1
|
Chen S, Yang H, Zhang S, Zhu F, Liu S, Gao H, Diao Q, Ding W, Chen Y, Luo P, Liu Y. Simultaneous determination of 28 illegal drugs in sewage by high throughput online SPE-ISTD-UHPLC-MS/MS. Heliyon 2024; 10:e27897. [PMID: 38524584 PMCID: PMC10957417 DOI: 10.1016/j.heliyon.2024.e27897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
This study developed an online solid-phase extraction ultra-high performance liquid chromatography-tandem mass spectrometry (Online-SPE-UHPLC-MS/MS) method for the analysis of 28 illegal drugs in sewage. To achieve this, 28 isotope internal standards (ISTDs) were added to 3 mL sewage samples, the pH was adjusted to 7-8 using hydrochloric acid or 20% ammonia water, followed by centrifugation, filtration, and analysis using UHPLC-MS/MS. The results indicated an excellent linearity of 1-300 ng L-1, and cotinine in the concentration range of 20-6000 ng L-1, linear correlation coefficient R2 > 0.995, with the limit of detection (LOD) of 0.01-6 ng L-1, and a limit of quantification (LOQ) of 0.1-20 ng L-1. The addition of three concentrates of low (2 ng L-1/40 ng L-1), medium (20 ng L-1/400 ng L-1), and high concentration (200 ng L-1/4000 ng L-1) demonstrated the matrix effect of the target compound between ± 22.0%. The extraction recovery was 70.0-119.4%, and a percent accuracy of 75.7-118.1%. Similarly, the intra- and inter-day precisions were 1.8-20.0% and 1.5-18.9%, respectively. The results cemented the sensitivity, accuracy, reliability, strong specificity, and reproducibility, which can be used to screen 28 illegal drugs in sewage for trace analysis.
Collapse
Affiliation(s)
- Shunqin Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Han Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Shan Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Faze Zhu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Shan Liu
- Guiyang City Public Security Bureau Drug Testing Center, Guiyang, Guizhou Province, 550008, China
| | - Huan Gao
- Guiyang City Public Security Bureau Drug Testing Center, Guiyang, Guizhou Province, 550008, China
| | - Qing Diao
- Guizhou Wanfu Xianyi Testing Technology Co., Ltd, Guiyang, Guizhou Province, 550009, China
| | - Wenbo Ding
- Guizhou Wanfu Xianyi Testing Technology Co., Ltd, Guiyang, Guizhou Province, 550009, China
| | - Yuemeng Chen
- Guiyang City Public Security Bureau Drug Testing Center, Guiyang, Guizhou Province, 550008, China
| | - Peng Luo
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550001, China
| |
Collapse
|
2
|
Kumar A, Kumar V, Ojha PK, Roy K. Chronic aquatic toxicity assessment of diverse chemicals on Daphnia magna using QSAR and chemical read-across. Regul Toxicol Pharmacol 2024; 148:105572. [PMID: 38325631 DOI: 10.1016/j.yrtph.2024.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
We have modeled here chronic Daphnia toxicity taking pNOEC (negative logarithm of no observed effect concentration in mM) and pEC50 (negative logarithm of half-maximal effective concentration in mM) as endpoints using QSAR and chemical read-across approaches. The QSAR models were developed by strictly obeying the OECD guidelines and were found to be reliable, predictive, accurate, and robust. From the selected features in the developed models, we have found that an increase in lipophilicity and saturation, the presence of electrophilic or electronegative or heavy atoms, the presence of sulphur, amine, and their related functionality, an increase in mean atomic polarizability, and higher number of (thio-) carbamates (aromatic) groups are responsible for chronic toxicity. Therefore, this information might be useful for the development of environmentally friendly and safer chemicals and data-gap filling as well as reducing the use of identified toxic chemicals which have chronic toxic effects on aquatic ecosystems. Approved classes of drugs from DrugBank databases and diverse groups of chemicals from the Chemical and Product Categories (CPDat) database were also assessed through the developed models.
