1
|
Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals (Basel) 2024; 14:1130. [PMID: 38612369 PMCID: PMC11010951 DOI: 10.3390/ani14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
Collapse
Affiliation(s)
- Flávio G. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Severiano R. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
| | - Alfredo M. F. Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| | - Joaquim Lima Cerqueira
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Cristina Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| |
Collapse
|
2
|
Grabbe M, Conejeros I, Velásquez ZD, Hasheminasab SS, Kamena F, Wehrend A, Gärtner U, Taubert A, Hermosilla CR. Cryptosporidium parvum-induced neutrophil extracellular traps in neonatal calves is a stage-independent process. Front Vet Sci 2023; 10:1256726. [PMID: 37662980 PMCID: PMC10470472 DOI: 10.3389/fvets.2023.1256726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Infections with the apicomplexan obligate intracellular parasite Cryptosporidium parvum lead to cryptosporidiosis-a worldwide zoonotic infection. C. parvum is one of the most common diarrheal pathogens in young calves, which are the main reservoir of the pathogen. Cryptosporidiosis leads to severe economic losses in the calf industry and being a major contributor to diarrhea morbidity and mortality in children. Polymorphonuclear neutrophils (PMN) are part of the innate immune system. Their effector mechanisms directed against invasive parasites include phagocytosis, production of antimicrobial molecules as well as the formation of so-called neutrophil extracellular traps (NETs). Like other leukocytes of the innate immune system, PMN are thus able to release chromatin fibers enriched with antimicrobial granular molecules extracellularly thereby immobilizing and partially killing invasive bacteria, viruses, fungi and parasites. Methods In vitro interactions of neonatal bovine PMN and C. parvum-oocysts and sporozoites were illustrated microscopically via scanning electron microscopy- and live cell imaging 3D holotomographic microscopy analyses. C. parvum-triggered NETosis was quantified via extracellular DNA measurements as well as verified via detection of NET-typical molecules [histones, neutrophil elastase (NE)] through immunofluorescence microscopy analysis. To verify the role of ATP in neonatal-derived NETosis, inhibition experiments were performed with NF449 (purinergic receptor antagonist with high specificity to P2X1 receptor). Results and discussion Using immunofluorescence- and SEM-based analyses, we demonstrate here for the first time that neonate bovine PMN are capable of forming NETs against C. parvum-sporozoites and oocysts, thus as a stage-independent cell death process. Our data further showed that C. parvum strongly induces suicidal neonatal NETosis in a P2X1-dependent manner, suggesting anti-cryptosporidial effects not only through firm sporozoite ensnarement and hampered sporozoite excystation, but also via direct exposure to NETs-associated toxic components.
Collapse
Affiliation(s)
- Magdalena Grabbe
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Seyed Sajjad Hasheminasab
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals With Veterinary Ambulance, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Rodrigo Hermosilla
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Demattio L, Conejeros I, Grob D, Gärtner U, Taubert A, Hermosilla C, Wehrend A. Induction of NETosis in ovine colostral PMN upon exposure to Neospora caninum tachyzoites. Front Vet Sci 2023; 10:1176144. [PMID: 37404777 PMCID: PMC10315531 DOI: 10.3389/fvets.2023.1176144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 07/06/2023] Open
Abstract
Colostrum is one of the most important factors influencing the health and development of mammalian neonates. It is well-established that leukocytes, including polymorphonuclear neutrophils (PMN), migrate from the mother to the infant via colostrum uptake. In this study, for the first time, we studied the ability of ovine colostral-derived PMN to extrude neutrophil extracellular traps (NETs) against the abortive apicomplexan parasite Neospora caninum. Although this cell population plays a significant role in the transmission of maternal innate immunity to neonates, little is known about colostral PMN activities in sheep. However, this cell population is a significant source of the transfer of maternal immunity to the neonate. Colostral PMN continues to exert immunological effects even after transitioning into the colostrum. The present study aimed to investigate the extrusion of NETs by ovine colostral PMN exposed to the apicomplexan parasite, N. caninum, which is known to cause devastating reproductive disorders in cattle, small ruminants, wildlife animals, and dogs. The present study is the first to demonstrate that ovine colostral PMN can produce NETs after stimulation with vital N. caninum tachyzoites. Ovine colostrum-derived NETs were detected by chromatin staining and antibody-based immunofluorescence staining of NET-specific structures, including neutrophil elastase (NE) and global histones (H1, H2A/H2B, H3, H4), as well as scanning electron microscopy (SEM) analysis.
