1
|
Barclay R, Coad J, Schraders K, Barnes MJ. Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study. Nutrients 2024; 16:4389. [PMID: 39771010 PMCID: PMC11678417 DOI: 10.3390/nu16244389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Consuming collagen hydrolysate (CH) may improve symptoms of exercise-induced muscle damage (EIMD); however, its acute effects have not been compared to dairy protein (DP), the most commonly consumed form of protein supplement. Therefore, this study compared the effects of CH and DP on recovery from EIMD. METHODS Thirty-three males consumed either CH (n = 11) or DP (n = 11), containing 25 g of protein, or an isoenergetic placebo (n = 11) immediately post-exercise and once daily for three days. Indices of EIMD were measured before and 30 min and 24, 48, and 72 h after 30 min of downhill running on a -15% slope at 80% of VO2max speed. RESULTS Downhill running induced significant EIMD, with time effects (all p < 0.001) for the delayed onset of muscle soreness (visual analogue scale), countermovement jump height, isometric midthigh pull force, maximal voluntary isometric contraction force, running economy, and biomarkers of muscle damage (creatine kinase) and inflammation (interleukin-6, high-sensitivity C-reactive protein). However, no group or interaction effects (all p > 0.05) were observed for any of the outcome measures. CONCLUSIONS These findings suggest that the post-exercise consumption of CH or DP does not improve indices of EIMD during the acute recovery period in recreationally active males.
Collapse
Affiliation(s)
- Rachel Barclay
- School of Sport, Exercise & Nutrition, College of Health, Massey University, Palmerston North 4410, New Zealand
| | - Jane Coad
- School of Food Technology & Natural Sciences, College of Science, Massey University, Palmerston North 4410, New Zealand
| | - Katie Schraders
- School of Food Technology & Natural Sciences, College of Science, Massey University, Palmerston North 4410, New Zealand
| | - Matthew J. Barnes
- School of Sport, Exercise & Nutrition, College of Health, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
2
|
The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: A systematic review with meta-analysis. Eur J Clin Nutr 2022:10.1038/s41430-022-01250-y. [PMID: 36513777 PMCID: PMC10393778 DOI: 10.1038/s41430-022-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is unknown whether dietary protein consumption can attenuate resistance exercise-induced muscle damage (EIMD). Managing EIMD may accelerate muscle recovery and allow frequent, high-quality exercise to promote muscle adaptations. This systematic review and meta-analysis examined the impact of peri-exercise protein supplementation on resistance EIMD. METHODS A literature search was conducted on PubMed, SPORTDiscus, and Web of Science up to March 2021 for relevant articles. PEDro criteria were used to assess bias within included studies. A Hedges' g effect size (ES) was calculated for indirect markers of EIMD at h post-exercise. Weighted ESs were included in a random effects model to determine overall ESs over time. RESULTS Twenty-nine studies were included in the systematic review and 40 trials were included in ≥1 meta-analyses (16 total). There were significant overall effects of protein for preserving isometric maximal voluntary contraction (MVC) at 96 h (0.563 [0.232, 0.894]) and isokinetic MVC at 24 h (0.639 [0.116, 1.162]), 48 h (0.447 [0.104, 0.790]), and 72 h (0.569 [0.136, 1.002]). Overall ESs were large in favour of protein for attenuating creatine kinase concentration at 48 h (0.836 [-0.001, 1.673]) and 72 h (1.335 [0.294, 2.376]). Protein supplementation had no effect on muscle soreness compared with the control. CONCLUSION Peri-exercise protein consumption could help maintain maximal strength and lower creatine kinase concentration following resistance exercise but not reduce muscle soreness. Conflicting data may be due to methodological divergencies between studies. Standardised methods and data reporting for EIMD research are needed.
Collapse
|
3
|
König D, Kohl J, Jerger S, Centner C. Potential Relevance of Bioactive Peptides in Sports Nutrition. Nutrients 2021; 13:3997. [PMID: 34836255 PMCID: PMC8622853 DOI: 10.3390/nu13113997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive peptides are physiologically active peptides mostly derived from proteins following gastrointestinal digestion, fermentation or hydrolysis by proteolytic enzymes. It has been shown that bioactive peptides can be resorbed in their intact form and have repeatedly been shown to have a positive effect on health-related parameters such as hypertension, dyslipoproteinemia, inflammation and oxidative stress. In recent years, there has been increasing evidence that biologically active peptides could also play an important role in sports nutrition. Current studies have shown that bioactive peptides could have a positive impact on changes in body composition and muscular performance, reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. In the following overview, potential mechanisms as well as possible limitations regarding the sports-related effect of bioactive peptides and their potential mechanisms are presented and discussed. In addition, practical applications will be discussed on how bioactive peptides can be integrated into a nutritional approach in sports to enhance athletic performance as well as prevent injuries and improve the rehabilitation process.
