1
|
López-Catalina A, Reverter A, Alexandre PA, Nguyen LT, González-Recio O. Stress-induced epigenetic effects driven by maternal lactation in dairy cattle: a comethylation network approach. Epigenetics 2024; 19:2381856. [PMID: 39044410 PMCID: PMC11271077 DOI: 10.1080/15592294.2024.2381856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Epigenetic marks do not follow the Mendelian laws of inheritance. The environment can alter the epigenotype of an individual when exposed to different external stressors. In lactating cows, the first stages of gestation overlap with the lactation peak, creating a negative energy balance that is difficult to overcome with diet. This negative energy balance could affect early embryo development that must compete with the mammary tissue for nutrients. We hypothesize that the methylation profiles of calves born to nonlactating heifers are different from those of calves born to lactating cows. We found 50,277 differentially methylated cytosines and 2,281 differentially methylated regions between these two groups of animals. A comethylation network was constructed to study the correlation between the phenotypes of the mothers and the epigenome of the calves, revealing 265 regions associated with the phenotypes. Our study revealed the presence of DMCs and DMRs in calves gestated by heifers and lactating cows, which were linked to the dam's lactation and the calves' ICAP and milk EBV. Gene-specific analysis highlighted associations with vasculature and organ morphogenesis and cell communication and signalling. These finding support the hypothesis that calves gestated by nonlactating mothers have a different methylation profile than those gestated by lactating cows.
Collapse
Affiliation(s)
- Adrián López-Catalina
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Crta. de la Coruña km 7.5, Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, Spain
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Antonio Reverter
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Pamela A. Alexandre
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Crta. de la Coruña km 7.5, Madrid, Spain
| |
Collapse
|
2
|
Sousa LPB, Pinto LFB, Cruz VAR, Oliveira GA, Rojas de Oliveira H, Chud TS, Pedrosa VB, Miglior F, Schenkel FS, Brito LF. Genome-wide association and functional genomic analyses for various hoof health traits in North American Holstein cattle. J Dairy Sci 2024; 107:2207-2230. [PMID: 37939841 DOI: 10.3168/jds.2023-23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Hoof diseases are a major welfare and economic issue in the global dairy cattle production industry, which can be minimized through improved management and breeding practices. Optimal genetic improvement of hoof health could benefit from a deep understanding of the genetic background and biological underpinning of indicators of hoof health. Therefore, the primary objectives of this study were to perform genome-wide association studies, using imputed high-density genetic markers data from North American Holstein cattle, for 8 hoof-related traits: digital dermatitis, sole ulcer, sole hemorrhage, white line lesion, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, and toe ulcer, and a hoof health index. De-regressed estimated breeding values from 25,580 Holstein animals were used as pseudo-phenotypes for the association analyses. The genomic quality control, genotype phasing, and genotype imputation were performed using the PLINK (version 1.9), Eagle (version 2.4.1), and Minimac4 software, respectively. The functional genomic analyses were performed using the GALLO R package and the DAVID platform. We identified 22, 34, 14, 22, 28, 33, 24, 43, and 15 significant markers for digital dermatitis, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, white line lesion disease, and the hoof health index, respectively. The significant markers were located across all autosomes, except BTA10, BTA12, BTA20, BTA26, BTA27, and BTA28. Moreover, the genomic regions identified overlap with various previously reported quantitative trait loci for exterior, health, meat and carcass, milk, production, and reproduction traits. The enrichment analyses identified 44 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously associated with bone development, metabolism, and infectious and immunological diseases. These findings indicate that hoof health traits are highly polygenic and influenced by a wide range of biological processes.
