1
|
Doshi P, Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. PLANTS (BASEL, SWITZERLAND) 2023; 12:627. [PMID: 36771708 PMCID: PMC9921801 DOI: 10.3390/plants12030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fusarium spp. is a well-studied pathogen with the potential to infect cereals and reduce the yield to maximum if left unchecked. For decades, different control treatments have been tested against different Fusarium spp. and for reducing the mycotoxins they produce and are well documented. Some treatments also involved integrated pest management (IPM) strategies against Fusarium spp. control and mycotoxin degradation produced by them. In this review article, we compiled different control strategies against different Fusarium spp. In addition, special focus is given to the non-thermal plasma (NTP) technique used against Fusarium spp. inactivation. In a separate group, we compiled the literature about the use of NTP in the decontamination of mycotoxins produced by Fusarium spp., and highlighted the possible mechanisms of mycotoxin degradation by NTP. In this review, we concluded that although NTP is an effective treatment, it is a nice area and needs further research. The possibility of a prospective novel IPM strategy against Fusarium spp. is also proposed.
Collapse
|
2
|
Ghodsimaab SP, Makarian H, Ghasimi Hagh Z, Gholipoor M. Scanning electron microscopy, biochemical and enzymatic studies to evaluate hydro-priming and cold plasma treatment effects on the germination of Salvia leriifolia Benth. seeds. FRONTIERS IN PLANT SCIENCE 2023; 13:1035296. [PMID: 36743554 PMCID: PMC9895828 DOI: 10.3389/fpls.2022.1035296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Finding a suitable method to increase seed germination rates of medicinal plants is critical to saving them from extinction. The effects of cold plasma (CP) treatments (using surface power densities of 80 and 100 W, with exposure times of 0, 120, 180, and 240 s) and incorporating hydropriming (carried out for 24 and 2 h on normal and uncovered seeds, respectively) to enhance the seed germination of Salvia leriifolia Benth a native endangered Iranian medicinal plant, were evaluated in this study. Scanning electron microscopy (SEM) images identified more destroyed mesh-like structures in hydro-primed and uncovered seeds than in normal and dry seeds. In comparison to the control, and other treatments, employing 100 W of CP for 240 s produced the maximum germination percentage and rate, as well as a seedling vigor of I and II in hydro-primed and uncovered seeds. The levels of α-amylase activity increased when the power and exposure times of CP were increased. The uncovering and hydropriming of S. leriifolia seeds resulted in increased enzyme activity. Malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents were enhanced by increasing the power and exposure time of CP, especially in uncovered and hydro-primed seeds. The activity of antioxidant enzymes, including catalase (CAT) and superoxide dismutase (SOD), was correlated to changes in MDA and H2O2 levels. Finally, direct contact of CP with uncovered seeds in a short exposure time can improve the germination of S. leriifolia seeds via microscopic etching and activation of enzymes.
Collapse
Affiliation(s)
- Seyedeh Parisa Ghodsimaab
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Hassan Makarian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Ziba Ghasimi Hagh
- Department of Horticulture Science and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Manoochehr Gholipoor
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
3
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
4
|
Comparison of Presowing Wheat Treatments by Low-Temperature Plasma, Electric Field, Cold Hardening, and Action of Tebuconazole-Based Disinfectant. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work compares the presowing treatment of winter wheat seeds with a low-temperature plasma, a constant high-voltage electric field, a plant protection disinfectant, and cold hardening on the resistance of seedlings to freezing and their morphophysiological characteristics at the initial stage of germination. Various treatment combinations were considered, including the effect of the disinfectant jointly with low-temperature plasma treatment. The greatest stimulating effect from the point of view of seedlings’ morphophysiological characteristics was achieved when seeds were cold-hardened. The action of low-temperature plasma is noticeable up to the third day of germination. The treatment with the low-temperature plasma of seeds pretreated and not-pretreated with the disinfectant had a similar effect on the morphophysiological characteristics of seedlings. The plasma treatment and the electric field were combined with each other, i.e., the plasma treatment effects were added to the electric field effects. Resistance to low temperatures was increased with the hardening of seeds treated with the electric field and the disinfectant. Resistance to low temperatures was reduced when treated with the electric field and/or low-temperature plasma after being treated with the disinfectant.
Collapse
|
5
|
Holc M, Vesel A, Zaplotnik R, Paul D, Primc G, Mozetič M, Gselman P, Recek N. Surface Modifications of Wheat Cultivar Bologna upon Treatment with Non-Equilibrium Gaseous Plasma. PLANTS 2022; 11:plants11121552. [PMID: 35736703 PMCID: PMC9228685 DOI: 10.3390/plants11121552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
Seeds of wheat cultivar Bologna were treated with a low-pressure, inductively coupled, radio frequency oxygen plasma. E-mode and H-mode plasma at the real powers of 25 and 275 W, respectively, was used at treatment times of 0.1–300 s. Plasma affected seed surface chemistry, determined by XPS, and surface topography, visualized by SEM. The combined effects of functionalization and etching modified seed surface wettability. The water contact angle (WCA) exponentially decreased with treatment time and correlated with the product of discharge power and treatment time well. Super-hydrophilicity was seen at a few 1000 Ws, and the necessary condition was over 35 at.% of surface oxygen. Wettability also correlated well with O-atom dose, where super-hydrophilicity was seen at 1024–1025 m−2. A relatively high germination percentage was seen, up to 1000 Ws (O-atom dose 1023–1024 m−2), while seed viability remained unaffected only up to about 100 Ws. Extensively long treatments decreased germination percentage and viability.