Collapse
Affiliation(s)
- Lukas Demattio
- Clinic for Obstetrics, Gynaecology and Andrology of Small and Large Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ivan Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Daniela Grob
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology of Small and Large Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Lotito D, Pacifico E, Matuozzo S, Musco N, Iommelli P, Zicarelli F, Tudisco R, Infascelli F, Lombardi P. Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review. Vet Sci 2023; 10:vetsci10050358. [PMID: 37235441 DOI: 10.3390/vetsci10050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this review, the composition, characteristics, and management of dairy buffalo calves were examined and compared with bovines. The neonatal period is critical for buffalo calves and is characterized by a high mortality rate (more than 40%). The early intake of high-quality colostrum (IgG > 50 mg/mL) is the one way to improve the immune system of calves (serum IgG > 10 mg/mL after 12 h), thus increasing their chances of survival. Mainly in intensive farms, the availability of high-quality colostrum is necessary; thus, good quality colostrum is often stored to provide newborn calves which cannot be fed by their mothers. Also, the manipulation of the immunological status of animals through vaccination has been depicted since the quality of colostrum tended to be influenced by vaccination against pathogens. Buffalo breeding is constantly expanding in Italy, mainly thanks to the Mozzarella cheese production that represents the excellence of the "Made in Italy" and is exported worldwide. Indeed, high calf mortality rates directly affect the profitability of the business. For these reasons, the aim of this review was to examine specific research on buffalo colostrum that, compared with other species, are scarce. Improving the knowledge of buffalo colostrum, in terms of characteristics and management, is critical to guarantee buffalo newborns' health in order to reduce their mortality rate. Importantly, considering the knowledge on cattle valid also for buffalo is a widespread, and often erroneous, habit in several fields, including colostrum feeding. Therefore, the two species were compared in this review.
Collapse
Affiliation(s)
- Daria Lotito
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Eleonora Pacifico
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Sara Matuozzo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Fabio Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Napoli, Italy
| |
Collapse
|
5
|
Demattio L, Conejeros I, Grob D, Gärtner U, Taubert A, Hermosilla C, Wehrend A. Neospora caninum-induced NETosis in canine colostral polymorphonuclear neutrophils. J Reprod Immunol 2022; 154:103749. [PMID: 36152379 DOI: 10.1016/j.jri.2022.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Neospora caninum represents an obligate intracellular apicomplexan parasite of the family Sarcocystidae causing severe reproductive disorders in cattle, small ruminants, wild animals and canids worldwide. Neutrophil extracellular traps (NETs) were recently described as effective host defense mechanism of polymorphonuclear neutrophils (PMN) derived from cattle, dogs, goats and dolphins against N. caninum tachyzoites. Nonetheless, nothing is known so far on canine colostral PMN immune reactions against N. caninum although breeding bitches represent a susceptible dog cohort and infected bitches may spread tachyzoites through transplacental transmission to their offspring. Thus, isolated colostrum PMN from bitches were assessed for PMN phagocytic activities as well as NETs release against viable N. caninum tachyzoites. In vitro interactions of canine colostrum-derived PMN with tachyzoites were analyzed at different ratios and time spans. Extracellular chromatin staining was applied in order to unveil classical molecules of NETs, such as neutrophil elastase (NE), global histones (H1, H2A/H2B, H3, H4) and myeloperoxidase (MPO), via antibody-based immunofluorescence microscopy analysis. N. caninum tachyzoites induced canine NETs in colostral PMN and scanning electron microscopy (SEM) analysis revealed NETs formation by colostral PMN thereby ensnaring tachyzoites after exposure. In summary, NETs released from canine colostral PMN might represent an early and effective maternal defense mechanism of the definitive host helping neonates to reduce initial intracellular replication of not only parasites but of other invasive pathogens after colostrum consumption.