Collapse
Affiliation(s)
- Luis Paulo B Sousa
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Luis Fernando B Pinto
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Valdecy A R Cruz
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Tatiane S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; PEAK, Madison, WI 53718
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Lactanet Canada, Guelph, ON, N1K 1E5, Canada
| | - Flávio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
3
|
Gangwar M, Kumar S, Ahmad SF, Singh A, Agrawal S, Anitta PL, Kumar A. Identification of genetic variants affecting reproduction traits in Vrindavani cattle. Mamm Genome 2024; 35:99-111. [PMID: 37924370 DOI: 10.1007/s00335-023-10023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
Genome-wide association studies (GWAS) are one of the best ways to look into the connection between single-nucleotide polymorphisms (SNPs) and the phenotypic performance. This study aimed to identify the genetic variants that significantly affect the important reproduction traits in Vrindavani cattle using genome-wide SNP chip array data. In this study, 96 randomly chosen Vrindavani cows were genotyped using the Illumina Bovine50K BeadChip platform. A linear regression model of the genome-wide association study was fitted in the PLINK program between genome-wide SNP markers and reproduction traits, including age at first calving (AFC), inter-calving period (ICP), dry days (DD), and service period (SP) across the first three lactations. Information on different QTLs and genes, overlapping or adjacent to genomic coordinates of significant SNPs, was also mined from relevant databases in order to identify the biological pathways associated with reproductive traits in bovine. The Bonferroni correction resulted in total 39 SNP markers present on different chromosomes being identified that significantly affected the variation in AFC (6 SNPs), ICP (7 SNPs), DD (9 SNPs), and SP (17 SNPs). Novel potential candidate genes associated with reproductive traits that were identified using the GWAS methodology included UMPS, ITGB5, ADAM2, UPK1B, TEX55, bta-mir-708, TMPO, TDRD5, MAPRE2, PTER, AP3B1, DPP8, PLAT, TXN2, NDUFAF1, TGFA, DTNA, RSU1, KCNQ1, ADAM32, and CHST8. The significant SNPs and genes associated with the reproductive traits and the enriched genes may be exploited as candidate biomarkers in animal improvement programs, especially for improved reproduction performance in bovines.
Collapse
Affiliation(s)
- Munish Gangwar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Subodh Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India.
| | - Sheikh Firdous Ahmad
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Akansha Singh
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Swati Agrawal
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - P L Anitta
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| | - Amit Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnangar, Bareilly, 243122, India
| |
Collapse
|
4
|
Hosseinzadeh S, Masoudi AA. Investigating the expression of fertility-regulating LncRNAs in multiparous and uniparous Shal ewe's ovaries. Genome 2024; 67:78-89. [PMID: 37983732 DOI: 10.1139/gen-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Sheep is the primary source of animal protein in Iran. Birth type is one of the significant features that determine total meat output. Little is known about how long non-coding RNAs (LncRNAs) affect litter size. The purpose of this research is to investigate the DE-LncRNAs in ovarian tissue between multiparous and uniparous Shal ewes. Through bioinformatics analyses, LncRNAs with variable expression levels between ewes were discovered. Target genes were annotated using the DAVID database, and STRING and Cytoscape software were used to evaluate their interactions. The expression levels of 148 LncRNAs were different in the multiparous and uniparous ewe groups (false discovery rate (FDR) < 0.05). Eight biological process terms, nine cellular component terms, 10 molecular function terms, and 38 KEGG pathways were significant (FDR < 0.05) in the GO analysis. One of the most significant processes impacting fertility is mitogen-activated protein kinase (MAPK) signaling pathway, followed by oocyte meiosis, gonadotropin-releasing hormone signaling pathway, progesterone-mediated oocyte maturation, oxytocin signaling pathway, and cAMP signaling pathway. ENSOARG00000025710, ENSOARG00000025667, ENSOARG00000026034, and ENSOARG00000026632 are LncRNAs that may affect litter size and fertility. The most crucial hub genes include MAPK1, BRD2, GAK, RAP1B, FGF2, RAP1B, and RAP1B. We hope that this study will encourage researchers to further investigate the effect of LncRNAs on fertility.