Collapse
Affiliation(s)
- Ankur Kumar
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Vinay Kumar
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Abimbola Salubi C, Abbo HS, Jahed N, Titinchi S. Medicinal chemistry perspectives on the development of piperazine-containing HIV-1 inhibitors. Bioorg Med Chem 2024; 99:117605. [PMID: 38246116 DOI: 10.1016/j.bmc.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The Human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS), one of the most perilous diseases known to humankind. A 2023 estimate put the number of people living with HIV around 40 million worldwide, with the majority benefiting from various antiretroviral therapies. Consequently, the urgent need for the development of effective drugs to combat this virus cannot be overstated. In the realm of medicinal and organic chemistry, the synthesis and identification of novel compounds capable of inhibiting HIV enzymes at different stages of their life cycle are of paramount importance. Notably, the spotlight is on the progress made in enhancing the potency of HIV inhibitors through the use of piperazine-based compounds. Multiple studies have revealed that the incorporation of a piperazine moiety results in a noteworthy enhancement of anti-HIV activity. The piperazine ring assumes a pivotal role in shaping the pharmacophore responsible for inhibiting HIV-1 at critical stage, including attachment, reverse transcription, integration, and protease activity. This review also sheds light on the various opportunities that can be exploited to develop effective antiretroviral targets and eliminate latent HIV reservoirs. The advancement of highly potent analogues in HIV inhibitor research has been greatly facilitated by contemporary medicinal strategies, including molecular/fragment hybridization, structure-based drug design, and bioisosterism. These techniques have opened up new avenues for the development of compounds with enhanced efficacy in combating the virus.
Collapse
Affiliation(s)
- Christiana Abimbola Salubi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Hanna S Abbo
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nazeeen Jahed
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Salam Titinchi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
4
|
Quan Y, Zhou R, Yang B, Wang L, Wang Y, Ji Y, Li Y, Cen S. Identification of an N-phenylsulfonyl-2-(piperazin-1-yl)methyl-benzonitrile derivative as Zika virus entry inhibitor. Bioorg Chem 2022; 130:106265. [DOI: 10.1016/j.bioorg.2022.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
|
5
|
Simão AY, Antunes M, Cabral E, Oliveira P, Rosendo LM, Brinca AT, Alves E, Marques H, Rosado T, Passarinha LA, Andraus M, Barroso M, Gallardo E. An Update on the Implications of New Psychoactive Substances in Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4869. [PMID: 35457736 PMCID: PMC9028227 DOI: 10.3390/ijerph19084869] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
The emergence of new psychoactive substances has earned a great deal of attention, and several reports of acute poisoning and deaths have been issued involving, for instance, synthetic opiates. In recent years, there have been profound alterations in the legislation concerning consumption, marketing, and synthesis of these compounds; rapid alert systems have also been subject to changes, and new substances and new markets, mainly through the internet, have appeared. Their effects and how they originate in consumers are still mostly unknown, primarily in what concerns chronic toxicity. This review intends to provide a detailed description of these substances from the point of view of consumption, toxicokinetics, and health consequences, including case reports on intoxications in order to help researchers and public health agents working daily in this area.