Collapse
Affiliation(s)
- Lukas Demattio
- Clinic for Obstetrics, Gynaecology and Andrology, Justus Liebig University Giessen, Giessen, Germany.
| | - Ivan Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| | - Daniela Grob
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Evolution of Animal South American RVA Told by the NSP4 Gene E12 Genotype. Viruses 2022; 14:v14112506. [PMID: 36423115 PMCID: PMC9698066 DOI: 10.3390/v14112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Rotavirus A (RVA) possesses a genome of 11 double-stranded (ds) RNA segments, and each segment encodes one protein, with the exception of segment 11. NSP4 is a non-structural multifunctional protein encoded by segment 10 that defines the E-genotype. From the 31 E-genotypes described, genotype E12 has been described in Argentina, Uruguay, Paraguay, and Brazil in RVA strains infecting different animal species and humans. In this work, we studied the evolutionary relationships of RVA strains carrying the E12 genotype in South America using phylogenetic and phylodynamic approaches. We found that the E12 genotype has a South American origin, with a guanaco (Lama guanicoe) strain as natural host. Interestingly, all the other reported RVA strains carrying the E12 genotype in equine, bovine, caprine, and human strains are related to RVA strains of camelid origin. The evolutionary path and genetic footprint of the E12 genotype were reconstructed starting with the introduction of non-native livestock species into the American continent with the Spanish conquest in the 16th century. The imported animal species were in close contact with South American camelids, and the offspring were exposed to the native RVA strains brought from Europe and the new RVA circulating in guanacos, resulting in the emergence of new RVA strains in the current lineages' strongly species-specific adaption. In conclusion, we proposed the NSP4 E12 genotype as a genetic geographic marker in the RVA strains circulating in different animal species in South America.
Collapse
|
7
|
Robbers L, van de Mheen R, Benedictus L, Jorritsma R, Nielen M, Bijkerk H, Van der Grein S, Ravesloot L, Koets A. Evidence for transfer of maternal antigen specific cellular immunity against Mycobacterium avium ssp. paratuberculosis via colostrum in a goat twin model. Vet Immunol Immunopathol 2022; 246:110402. [DOI: 10.1016/j.vetimm.2022.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
8
|
Ganz S, Failing K, Hassan AA, Bülte M, Wehrend A. Influence of first colostrum pasteurization on serum immunoglobulin G, iron, and activity of gamma-glutamyltransferase in newborn dairy calves. Vet World 2021; 14:2267-2272. [PMID: 34566348 PMCID: PMC8448656 DOI: 10.14202/vetworld.2021.2267-2272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Colostrum pasteurization is an established procedure in dairy farms in developed countries. This practice can improve the health status of the offspring by reducing several pathogens. This study aimed to focus on the pasteurization of bovine first colostrum and its influence on certain important bioactive components. Materials and Methods: This study was conducted in Holstein-Friesian bull calves, which were randomly divided into two groups and fed with 6 L of untreated (UT, n=10) or 6 L of heat-treated (HT, 63.5°C for 30 min, n=10) colostrum from their own dam within the first 12 h after birth. Blood samples were taken before, 24 h, and 48 h after first colostrum intake to determine the concentrations of immunoglobulin G (IgG) and iron and the activity of gamma-glutamyltransferase (GGT) in the serum. Results: The level of IgG was not affected by pasteurization (p=0.19). However, a slower increase in GGT activity (p<0.05) and a lower serum iron concentration (p=0.04) were observed in the HT group. Conclusion: It can be concluded that pasteurization influences the absorption of colostrum components and therefore, the passive transfer of immunity, although the level of IgG was not affected by pasteurization in this study.
