1
|
Karabanov AN, Chillemi G, Madsen KH, Siebner HR. Dynamic involvement of premotor and supplementary motor areas in bimanual pinch force control. Neuroimage 2023; 276:120203. [PMID: 37271303 DOI: 10.1016/j.neuroimage.2023.120203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Many activities of daily living require quick shifts between symmetric and asymmetric bimanual actions. Bimanual motor control has been mostly studied during continuous repetitive tasks, while little research has been carried out in experimental settings requiring dynamic changes in motor output generated by both hands. Here, we performed functional magnetic resonance imaging (MRI) while healthy volunteers performed a visually guided, bimanual pinch force task. This enabled us to map functional activity and connectivity of premotor and motor areas during bimanual pinch force control in different task contexts, requiring mirror-symmetric or inverse-asymmetric changes in discrete pinch force exerted with the right and left hand. The bilateral dorsal premotor cortex showed increased activity and effective coupling to the ipsilateral supplementary motor area (SMA) in the inverse-asymmetric context compared to the mirror-symmetric context of bimanual pinch force control while the SMA showed increased negative coupling to visual areas. Task-related activity of a cluster in the left caudal SMA also scaled positively with the degree of synchronous initiation of bilateral pinch force adjustments, irrespectively of the task context. The results suggest that the dorsal premotor cortex mediates increasing complexity of bimanual coordination by increasing coupling to the SMA while SMA provides feedback about motor actions to the sensory system.
Collapse
Affiliation(s)
- Anke Ninija Karabanov
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Gaetana Chillemi
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Kristoffer Hougaard Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen Denmark
| |
Collapse
|
2
|
Lalwala M, Devane KS, Koya B, Vu LQ, Dolick K, Yates KM, Newby NJ, Somers JT, Gayzik FS, Stitzel JD, Weaver AA. Development and Validation of an Active Muscle Simplified Finite Element Human Body Model in a Standing Posture. Ann Biomed Eng 2023; 51:632-641. [PMID: 36125604 DOI: 10.1007/s10439-022-03077-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Active muscles play an important role in postural stabilization, and muscle-induced joint stiffening can alter the kinematic response of the human body, particularly that of the lower extremities, under dynamic loading conditions. There are few full-body human body finite element models with active muscles in a standing posture. Thus, the objective of this study was to develop and validate the M50-PS+Active model, an average-male simplified human body model in a standing posture with active musculature. The M50-PS+Active model was developed by incorporating 116 skeletal muscles, as one-dimensional beam elements with a Hill-type material model and closed-loop Proportional Integral Derivative (PID) controller muscle activation strategy, into the Global Human Body Models Consortium (GHBMC) simplified pedestrian model M50-PS. The M50-PS+Active model was first validated in a gravity standing test, showing the effectiveness of the active muscles in maintaining a standing posture under gravitational loading. The knee kinematics of the model were compared against volunteer kinematics in unsuited and suited step-down tests from NASA's active response gravity offload system (ARGOS) laboratory. The M50-PS+Active model showed good biofidelity with volunteer kinematics with an overall CORA score of 0.80, as compared to 0.64 (fair) in the passive M50-PS model. The M50-PS+Active model will serve as a useful tool to study the biomechanics of the human body in vehicle-pedestrian accidents, public transportation braking, and space missions piloted in a standing posture.
Collapse
Affiliation(s)
- Mitesh Lalwala
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Karan S Devane
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Linh Q Vu
- Aegis Aerospace Inc., 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Kevin Dolick
- GeoControl Systems, 3003 S Loop W #100, Houston, TX, 77054, USA
| | | | | | - Jeffrey T Somers
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA. .,Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
3
|
Lalwala M, Devane KS, Koya B, Hsu FC, Gayzik FS, Weaver AA. Sensitivity Analysis for Multidirectional Spaceflight Loading and Muscle Deconditioning on Astronaut Response. Ann Biomed Eng 2023; 51:430-442. [PMID: 36018394 DOI: 10.1007/s10439-022-03054-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
A sensitivity analysis for loading conditions and muscle deconditioning on astronaut response for spaceflight transient accelerations was carried out using a mid-size male human body model with active musculature. The model was validated in spaceflight-relevant 2.5-15 g loading magnitudes in seven volunteer tests, showing good biofidelity (CORA: 0.69). Sensitivity analysis was carried out in simulations varying pulse magnitude (5, 10, and 15 g), rise time (32.5 and 120 ms), and direction (10 directions: frontal, rear, vertical, lateral, and their combination) along with muscle size change (± 15% change) and responsiveness (pre-braced, relaxed, vs. delayed response) changes across 600 simulations. Injury metrics were most sensitive to the loading direction (50%, partial-R2) and least sensitive to muscle size changes (0.2%). The pulse magnitude also had significant effect on the injury metrics (16%), whereas muscle responsiveness (3%) and pulse rise time (2%) had only slight effects. Frontal and upward loading directions were the worst for neck, spine, and lower extremity injury metrics, whereas rear and downward directions were the worst for head injury metrics. Higher magnitude pulses and pre-bracing also increased the injury risk.
