1
|
Qiu X, Wang HY, Yang ZY, Sun LM, Liu SN, Fan CQ, Zhu F. Uncovering the prominent role of satellite cells in paravertebral muscle development and aging by single-nucleus RNA sequencing. Genes Dis 2023; 10:2597-2613. [PMID: 37554180 PMCID: PMC10404979 DOI: 10.1016/j.gendis.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 02/05/2023] Open
Abstract
To uncover the role of satellite cells (SCs) in paravertebral muscle development and aging, we constructed a single-nucleus transcriptomic atlas of mouse paravertebral muscle across seven timepoints spanning the embryo (day 16.5) to old (month 24) stages. Eight cell types, including SCs, fast muscle cells, and slow muscle cells, were identified. An energy metabolism-related gene set, TCA CYCLE IN SENESCENCE, was enriched in SCs. Forty-two skeletal muscle disease-related genes were highly expressed in SCs and exhibited similar expression patterns. Among them, Pdha1 was the core gene in the TCA CYCLE IN SENESCENCE; Pgam2, Sod1, and Suclg1 are transcription factors closely associated with skeletal muscle energy metabolism. Transcription factor enrichment analysis of the 42 genes revealed that Myod1 and Mef2a were also highly expressed in SCs, which regulated Pdha1 expression and were associated with skeletal muscle development. These findings hint that energy metabolism may be pivotal in SCs development and aging. Three ligand-receptor pairs of extracellular matrix (ECM)-receptor interactions, Lamc1-Dag1, Lama2-Dag1, and Hspg2-Dag1, may play a vital role in SCs interactions with slow/fast muscle cells and SCs self-renewal. Finally, we built the first database of a skeletal muscle single-cell transcriptome, the Musculoskeletal Cell Atlas (http://www.mskca.tech), which lists 630,040 skeletal muscle cells and provides interactive visualization, a useful resource for revealing skeletal muscle cellular heterogeneity during development and aging. Our study could provide new targets and ideas for developing drugs to inhibit skeletal muscle aging and treat skeletal muscle diseases.
Collapse
Affiliation(s)
- Xin Qiu
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hao-Yu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100000, China
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, Shandong 266000, China
| | - Zhen-Yu Yang
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Li-Ming Sun
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710000, China
| | - Shu-Nan Liu
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Chui-Qin Fan
- China Medical University, Shenyang, Liaoning 110000, China
| | - Feng Zhu
- Department of Spinal Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518000, China
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Ondov B, Attal K, Demner-Fushman D. A survey of automated methods for biomedical text simplification. J Am Med Inform Assoc 2022; 29:1976-1988. [PMID: 36083212 PMCID: PMC10161533 DOI: 10.1093/jamia/ocac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Plain language in medicine has long been advocated as a way to improve patient understanding and engagement. As the field of Natural Language Processing has progressed, increasingly sophisticated methods have been explored for the automatic simplification of existing biomedical text for consumers. We survey the literature in this area with the goals of characterizing approaches and applications, summarizing existing resources, and identifying remaining challenges. MATERIALS AND METHODS We search English language literature using lists of synonyms for both the task (eg, "text simplification") and the domain (eg, "biomedical"), and searching for all pairs of these synonyms using Google Scholar, Semantic Scholar, PubMed, ACL Anthology, and DBLP. We expand search terms based on results and further include any pertinent papers not in the search results but cited by those that are. RESULTS We find 45 papers that we deem relevant to the automatic simplification of biomedical text, with data spanning 7 natural languages. Of these (nonexclusively), 32 describe tools or methods, 13 present data sets or resources, and 9 describe impacts on human comprehension. Of the tools or methods, 22 are chiefly procedural and 10 are chiefly neural. CONCLUSIONS Though neural methods hold promise for this task, scarcity of parallel data has led to continued development of procedural methods. Various low-resource mitigations have been proposed to advance neural methods, including paragraph-level and unsupervised models and augmentation of neural models with procedural elements drawing from knowledge bases. However, high-quality parallel data will likely be crucial for developing fully automated biomedical text simplification.
