the later phases. This early inflammatory response contributes to the development of PTOA features including cartilage erosion and is potentially modifiable, but specific mediators may also play a role in tissue repair. Although the optimal approach and timing of anti-inflammatory interventions after joint injury are yet to be determined, this body of work should provide hope for the future of disease modification tin PTOA.
Collapse
|