Collapse
Affiliation(s)
- Ana Y. Simão
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Emanuel Cabral
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Patrik Oliveira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Estefânia Alves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
| | - Hernâni Marques
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| | - Luís A. Passarinha
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, NOVA School of Science and Technology, Universidade NOVA, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
| | | | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, 1150-219 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilha, Portugal; (A.Y.S.); (M.A.); (E.C.); (P.O.); (L.M.R.); (A.T.B.); (E.A.); (H.M.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, 6200-284 Covilha, Portugal
| |
Collapse
|
6
|
Welz A, Koba M, Kośliński P, Siódmiak J. Comparison of LC-MS and LC-DAD Methods of Detecting Abused Piperazine Designer Drugs. J Clin Med 2022; 11:jcm11071758. [PMID: 35407366 PMCID: PMC8999770 DOI: 10.3390/jcm11071758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/10/2022] Open
Abstract
Recreational use of piperazine designer drugs is a serious threat to human health. These compounds act on the body in a similar fashion to illegal drugs. They induce psychostimulatory effects as well as visual and auditory hallucinations to varying degrees. In many cases of poisoning and deaths, the presence of two or even several psychoactive substances have been demonstrated. Piperazine derivatives are often found in such mixtures and pose a great analytical problem during their identification. Additionally, some piperazine derivatives can be detected in biological material as a result of metabolic changes to related drugs. Therefore, it is necessary to correctly identify these compounds and ensure repeatability of determinations. This article presents a comparison of the methods used to detect abused piperazine designer drugs using liquid chromatography in combination with a diode-array detector (LC-DAD) or mass spectrometer (LC-MS). Each of methods can be used independently for determinations, obtaining reliable results in a short time of analysis. These methods can also complement each other, providing qualitative and quantitative confirmation of results. The proposed methods provide analytical confirmation of poisoning and may be helpful in toxicological diagnostics.
Collapse
Affiliation(s)
- Anna Welz
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum Nicolaus Copernicus University, 85-089 Bydgoszcz, Poland; (M.K.); (P.K.)
- Correspondence:
| | - Marcin Koba
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum Nicolaus Copernicus University, 85-089 Bydgoszcz, Poland; (M.K.); (P.K.)
| | - Piotr Kośliński
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum Nicolaus Copernicus University, 85-089 Bydgoszcz, Poland; (M.K.); (P.K.)
| | - Joanna Siódmiak
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Collegium Medicum Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Rapid Targeted Method of Detecting Abused Piperazine Designer Drugs. J Clin Med 2021; 10:jcm10245813. [PMID: 34945109 PMCID: PMC8704057 DOI: 10.3390/jcm10245813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/24/2023] Open
Abstract
Piperazine derivatives belong to the popular psychostimulating compounds from the group of designer drugs. They are an alternative to illegal drugs such as ecstasy and amphetamines. They are being searched by consumers for recreational use due to their stimulating and hallucinogenic effects. Many NPS-related poisonings and deaths have been reported where piperazines have been found. However, a major problem is the potential lack of laboratory confirmation of the involvement of piperazine derivatives in the occurrence of poisoning. Although many methods have been published, piperazine derivatives are not always included in a routine analytical approach or targeted toxicological analysis. There is an increasing need to provide qualitative evidence for the presence of piperazine derivatives and to ensure reproducible quantification. This article describes a new rapid method of detecting piperazine derivatives in biological material, using LC-MS. All target analytes were separated in a 15 min run time and identified based on the precursor ion, at least two product ions, and the retention time. Stable isotopically labeled (SIL) internal standards: BZP-D7, mCPP-D8 and TFMPP-D4 were used for analysis, obtaining the highest level of confidence in the results. The proposed detection method provides the analytical confirmation of poisoning with piperazine designer drugs.