Collapse
Affiliation(s)
- Shahram Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Hossain MN, Gao Y, Hatfield MJ, de Avila JM, McClure MC, Du M. Cold exposure impacts DNA methylation patterns in cattle sperm. Front Genet 2024; 15:1346150. [PMID: 38444759 PMCID: PMC10912962 DOI: 10.3389/fgene.2024.1346150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
DNA methylation is influenced by various exogenous factors such as nutrition, temperature, toxicants, and stress. Bulls from the Pacific Northwest region of the United States and other northern areas are exposed to extreme cold temperatures during winter. However, the effects of cold exposure on the methylation patterns of bovine sperm remain unclear. To address, DNA methylation profiles of sperm collected during late spring and winter from the same bulls were analyzed using whole genome bisulfite sequencing (WGBS). Bismark (0.22.3) were used for mapping the WGBS reads and R Bioconductor package DSS was used for differential methylation analysis. Cold exposure induced 3,163 differentially methylated cytosines (DMCs) with methylation difference ≥10% and a q-value < 0.05. We identified 438 differentially methylated regions (DMRs) with q-value < 0.05, which overlapped with 186 unique genes. We also identified eight unique differentially methylated genes (DMGs) (Pax6, Macf1, Mest, Ubqln1, Smg9, Ctnnb1, Lsm4, and Peg10) involved in embryonic development, and nine unique DMGs (Prmt6, Nipal1, C21h15orf40, Slc37a3, Fam210a, Raly, Rgs3, Lmbr1, and Gan) involved in osteogenesis. Peg10 and Mest, two paternally expressed imprinted genes, exhibited >50% higher methylation. The differential methylation patterns of six distinct DMRs: Peg10, Smg9 and Mest related to embryonic development and Lmbr1, C21h15orf40 and Prtm6 related to osteogenesis, were assessed by methylation-specific PCR (MS-PCR), which confirmed the existence of variable methylation patterns in those locations across the two seasons. In summary, cold exposure induces differential DNA methylation patterns in genes that appear to affect embryonic development and osteogenesis in the offspring. Our findings suggest the importance of replicating the results of the current study with a larger sample size and exploring the potential of these changes in affecting offspring development.
Collapse
Affiliation(s)
- Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
- Department of Livestock Production and Management, Faculty of Veterinary, Animal, and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Michael J. Hatfield
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | | | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Lakhssassi K, Ureña I, Marín B, Sarto MP, Lahoz B, Alabart JL, Calvo JH, Serrano M. Characterization of the pars tuberalis and hypothalamus transcriptome in female sheep under different reproductive stages. Anim Biotechnol 2023; 34:3461-3474. [PMID: 36534535 DOI: 10.1080/10495398.2022.2155174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For understanding the molecular events underlying the follicular (F) and luteal (L) phases of estrous cycle, and anestrous (A) phase, the pars tuberalis (PT), and hypothalamus (HT) transcriptomes of 21 ewes were studied. In HT, 72 and 3 differential expression genes (DEGs) were found when comparing F vs. A and L vs. A, respectively. In PT, 6 and 4 DEGs were found in F vs. A and L vs. A comparisons, respectively. Enrichment analysis for DEGs between the F and A phases in the HT revealed significant clusters, mainly associated with actin-binding, and cytoskeleton, that are related to neural plasticity modulated by gonadal steroid hormones, as well as with oxytocin signaling. We found that DEGs in PT had higher differences in expression levels than those found in HT. In this sense, the ITLN was highly upregulated in the F and L vs. A phases, being MRPL57 and IRX4 highly downregulated in L vs. A comparison. The DDC gene in PT, related to LH regulation, was upregulated in the F phase. The gene set enrichment analysis (GSEA) revealed multiple pathways related to neurotransmission and neuronal plasticity. Our study reveals new candidate genes involved in the reproductive stages' transitions in seasonal sheep.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Departamento de Ciencia Animal, CITA-IA2, Zaragoza, Spain