Collapse
Affiliation(s)
- Matej Holc
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (D.P.); (G.P.); (M.M.)
| | - Alenka Vesel
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (D.P.); (G.P.); (M.M.)
| | - Rok Zaplotnik
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (D.P.); (G.P.); (M.M.)
| | - Domen Paul
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (D.P.); (G.P.); (M.M.)
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (D.P.); (G.P.); (M.M.)
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (D.P.); (G.P.); (M.M.)
| | - Peter Gselman
- Interkorn Ltd., Gančani 94, 9231 Beltinci, Slovenia;
| | - Nina Recek
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (D.P.); (G.P.); (M.M.)
- Correspondence:
| |
Collapse
|
6
|
Hoppanová L, Dylíková J, Kováčik D, Medvecká V, Ďurina P, Kryštofová S, Hudecová D, Kaliňáková B. Non-thermal plasma induces changes in aflatoxin production, devitalization, and surface chemistry of Aspergillus parasiticus. Appl Microbiol Biotechnol 2022; 106:2107-2119. [PMID: 35194655 DOI: 10.1007/s00253-022-11828-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/28/2022]
Abstract
Non-thermal plasma (NTP) represents the fourth state of matter composed of neutral molecules, atoms, ions, radicals, and electrons. It has been used by various industries for several decades, but only recently NTPs have emerged in fields such as medicine, agriculture, and the food industry. In this work, we studied the effect of NTP exposure on aflatoxin production, conidial germination and mycelial vitality, morphological and surface changes of conidia and mycelium. When compared with colonies grown from untreated conidia, the colonies from NTP-treated conidia produced significantly higher levels of aflatoxins much earlier during development than colonies from untreated conidia. However, at the end of cultivation, both types of cultures yielded similar aflatoxin concentrations. The increase in the accumulation of aflatoxins was supported by high transcription levels of aflatoxin biosynthetic genes, which indicated a possibility that NTP treatment of conidia was having a longer-lasting effect on colony development and aflatoxins accumulation. NTP generated in the air at atmospheric pressure effectively devitalized Aspergillus parasiticus in conidia and hyphae within a few minutes of treatment. To describe devitalization kinetics, we applied Weibull and Hill models on sets of data collected at different exposure times during NTP treatment. The damage caused by NTP to hyphal cell wall structures was displayed by raptures visualized by scanning electron microscopy. Fourier transform infrared spectroscopy demonstrated that changes in cell envelope correlated with shifts in characteristic chemical bonds indicating dehydration, oxidation of lipids, proteins, and polysaccharides. Key points • Non-thermal plasma increases aflatoxin production shortly after treatment. • Non-thermal plasma rapidly devitalizes Aspergillus parasiticus. • Non-thermal plasma disrupts the cell surface and oxidizes biological components.
Collapse
Affiliation(s)
- Lucia Hoppanová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic. .,Department of Biophysics and Electrophysiology, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovak Republic.
| | - Juliana Dylíková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Dušan Kováčik
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Pavol Ďurina
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48, Bratislava, Slovak Republic
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Daniela Hudecová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic.
| |
Collapse
|
7
|
Scholtz V, Jirešová J, Šerá B, Julák J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods 2021; 10:foods10122927. [PMID: 34945478 PMCID: PMC8701285 DOI: 10.3390/foods10122927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles. This review summarizes the effects of NTP on various types of cereals and products. NTP has undisputed beneficial effects with high potential for future practical use in decontamination and disinfection.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Correspondence:
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Prague, Czech Republic;
| |
Collapse
|
8
|
Recek N, Holc M, Vesel A, Zaplotnik R, Gselman P, Mozetič M, Primc G. Germination of Phaseolus vulgaris L. Seeds after a Short Treatment with a Powerful RF Plasma. Int J Mol Sci 2021; 22:ijms22136672. [PMID: 34206400 PMCID: PMC8268350 DOI: 10.3390/ijms22136672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.
Collapse
Affiliation(s)
- Nina Recek
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
- Correspondence:
| | - Matej Holc
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Alenka Vesel
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Rok Zaplotnik
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Peter Gselman
- Interkorn Ltd., Gančani 94, 9231 Beltinci, Slovenia;
| | - Miran Mozetič
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Gregor Primc
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| |
Collapse
|
9
|
Charoux CMG, Patange A, Lamba S, O'Donnell CP, Tiwari BK, Scannell AGM. Applications of nonthermal plasma technology on safety and quality of dried food ingredients. J Appl Microbiol 2020; 130:325-340. [PMID: 32797725 DOI: 10.1111/jam.14823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
Cold plasma technology is an efficient, environmental-friendly, economic and noninvasive technology; and in recent years these advantages placed this novel technology at the centre of diverse studies for food industry applications. Dried food ingredients including spices, herbs, powders and seeds are an important part of the human diet; and the growing demands of consumers for higher quality and safe food products have led to increased research into alternative decontamination methods. Numerous studies have investigated the effect of nonthermal plasma on dried food ingredients for food safety and quality purposes. This review provides critical review on potential of cold plasma for disinfection of dried food surfaces (spices, herbs and seeds), improvement of functional and rheological properties of dried ingredients (powders, proteins and starches). The review further highlights the benefits of plasma treatment for enhancement of seeds performance and germination yield which could be applied in agricultural sector in near future. Different studies applying plasma technology for control of pathogens and spoilage micro-organisms and modification of food quality and germination of dried food products followed by benefits and current challenges are presented. However, more systemic research needs to be addressed for successful adoption of this technology in food industry.
Collapse
Affiliation(s)
- C M G Charoux
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A Patange
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - S Lamba
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - C P O'Donnell
- UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - B K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - A G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|