Collapse
Affiliation(s)
- Mitesh Lalwala
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Karan S Devane
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 525 Vine Street, Winston-Salem, NC, 27101, USA
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA
| | - Ashley A Weaver
- Department of Biomedical Engineering, Wake Forest University School of Medicine, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
- Virginia Tech-Wake Forest Center for Injury Biomechanics, 575 N. Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
4
|
The effect of fatigue on electromechanical response times in basketball players with and without persistent low back pain. Sci Rep 2022; 12:17849. [PMID: 36284126 PMCID: PMC9596473 DOI: 10.1038/s41598-022-21940-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
Typically, athletes alter movement mechanics in the presence of back pain, but the effect of these changes on lower extremity injury risk is not well understood. This study aimed to compare the effect of fatigue on electromechanical response times during a choice reaction task in basketball players with and without persistent low back pain. Twenty-four male basketball players participated. Total reaction time (TRT), premotor time (PMT), and electromechanical delay (EMD data were recorded before and after fatigue. The chronic low back pain (CLBP) group had significantly longer EMD in Med gastrocnemius (p = 0.001) and Tibialis anterior (p = 0.001), and shorter EMD in Vastus Lateralis (p = 0.001), Vastus Medialis Oblique (p = 0.003), and Semitendinosus (p = 0.025) muscles after fatigue. PMT in the CLBP group had longer than the Non-CLBP in Vastus Lateralis (p = 0.010), Vastus Medialis Oblique (p = 0.017), Semitendinosus (p = 0.002). Also, TRT was longer in knee flexion (p = 0.001) and ankle plantarflexion (p = 0.001) muscle groups. The different effects of fatigue on electromechanical response times of the knee and ankle in people with CLBP may represent the effect of an axial injury on lower extremity injury risk factors in situations of higher cognitive load, similar to competitive play.
Collapse
|
5
|
Downey RJ, Merad M, Gonzalez EJ, Dixon WE. The Time-Varying Nature of Electromechanical Delay and Muscle Control Effectiveness in Response to Stimulation-Induced Fatigue. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1397-1408. [PMID: 27845664 DOI: 10.1109/tnsre.2016.2626471] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuromuscular electrical stimulation (NMES) and Functional Electrical Stimulation (FES) are commonly prescribed rehabilitative therapies. Closed-loop NMES holds the promise to yield more accurate limb control, which could enable new rehabilitative procedures. However, NMES/FES can rapidly fatigue muscle, which limits potential treatments and presents several control challenges. Specifically, the stimulation intensity-force relation changes as the muscle fatigues. Additionally, the delayed response between the application of stimulation and muscle force production, termed electromechanical delay (EMD), may increase with fatigue. This paper quantifies these effects. Specifically, open-loop fatiguing protocols were applied to the quadriceps femoris muscle group of able-bodied individuals under isometric conditions, and the resulting torque was recorded. Short pulse trains were used to measure EMD with a thresholding method while long duration pulse trains were used to induce fatigue, measure EMD with a cross-correlation method, and construct recruitment curves. EMD was found to increase significantly with fatigue, and the control effectiveness (i.e., the linear slope of the recruitment curve) decreased with fatigue. Outcomes of these experiments indicate an opportunity for improved closed-loop NMES/FES control development by considering EMD to be time-varying and by considering the muscle recruitment curve to be a nonlinear, time-varying function of the stimulation input.
Collapse
|
6
|
Longo S, Devoto M, Monti E, Venturelli M, Limonta E, Rampichini S, Bisconti AV, Esposito F, Cè E. Acute effects of static stretching on skeletal muscle relaxation at different ankle joint angles. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0309-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Reliability of the Electromechanical Delay Components Assessment during the Relaxation Phase. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/517838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study aimed to assess by an electromyographic (EMG), mechanomyographic (MMG), and force-combined approach the electrochemical and mechanical components of the overall electromechanical delay during relaxation (R-EMD). Reliability of the measurements was also assessed. To this purpose, supramaximal tetanic stimulations (50 Hz) were delivered to the gastrocnemius medialis muscle of 17 participants. During stimulations, the EMG, MMG, and force signals were detected, and the time lag between EMG cessation and the beginning of force decay (Δt EMG-F, as temporal indicators of the electrochemical events) and from the initial force decrease to the largest negative peak of MMG signal during relaxation (Δt F-MMG, as temporal indicators of the mechanical events) was calculated, together with overall R-EMD duration (from EMG cessation to the largest MMG negative peak during relaxation). Peak force (pF), half relaxation time (HRT), and MMG peak-to-peak during the relaxation phase (R-MMG p-p) were also calculated. Test-retest reliability was assessed by Intraclass Correlation Coefficient (ICC). With a total R-EMD duration of 96.9 ± 1.9 ms, Δt EMG-F contributed for about 24% (23.4 ± 2.7 ms) while Δt F-MMG for about 76% (73.5 ± 3.2 ms). Reliability of the measurements was high for all variables. Our findings show that the main contributor to R-EMD is represented by the mechanical components (series elastic components and muscle fibres behaviour), with a high reliability level for this type of approach.
Collapse
|