- INRA Instituts, Rabat, Morocco
| | | | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Belén Lahoz
- Departamento de Ciencia Animal, CITA-IA2, Zaragoza, Spain
| | | | - Jorge Hugo Calvo
- Departamento de Ciencia Animal, CITA-IA2, Zaragoza, Spain
- ARAID, Zaragoza, Spain
| | | |
Collapse
|
7
|
Saif-Ur-Rehman M, Hassan FU, Reecy J, Deng T. Whole-genome SNP markers reveal runs of homozygosity in indigenous cattle breeds of Pakistan. Anim Biotechnol 2023; 34:1384-1396. [PMID: 35044288 DOI: 10.1080/10495398.2022.2026369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The runs of homozygosity (ROH) were identified in 14 Pakistani cattle breeds (n = 105) by genotyping with the Illumina 50 K SNP BeadChip. These breeds were categorized into Dairy, Dual, and Draft breeds based on their utility and production performance. We identified a total of 10,936 ROHs which mainly consisted of a high number of shorter segments (1-4 Mb). Dairy group exhibited the highest level of inbreeding (FROH: 0.078 ± 0.028) while the lowest (FROH: 0.002 ± 0.008) was observed in Dual group. In 48 genomic regions identified with a high frequency of ROH, 207 genes were detected in the three breed groups. A substantially higher number of ROH islands detected in dairy breeds indicated the impact of the positive selection pressure over the years. Important candidate genes and QTL were detected in the ROH islands associated with economic traits like milk production, reproduction, meat, carcass, and health traits in dairy cattle.
Collapse
Affiliation(s)
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
8
|
Calderón-Chagoya R, Vega-Murillo VE, García-Ruiz A, Ríos-Utrera Á, Martínez-Velázquez G, Montaño-Bermúdez M. Discovering Genomic Regions Associated with Reproductive Traits and Frame Score in Mexican Simmental and Simbrah Cattle Using Individual SNP and Haplotype Markers. Genes (Basel) 2023; 14:2004. [PMID: 38002947 PMCID: PMC10671695 DOI: 10.3390/genes14112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Reproductive efficiency stands as a critical determinant of profitability within beef production systems. The incorporation of molecular markers can expedite advancements in reproductive performance. While the use of SNPs in association analysis is prevalent, approaches centered on haplotypes can offer a more comprehensive insight. The study used registered Simmental and Simbrah cattle genotyped with the GGP Bovine 150 k panel. Phenotypes included scrotal circumference (SC), heifer fertility (HF), stayability (STAY), and frame score (FS). After quality control, 105,129 autosomal SNPs from 967 animals were used. Haplotype blocks were defined based on linkage disequilibrium. Comparison between haplotypes and SNPs for reproductive traits and FS was conducted using Bayesian and frequentist models. 23, 13, 7, and 2 SNPs exhibited associations with FS, SC, HF, and STAY, respectively. In addition, seven, eight, seven, and one haplotypes displayed associations with FS, SC, HF, and STAY, respectively. Within these delineated genomic segments, potential candidate genes were associated.
Collapse
Affiliation(s)
- René Calderón-Chagoya
- Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Ciudad de México 04510, Mexico;
- National Center for Disciplinary Research in Physiology and Animal Improvement, National Institute for Forestry, Agricultural and Livestock Research, Querétaro 76280, Mexico;
| | - Vicente Eliezer Vega-Murillo
- Faculty of Veterinary Medicine and Zootechnics, Veracruzana University, Veracruz 91710, Mexico; (V.E.V.-M.); (Á.R.-U.)
| | - Adriana García-Ruiz
- National Center for Disciplinary Research in Physiology and Animal Improvement, National Institute for Forestry, Agricultural and Livestock Research, Querétaro 76280, Mexico;
| | - Ángel Ríos-Utrera
- Faculty of Veterinary Medicine and Zootechnics, Veracruzana University, Veracruz 91710, Mexico; (V.E.V.-M.); (Á.R.-U.)