Collapse
Affiliation(s)
- Daniel König
- Centre for Sports Science and University Sports, Institute for Nutrition, Exercise and Health, University of Vienna, Auf der Schmelz, 61150 Vienna, Austria
- Department for Nutritional Science, Institute for Nutrition, Exercise and Health, University of Vienna, 61150 Vienna, Austria
| | - Jan Kohl
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
- Praxisklinik Rennbahn, CH-4132 Muttenz, Switzerland
| |
Collapse
|
4
|
Morgan PT, Breen L. The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation: a current perspective. Nutr Metab (Lond) 2021; 18:44. [PMID: 33882976 PMCID: PMC8061049 DOI: 10.1186/s12986-021-00574-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
The protein supplement industry is expanding rapidly and estimated to have a multi-billion market worth. Recent research has centred on understanding how the manufacturing processes of protein supplements may impact muscle recovery and remodeling. The hydrolysed forms of protein undergo a further heating extraction process during production which may contribute to amino acids (AA) appearing in circulation at a slightly quicker rate, or greater amplitude, than the intact form. Whilst the relative significance of the rate of aminoacidemia to muscle protein synthesis is debated, it has been suggested that protein hydrolysates, potentially through the more rapid delivery and higher proportion of di-, tri- and smaller oligo-peptides into circulation, are superior to intact non-hydrolysed proteins and free AAs in promoting skeletal muscle protein remodeling and recovery. However, despite these claims, there is currently insufficient evidence to support superior muscle anabolic properties compared with intact non-hydrolysed proteins and/or free AA controls. Further research is warranted with appropriate protein controls, particularly in populations consuming insufficient amounts of protein, to support and/or refute an important muscle anabolic role of protein hydrolysates. The primary purpose of this review is to provide the reader with a current perspective on the potential anabolic effects of protein hydrolysates in individuals wishing to optimise recovery from, and maximise adaptation to, exercise training.
Collapse
Affiliation(s)
- Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Kritikos S, Papanikolaou K, Draganidis D, Poulios A, Georgakouli K, Tsimeas P, Tzatzakis T, Batsilas D, Batrakoulis A, Deli CK, Chatzinikolaou A, Mohr M, Jamurtas AZ, Fatouros IG. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: a randomized controlled trial. J Int Soc Sports Nutr 2021; 18:23. [PMID: 33726784 PMCID: PMC7968192 DOI: 10.1186/s12970-021-00420-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background Soccer-specific speed-endurance training induces short-term neuromuscular fatigue and performance deterioration over a 72-h recovery period, associated with elevated markers of exercise-induced muscle damage. We compared the effects of whey vs. soy protein supplementation on field activity, performance, muscle damage and redox responses following speed-endurance training in soccer players. Methods Ten well-trained, male soccer players completed three speed-endurance training trials, receiving whey protein (WP), soy protein (SP) or an isoenergetic placebo (PL; maltodextrin) according to a randomized, double-blind, crossover, repeated-measures design. A pre-loading period was applied in each trial during which protein supplementation was individually adjusted to reach a total protein intake of 1.5 g/kg/day, whereas in PL protein intake was adjusted at 0.8–1 g/kg/day. Following pre-loading, two speed-endurance training sessions (1 and 2) were performed 1 day apart, over a 3-day experimental period. During each session, field activity and heart rate were continuously monitored using global positioning system and heart rate monitors, respectively. Performance (isokinetic strength of knee extensors and flexors, maximal voluntary isometric contraction, speed, repeated sprint ability, countermovement jump), muscle damage (delayed-onset of muscle soreness, creatine kinase activity) and redox status (glutathione, total antioxidant capacity, protein carbonyls) were evaluated at baseline (pre), following pre-loading (post-load), and during recovery from speed-endurance training. Results High-intensity and high-speed running decreased (P ≤ 0.05) during speed-endurance training in all trials, but WP and SP mitigated this response. Isokinetic strength, maximal voluntary isometric contraction, 30-m speed, repeated sprint ability and countermovement jump performance were similarly deteriorated during recovery following speed-endurance training in all trials (P ≤ 0.05). 10 m speed was impaired at 24 h only in PL. Delayed-onset of muscle soreness, creatine kinase, total antioxidant capacity and protein carbonyls increased and glutathione decreased equally among trials following speed-endurance training (P ≤ 0.05), with SP inducing a faster recovery of protein carbonyls only at 48 h (P ≤ 0.05) compared to WP and PL. Conclusions In conclusion, increasing daily protein intake to 1.5 g/kg through ingestion of either whey or soy protein supplements mitigates field performance deterioration during successive speed-endurance training sessions without affecting exercise-induced muscle damage and redox status markers. Trial registration Name of the registry: clinicaltrials.gov. Trial registration: NCT03753321. Date of registration: 12/10/2018. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00420-w.
Collapse
Affiliation(s)
- Savvas Kritikos
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Kalliopi Georgakouli
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece.,Department of Nutrition and Dietetics, University of Thessaly, Argonafton 1, 42132, Trikala, Greece
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Theofanis Tzatzakis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Dimitrios Batsilas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Alexios Batrakoulis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Chariklia K Deli
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Chatzinikolaou
- Department of Physical Education and Sport Sciences, Democritus University of Thrace, 69100, Komotini, Greece
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Centre of Health Science, Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Athanasios Z Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, 42100, Trikala, Greece.
| |
Collapse
|