Collapse
Affiliation(s)
- Brian Ondov
- Computational Health Research Branch, National Library of Medicine, Bethesda, Maryland, USA
| | - Kush Attal
- Computational Health Research Branch, National Library of Medicine, Bethesda, Maryland, USA
| | - Dina Demner-Fushman
- Computational Health Research Branch, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Karissa P, Simpson T, Dawson SP, Low TY, Tay SH, Nordin FDA, Zain SM, Lee PY, Pung YF. Comparison Between Dichloroacetate and Phenylbutyrate Treatment for Pyruvate Dehydrogenase Deficiency. Br J Biomed Sci 2022; 79:10382. [PMID: 35996497 PMCID: PMC9302545 DOI: 10.3389/bjbs.2022.10382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Pyruvate dehydrogenase (PDH) deficiency is caused by a number of pathogenic variants and the most common are found in the PDHA1 gene. The PDHA1 gene encodes one of the subunits of the PDH enzyme found in a carbohydrate metabolism pathway involved in energy production. Pathogenic variants of PDHA1 gene usually impact the α-subunit of PDH causing energy reduction. It potentially leads to increased mortality in sufferers. Potential treatments for this disease include dichloroacetate and phenylbutyrate, previously used for other diseases such as cancer and maple syrup urine disease. However, not much is known about their efficacy in treating PDH deficiency. Effective treatment for PDH deficiency is crucial as carbohydrate is needed in a healthy diet and rice is the staple food for a large portion of the Asian population. This review analysed the efficacy of dichloroacetate and phenylbutyrate as potential treatments for PDH deficiency caused by PDHA1 pathogenic variants. Based on the findings of this review, dichloroacetate will have an effect on most PDHA1 pathogenic variant and can act as a temporary treatment to reduce the lactic acidosis, a common symptom of PDH deficiency. Phenylbutyrate can only be used on patients with certain pathogenic variants (p.P221L, p.R234G, p.G249R, p.R349C, p.R349H) on the PDH protein. It is hoped that the review would provide an insight into these treatments and improve the quality of lives for patients with PDH deficiency.
Collapse
Affiliation(s)
- Patricia Karissa
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Timothy Simpson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Simon P Dawson
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sook Hui Tay
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | - Shamsul Mohd Zain
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
4
|
Tüting C, Kyrilis FL, Müller J, Sorokina M, Skalidis I, Hamdi F, Sadian Y, Kastritis PL. Cryo-EM snapshots of a native lysate provide structural insights into a metabolon-embedded transacetylase reaction. Nat Commun 2021; 12:6933. [PMID: 34836937 PMCID: PMC8626477 DOI: 10.1038/s41467-021-27287-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Found across all kingdoms of life, 2-keto acid dehydrogenase complexes possess prominent metabolic roles and form major regulatory sites. Although their component structures are known, their higher-order organization is highly heterogeneous, not only across species or tissues but also even within a single cell. Here, we report a cryo-EM structure of the fully active Chaetomium thermophilum pyruvate dehydrogenase complex (PDHc) core scaffold at 3.85 Å resolution (FSC = 0.143) from native cell extracts. By combining cryo-EM with macromolecular docking and molecular dynamics simulations, we resolve all PDHc core scaffold interfaces and dissect the residing transacetylase reaction. Electrostatics attract the lipoyl domain to the transacetylase active site and stabilize the coenzyme A, while apolar interactions position the lipoate in its binding cleft. Our results have direct implications on the structural determinants of the transacetylase reaction and the role of flexible regions in the context of the overall 10 MDa PDHc metabolon architecture.
Collapse
Affiliation(s)
- Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Johannes Müller
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Marija Sorokina
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- RGCC International GmbH, Baarerstrasse 95, Zug, 6300, Switzerland
- BioSolutions GmbH Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Ioannis Skalidis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Yashar Sadian
- Bioimaging Center (cryoGEnic), Université de Genève, Sciences II, 1211, Genève 4, Switzerland
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|