| | - Guillermo Martínez-Velázquez
- Experimental Field Santiago Ixcuintla, National Institute for Forestry, Agricultural and Livestock Research, Nayarit 63570, Mexico;
| | - Moisés Montaño-Bermúdez
- National Center for Disciplinary Research in Physiology and Animal Improvement, National Institute for Forestry, Agricultural and Livestock Research, Querétaro 76280, Mexico;
| |
Collapse
|
9
|
Persichilli C, Senczuk G, Mastrangelo S, Marusi M, van Kaam JT, Finocchiaro R, Di Civita M, Cassandro M, Pilla F. Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J Dairy Sci 2023; 106:5537-5553. [PMID: 37291034 DOI: 10.3168/jds.2022-22159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/07/2023] [Indexed: 06/10/2023]
Abstract
Among Italian dairy cattle, the Holstein is the most reared breed for the production of Parmigiano Reggiano protected designation of origin cheese, which represents one of the most renowned products in the entire Italian dairy industry. In this work, we used a medium-density genome-wide data set consisting of 79,464 imputed SNPs to study the genetic structure of Italian Holstein breed, including the population reared in the area of Parmigiano Reggiano cheese production, and assessing its distinctiveness from the North American population. Multidimensional scaling and ADMIXTURE approaches were used to explore the genetic structure among populations. We also investigated putative genomic regions under selection among these 3 populations by combining 4 different statistical methods based either on allele frequencies (single marker and window-based) or extended haplotype homozygosity (EHH; standardized log-ratio of integrated EHH and cross-population EHH). The genetic structure results allowed us to clearly distinguish the 3 Holstein populations; however, the most remarkable difference was observed between Italian and North American stock. Selection signature analyses identified several significant SNPs falling within or closer to genes with known roles in several traits such as milk quality, resistance to disease, and fertility. In particular, a total of 22 genes related to milk production have been identified using the 2 allele frequency approaches. Among these, a convergent signal has been found in the VPS8 gene which resulted to be involved in milk traits, whereas other genes (CYP7B1, KSR2, C4A, LIPE, DCDC1, GPR20, and ST3GAL1) resulted to be associated with quantitative trait loci related to milk yield and composition in terms of fat and protein percentage. In contrast, a total of 7 genomic regions were identified combining the results of standardized log-ratio of integrated EHH and cross-population EHH. In these regions candidate genes for milk traits were also identified. Moreover, this was also confirmed by the enrichment analyses in which we found that the majority of the significantly enriched quantitative trait loci were linked to milk traits, whereas the gene ontology and pathway enrichment analysis pointed to molecular functions and biological processes involved in AA transmembrane transport and methane metabolism pathway. This study provides information on the genetic structure of the examined populations, showing that they are distinguishable from each other. Furthermore, the selection signature analyses can be considered as a starting point for future studies in the identification of causal mutations and consequent implementation of more practical application.
Collapse
Affiliation(s)
- Christian Persichilli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy.