Collapse
|
8
|
Silva WP, Rocha RG, Arantes LC, Lima CD, Melo LMA, Munoz RAA, Dos Santos WTP, Richter EM. Development of a simple and rapid screening method for the detection of 1-(3-chlorophenyl)piperazine in forensic samples. Talanta 2021; 233:122597. [PMID: 34215085 DOI: 10.1016/j.talanta.2021.122597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
1-(3-chlorophenyl) piperazine (mCPP) is a synthetic drug with hallucinogenic effects that has often been found in seized samples. In this context, easy to use point-of-care tests can be of great value in preliminary forensic analysis. Herein, we proposed a simple, fast, and portable electrochemical method for the detection of mCPP in seized samples. The method is based on the use of disposable screen-printed carbon electrodes (SPCE) and rapid screening procedures by square-wave voltammetry using minimal sample sizes (100 μL). mCPP showed an irreversible electrochemical oxidation process at +0.65 V on SPCE (vs Ag) using 0.04 mol L-1 Britton Robinson (BR) buffer solution (pH 7) as the supporting electrolyte. The proposed method exhibited a linear correlation (r = 0.998) between peak current and mCPP concentration in the range of 1-30 μmol L-1 (LOD = 0.1 μmol L-1). Interference studies were performed for adulterants and other classes of drugs of abuse, which can also be found in seized samples containing mCPP, such as caffeine, amphetamine, methamphetamine, 1-benzylpiperazine, 3,4-methylenedioxymethamphetamine, methylone, mephedrone, ethylone and 3, 4-methylenedioxypyrovalerone. The developed method presents great potential as a rapid and simple screening tool to detect mCPP in forensic samples.
Collapse
Affiliation(s)
- Weberson P Silva
- Institute of Chemistry, Federal University of Uberlandia, Uberlândia, Minas Gerais, 38400-092, Brazil
| | - Raquel G Rocha
- Institute of Chemistry, Federal University of Uberlandia, Uberlândia, Minas Gerais, 38400-092, Brazil
| | - Luciano C Arantes
- Seção de Perícias e Análises Laboratoriais, Instituto de Criminalística, Polícia Civil do Distrito Federal, Brasília, DF, 70610-970, Brazil
| | - Camila D Lima
- Departament of Chemistry, Federal University of Vales Do Jequitinhonha e Mucuri, Campus JK, Diamantina, MG, 39100-000, Brazil
| | - Larissa M A Melo
- Departament of Chemistry, Federal University of Vales Do Jequitinhonha e Mucuri, Campus JK, Diamantina, MG, 39100-000, Brazil
| | - Rodrigo A A Munoz
- Institute of Chemistry, Federal University of Uberlandia, Uberlândia, Minas Gerais, 38400-092, Brazil
| | - Wallans T P Dos Santos
- Departament of Pharmacy, Federal University of Vales Do Jequitinhonha e Mucuri, Campus JK, Diamantina, MG, 39100-000, Brazil.
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlandia, Uberlândia, Minas Gerais, 38400-092, Brazil.
| |
Collapse
|
9
|
Rocha RG, Silva IC, Arantes LC, Stefano JS, Lima CD, Melo LM, Munoz RA, dos Santos WT, Richter EM. Simple and rapid electrochemical detection of 1-benzylpiperazine on carbon screen-printed electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Martins D, Garrido E, Borges F, Garrido J. Voltammetric profiling of new psychoactive substances: Piperazine derivatives. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Li YF, Wei X, Bai S, Lv ML. Crystal structure of 1-(2-(1 H-indol-3-yl)ethyl)-4-benzyl-3-hydroxy-3,6-diphenylpiperazine-2,5-dione, C 33H 29N 3O 3. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C33H29N3O3, triclinic, P1̅ (no. 2), a = 7.1229(8) Å, b = 12.8851(13) Å, c = 15.0472(15) Å, α = 92.354(2)°, β = 103.338(2)°, γ = 91.502(2)°, V = 1341.7(2) Å3, Z = 2, R
gt(F) = 0.0364, wR
ref(F
2) = 0.1074, T = 296(2) K.
Collapse
Affiliation(s)
- Ying Fen Li
- School of Chemical Engineering , Guizhou Institute of Technology , Guizhou 550003, P.R. China
| | - Xian Wei
- School of Chemical Engineering , Guizhou Institute of Technology , Guizhou 550003, P.R. China
| | - Song Bai
- School of Chemical Engineering , Guizhou Institute of Technology , Guizhou 550003, P.R. China
| | - Meng Lan Lv
- School of Chemical Engineering , Guizhou Institute of Technology , Guizhou 550003, P.R. China
| |
Collapse
|