Collapse
Affiliation(s)
- Sebastian Ganz
- Clinic of Obstetrics, Gynecology and Andrology of Large and Small Animals with Ambulatory Service, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392 Giessen, Hessen, Germany
| | - Klaus Failing
- Biomathematics and Data Processing, Justus-Liebig-University Giessen, 35392 Giessen, Hessen, Germany
| | - Abdulwahed Ahmed Hassan
- Institutes of Veterinary Food Science, Justus-Liebig-University Giessen, 35392 Giessen, Hessen, Germany
| | - Michael Bülte
- Institutes of Veterinary Food Science, Justus-Liebig-University Giessen, 35392 Giessen, Hessen, Germany
| | - Axel Wehrend
- Clinic of Obstetrics, Gynecology and Andrology of Large and Small Animals with Ambulatory Service, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392 Giessen, Hessen, Germany
| |
Collapse
|
9
|
Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr 2021; 12:533-545. [PMID: 33070186 PMCID: PMC8009748 DOI: 10.1093/advances/nmaa120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Patrycja Szymańska
- Department of Hemostasis and Hemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Zentrich E, Iwersen M, Wiedrich MC, Drillich M, Klein-Jöbstl D. Short communication: Effect of barn climate and management-related factors on bovine colostrum quality. J Dairy Sci 2019; 102:7453-7458. [PMID: 31178193 DOI: 10.3168/jds.2018-15645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/22/2019] [Indexed: 11/19/2022]
Abstract
Several factors have been reported to influence colostrum quality (immunoglobulin concentration). To date, knowledge of the influence of climatic factors in association with other potential influencing factors on colostrum quality is scarce. Associated influential factors are parity, body condition score, length of dry period, ration fed ante partum (AP), β-hydroxybutyrate postpartum (PP), milk yield, milk fat and protein, as well as somatic cell counts from previous and current lactation. The objective of the present study was to examine the effect of barn climate and the aforementioned factors on colostrum quality. Data were collected from 1,381 multiparous Holstein Friesian cows kept on one dairy farm over a period of one year (August 2014 to August 2015). Colostrum was harvested on farm within 1 h PP. The quantity and quality of first colostrum (estimated by Brix refractometry) were recorded for each cow. Additional data recorded were parity, body condition score at drying off, length of dry period, ration fed AP, milk yield data from previous and current lactation, milk somatic cell counts, and β-hydroxybutyrate PP. During the study period, temperature and humidity were recorded in the barn every hour, and temperature-humidity-index (THI) was calculated. Linear regression was performed with colostrum quality as the dependent variable. In the final model, colostrum quantity (L), length of dry period, parity, and climatic factors (specifically, median humidity in the 3rd week AP and hours with THI ≥72 in the last 14 and 21 d AP, respectively) were significant. Colostrum quality improved with parity and length of dry period and decreased with colostrum quantity, humidity, and hours with a THI ≥72. A classification and regression tree analysis revealed that colostrum quantity was the most important factor in this model [normalized importance (NI) 100%]. Parity (NI 42.7%), length of dry period (NI 37.1%), and climatic factors (NI 0.4 to 1.9%) followed with decreasing importance. These results indicate that the most important factors for colostrum quality (i.e., colostrum quantity and parity) may not be influenced by management. The 2 factors that can be influenced by management [i.e., length of dry period and THI (e.g., by cooling)], were quantitatively of minor importance compared with the other 2 factors. Further studies are necessary to determine whether changing these factors can improve colostrum quality significantly.
Collapse
Affiliation(s)
- E Zentrich
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - M Iwersen
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - M-C Wiedrich
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - M Drillich
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - D Klein-Jöbstl
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria.
| |
Collapse
|
11
|
Hine BC, Hunt PW, Colditz IG. Production and active transport of immunoglobulins within the ruminant mammary gland. Vet Immunol Immunopathol 2019; 211:75-84. [DOI: 10.1016/j.vetimm.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
|