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo (PA), Italy
| | - Maurizio Marusi
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Jan-Thijs van Kaam
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Raffaella Finocchiaro
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| | - Martino Cassandro
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| |
Collapse
|
10
|
Vahedi SM, Salek Ardestani S, Pahlevan Afshari K, Ghoreishifar SM, Moghaddaszadeh-Ahrabi S, Banabazi MH, Brito LF. Genome-Wide Selection Signatures and Human-Mediated Introgression Events in Bos taurus indicus-influenced Composite Beef Cattle. Front Genet 2022; 13:844653. [PMID: 35719394 PMCID: PMC9201998 DOI: 10.3389/fgene.2022.844653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic introgression from interbreeding hybridization of European Bos taurus taurus (EBT) and Indian Bos taurus indicus (IBI) cattle breeds have been widely used to combine the climatic resilience of the IBI cattle and the higher productivity of EBT when forming new composite beef cattle (CB) populations. The subsequent breeding strategies have shifted their initial genomic compositions. To uncover population structure, signatures of selection, and potential introgression events in CB populations, high-density genotypes [containing 492,954 single nucleotide polymorphisms (SNPs) after the quality control] of 486 individuals from 15 cattle breeds, including EBT, IBI, and CB populations, along with two Bos grunniens genotypes as outgroup were used in this study. Then, in-depth population genetics analyses were performed for three CB breeds of Beefmaster, Brangus, and Santa Gertrudis. Neighbor-joining, principal components, and admixture analyses confirmed the historical introgression of EBT and IBI haplotypes into CB breeds. The fdM statistics revealed that only 12.9% of CB populations' genetic components are of IBI origin. The results of signatures of selection analysis indicated different patterns of selection signals in the three CB breeds with primary pressure on pathways involved in protein processing and stress response in Beefmaster, cell proliferation regulation and immune response in Brangus, and amino acids and glucose metabolisms in Santa Gertrudis. An average of >90% of genomic regions underlying selection signatures were of EBT origin in the studied CB populations. Investigating the CB breeds' genome allows the estimation of EBT and IBI ancestral proportions and the locations within the genome where either taurine or indicine origin alleles are under selective pressure. Such findings highlight various opportunities to control the selection process more efficiently and explore complementarity at the genomic level in CB populations.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kian Pahlevan Afshari
- Department of Animal Sciences, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
11
|
Mohammadi A, Alijani S, Rafat S, Abdollahi-Arpanahi R. Single-step genome-wide association study and candidate genes networks affecting reproductive traits in Iranian Holstein cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Chen SY, Schenkel FS, Melo ALP, Oliveira HR, Pedrosa VB, Araujo AC, Melka MG, Brito LF. Identifying pleiotropic variants and candidate genes for fertility and reproduction traits in Holstein cattle via association studies based on imputed whole-genome sequence genotypes. BMC Genomics 2022; 23:331. [PMID: 35484513 PMCID: PMC9052698 DOI: 10.1186/s12864-022-08555-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Background Genetic progress for fertility and reproduction traits in dairy cattle has been limited due to the low heritability of most indicator traits. Moreover, most of the quantitative trait loci (QTL) and candidate genes associated with these traits remain unknown. In this study, we used 5.6 million imputed DNA sequence variants (single nucleotide polymorphisms, SNPs) for genome-wide association studies (GWAS) of 18 fertility and reproduction traits in Holstein cattle. Aiming to identify pleiotropic variants and increase detection power, multiple-trait analyses were performed using a method to efficiently combine the estimated SNP effects of single-trait GWAS based on a chi-square statistic. Results There were 87, 72, and 84 significant SNPs identified for heifer, cow, and sire traits, respectively, which showed a wide and distinct distribution across the genome, suggesting that they have relatively distinct polygenic nature. The biological functions of immune response and fatty acid metabolism were significantly enriched for the 184 and 124 positional candidate genes identified for heifer and cow traits, respectively. No known biological function was significantly enriched for the 147 positional candidate genes found for sire traits. The most important chromosomes that had three or more significant QTL identified are BTA22 and BTA23 for heifer traits, BTA8 and BTA17 for cow traits, and BTA4, BTA7, BTA17, BTA22, BTA25, and BTA28 for sire traits. Several novel and biologically important positional candidate genes were strongly suggested for heifer (SOD2, WTAP, DLEC1, PFKFB4, TRIM27, HECW1, DNAH17, and ADAM3A), cow (ANXA1, PCSK5, SPESP1, and JMJD1C), and sire (ELMO1, CFAP70, SOX30, DGCR8, SEPTIN14, PAPOLB, JMJD1C, and NELL2) traits. Conclusions These findings contribute to better understand the underlying biological mechanisms of fertility and reproduction traits measured in heifers, cows, and sires, which may contribute to improve genomic evaluation for these traits in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08555-z.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ana L P Melo
- Department of Reproduction and Animal Evaluation, Rural Federal University of Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA
| | - Melkaye G Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, River Falls, WI, 54022, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA. .,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
13
|
Vanvanhossou SFU, Yin T, Scheper C, Fries R, Dossa LH, König S. Unraveling Admixture, Inbreeding, and Recent Selection Signatures in West African Indigenous Cattle Populations in Benin. Front Genet 2021; 12:657282. [PMID: 34956303 PMCID: PMC8694269 DOI: 10.3389/fgene.2021.657282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The Dwarf Lagune and the Savannah Somba cattle in Benin are typical representatives of the endangered West African indigenous Shorthorn taurine. The Lagune was previously exported to African and European countries and bred as Dahomey cattle, whereas the Somba contributed to the formation of two indigenous hybrids known as Borgou and Pabli cattle. These breeds are affected by demographic, economic, and environmental pressures in local production systems. Considering current and historical genomic data, we applied a formal test of admixture, estimated admixture proportions, and computed genomic inbreeding coefficients to characterize the five breeds. Subsequently, we unraveled the most recent selection signatures using the cross-population extended haplotype homozygosity approach, based on the current and historical genotypes. Results from principal component analyses and high proportion of Lagune ancestry confirm the Lagune origin of the European Dahomey cattle. Moreover, the Dahomey cattle displayed neither indicine nor European taurine (EUT) background, but they shared on average 40% of autozygosity from common ancestors, dated approximately eight generations ago. The Lagune cattle presented inbreeding coefficients larger than 0.13; however, the Somba and the hybrids (Borgou and Pabli) were less inbred (≤0.08). We detected evidence of admixture in the Somba and Lagune cattle, but they exhibited a similar African taurine (AFT) ancestral proportion (≥96%) to historical populations, respectively. A moderate and stable AFT ancestral proportion (62%) was also inferred for less admixed hybrid cattle including the Pabli. In contrast, the current Borgou samples displayed a lower AFT ancestral proportion (47%) than historical samples (63%). Irrespective of the admixture proportions, the hybrid populations displayed more selection signatures related to economic traits (reproduction, growth, and milk) than the taurine. In contrast, the taurine, especially the Somba, presented several regions known to be associated with adaptive traits (immunity and feed efficiency). The identified subregion of bovine leukocyte antigen (BoLA) class IIb (including DSB and BOLA-DYA) in Somba cattle is interestingly uncommon in other African breeds, suggesting further investigations to understand its association with specific adaptation to endemic diseases in Benin. Overall, our study provides deeper insights into recent evolutionary processes in the Beninese indigenous cattle and their aptitude for conservation and genetic improvement.
Collapse
Affiliation(s)
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
14
|
Denoyelle L, de Villemereuil P, Boyer F, Khelifi M, Gaffet C, Alberto F, Benjelloun B, Pompanon F. Genetic Variations and Differential DNA Methylation to Face Contrasted Climates in Small Ruminants: An Analysis on Traditionally-Managed Sheep and Goats. Front Genet 2021; 12:745284. [PMID: 34650601 PMCID: PMC8508783 DOI: 10.3389/fgene.2021.745284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The way in which living organisms mobilize a combination of long-term adaptive mechanisms and short-term phenotypic plasticity to face environmental variations is still largely unknown. In the context of climate change, understanding the genetic and epigenetic bases for adaptation and plasticity is a major stake for preserving genomic resources and the resilience capacity of livestock populations. We characterized both epigenetic and genetic variations by contrasting 22 sheep and 21 goats from both sides of a climate gradient, focusing on free-ranging populations from Morocco. We produced for each individual Whole-Genome Sequence at 12X coverage and MeDIP-Seq data, to identify regions under selection and those differentially methylated. For both species, the analysis of genetic differences (FST) along the genome between animals from localities with high vs. low temperature annual variations detected candidate genes under selection in relation to environmental perception (5 genes), immunity (4 genes), reproduction (8 genes) and production (11 genes). Moreover, we found for each species one differentially methylated gene, namely AGPTA4 in goat and SLIT3 in sheep, which were both related, among other functions, to milk production and muscle development. In both sheep and goats, the comparison between genomic regions impacted by genetic and epigenetic variations suggests that climatic variations impacted similar biological pathways but different genes.
Collapse
Affiliation(s)
- Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études
- PSL, MNHN, CNRS, SU, UA, Paris, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Meidhi Khelifi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Clément Gaffet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Florian Alberto
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,Institut National de la Recherche Agronomique Maroc (INRA-Maroc), Centre Régional de Beni Mellal, Beni Mellal, Morocco
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
15
|
Lu X, Abdalla IM, Nazar M, Fan Y, Zhang Z, Wu X, Xu T, Yang Z. Genome-Wide Association Study on Reproduction-Related Body-Shape Traits of Chinese Holstein Cows. Animals (Basel) 2021; 11:1927. [PMID: 34203505 PMCID: PMC8300307 DOI: 10.3390/ani11071927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Reproduction is an important production activity for dairy cows, and their reproductive performance can directly affect the level of farmers' income. To better understand the genomic regions and biological pathways of reproduction-related traits of dairy cows, in the present study, three body shape traits-Loin Strength (LS), Rump Angle (RA), and Pin Width (PW)-were selected as indicators of the reproductive ability of cows, and we conducted genome-wide association analyses on them. The heritability of these three traits was medium, ranging from 0.20 to 0.38. A total of 11 significant single-nucleotide polymorphisms (SNPs) were detected associated with these three traits. Bioinformatics analysis was performed on genes close to the significant SNPs (within 200 Kb) of LS, RA, and PW, and we found that these genes were totally enriched in 20 gene ontology terms and six KEGG signaling pathways. Finally, the five genes CDH12, TARP, PCDH9, DTHD1, and ARAP2 were selected as candidate genes that might affect LS. The six genes LOC781835, FSTL4, ATG4C, SH3BP4, DMP1, and DSPP were selected as candidate genes that might affect RA. The five genes USP6NL, CNTN3, LOC101907665, UPF2, and ECHDC3 were selected as candidate genes that might affect the PW of Chinese Holstein cows. Our results could provide useful biological information for the improvement of body shape traits and contribute to the genomic selection of Chinese Holstein cows.
Collapse
Affiliation(s)
- Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Ismail Mohamed Abdalla
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Xinyue Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| |
Collapse
|
16
|
Tahir MS, Porto-Neto LR, Gondro C, Shittu OB, Wockner K, Tan AWL, Smith HR, Gouveia GC, Kour J, Fortes MRS. Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Bos indicus Cattle. Genes (Basel) 2021; 12:768. [PMID: 34069992 PMCID: PMC8157873 DOI: 10.3390/genes12050768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (p-value < 9.9 × 10-6 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes SLC44A1, FSD1L, FKTN, TAL2 and TMEM38B. The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including ESR2, ITPR1, GNG2, RGS9BP, ANKRD27, TDRD12, GRM1, MTHFD1, PTGDR and NTNG1. Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes-BRAF, GABRA2, GABR1B, GAD1, FSHR, CNGA3, PDE10A, SNAP25, ESR2, GRIA2, ORAI1, EGFR, CHRNA5, VDAC2, ACVR2B, ORAI3, CYP11A1, GRIN2A, ATP2B3, CAMK2A, PLA2G, CAMK2D and MAPK3-are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD 4072, Australia;
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Olasege B. Shittu
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Kimberley Wockner
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Andre W. L. Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Hugo R. Smith
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Gabriela C. Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Jagish Kour
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| |
Collapse
|