1
|
Li Y, Yao L, Zhang C, Li T, Wang D, Li J, Huang Y, Tang X. Growth hormone releasing peptide-2 may be associated with decreased M1 macrophage production and increased histologic and biomechanical tendon-bone healing properties in a rat rotator cuff tear model. Arthroscopy 2024:S0749-8063(24)01027-2. [PMID: 39672241 DOI: 10.1016/j.arthro.2024.11.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
PURPOSE To explore the potential of growth hormone-releasing peptide-2 (GHRP-2) for tendon-bone healing in a rat rotator cuff tear (RCT) model. METHODS The impact of GHRP-2 on M1 macrophage polarization in vitro was determined using real-time polymerase chain reaction, western blot, and immunofluorescence staining. GHRP-2 was then applied in a rat RCT model, and the healing of tendon-bone interface was systemically evaluated by histological staining, radiological assessments, gait analysis, and biomechanical tests. M1 macrophage polarization at the tendon-bone interface was assessed by immunofluorescence staining. RESULTS GHRP-2 was found to reduce the expression of Cd86, Nos2, and tnfa (All p < 0.01), suggesting inhibited M1 macrophage polarization in vitro. The in vivo experiments showed that the proportion of M1 macrophages was reduced both 2- and 4- weeks after surgery (p < 0.01), and the number of M1 was reduced 4 weeks after surgery (p < 0.01) at the tendon-bone interface. The in vivo experiments also showed that histological scores and bone mineral density were increased by GHRP-2 at 8 weeks postsurgery (p < 0.01), suggesting improved healing of the tendon-bone interface. Furthermore, the GHRP-2 group showed better biomechanical property at both 4 and 8 weeks postsurgery, including maximal failure load, stiffness, and tension (All p < 0.01), and better gait parameters at 8 weeks postsurgery, including mean area of left front foot and mean intensity of right front foot (All p < 0.05). CONCLUSION GHRP-2 may be associated with decreased M1 macrophage production and increased histologic and biomechanical tendon-bone healing properties in a rat rotator cuff tear model. CLINICAL RELEVANCE The present study might be a transitional study to demonstrate the efficacy of GHRP-2 in enhancing bone-tendon healing and reduce retear rate after rotator cuff repair.
Collapse
Affiliation(s)
- Yinghao Li
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Lei Yao
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Chunsen Zhang
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Tao Li
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Duan Wang
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Jian Li
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Yizhou Huang
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Xin Tang
- Sports Medicine Center, West China Hospital, Sichuan University; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University.
| |
Collapse
|
2
|
Lu Q, Xu M, Zhang L, Gao L, Mao W, Han W, Xu N. Electroacupuncture for abdominal obesity: protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2024; 14:e093000. [PMID: 39627136 PMCID: PMC11624729 DOI: 10.1136/bmjopen-2024-093000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION The prevalence of obesity is rising, significantly impacting health and quality of life. Effective treatment is crucial, particularly for abdominal obesity (AO). Electroacupuncture (EA), which combines acupuncture and moxibustion with electric current, shows promise but lacks reliable clinical evidence for its efficacy and safety. Therefore, a meta-analysis is essential to assess the clinical effectiveness of EA in treating AO. METHODS AND ANALYSIS A systematic search of PubMed, Medline, Embase, the Cochrane Library, China National Knowledge Infrastructure, Wanfang and Allied and Alternative Medicine (AMED) databases will be conducted from database inception to 1 June 2024 to identify randomised controlled trials investigating the effectiveness and safety of EA in treating AO. Two authors will independently carry out data extraction and evaluate the risk of bias. RevMan software (V.5.4) will be used for data analysis, and publication bias will be assessed using funnel plots and Egger's test. The quality of evidence will be evaluated according to Grades of Recommendation, Assessment, Development, and Evaluation, and trial sequence analysis will be used to calculate the final total sample size required for the meta-analysis. The primary outcome will be the measurement of waist circumference. Secondary outcomes will include the quality of life, hip circumference, waist-to-hip ratio, body mass index, body fat percentage, visceral fat thickness and serum markers such as triglycerides, total cholesterol, low-density lipoprotein and high-density lipoprotein cholesterol. The data will be pooled and analysed, with subgroup analyses conducted if needed. ETHICS AND DISSEMINATION This systematic review and meta-analysis does not require ethical approval because the data for this review will be extracted from already published journal articles. The protocol for this review has been registered in the International Prospective Register of Systematic Reviews (PROSPERO). This review and its findings will be published in a peer-reviewed journal or presented at scientific conferences. PROSPERO REGISTRATION NUMBER CRD42024562984.
Collapse
Affiliation(s)
- Qiuling Lu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Mindong Xu
- Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Lida Zhang
- Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Li Gao
- Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Wei Mao
- Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Wei Han
- Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Nenggui Xu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wang P, Zhang SY, Dong Y, Zeng G, Liu H, Wang X, Jiang C, Li Y. Adipose ADM2 ameliorates NAFLD via promotion of ceramide catabolism. Acta Pharm Sin B 2024; 14:4883-4898. [PMID: 39664433 PMCID: PMC11628856 DOI: 10.1016/j.apsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 12/13/2024] Open
Abstract
The adipose tissue of mammals represents an important energy-storing and endocrine organ, and its dysfunction is relevant to the onset of several health problems, including non-alcoholic fatty liver disease (NAFLD). However, whether treatments targeting adipose dysfunction could alleviate NAFLD has not been well-studied. Adrenomedullin 2 (ADM2), belonging to the CGRP superfamily, is a protective peptide that has been shown to inhibit adipose dysfunction. To investigate the adipose tissue-specific effects of ADM2 on NAFLD, adipose-specific ADM2-overexpressing transgenic (aADM2-tg) mice were developed. When fed a high-fat diet, aADM2-tg mice displayed decreased hepatic triglyceride accumulation compared to wild-type mice, which was attributable to the inhibition of hepatic de novo lipogenesis. Results from lipidomics studies showed that ADM2 decreased ceramide levels in adipocytes through the upregulation of ACER2, which catalyzes ceramide catabolism. Mechanically, activation of adipocyte HIF2α was required for ADM2 to promote ACER2-dependent adipose ceramide catabolism as well as to decrease hepatic lipid accumulation. This study highlights the role of ADM2 and adipose-derived ceramide in NAFLD and suggests that its therapeutic targeting could alleviate disease symptoms.
Collapse
Affiliation(s)
- Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
| | - Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - YongQiang Dong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Yin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
4
|
WANG YUN, LI XIAOJIANG, LIU DALONG, WANG ZHIFENG, XIA JICHEN, WANG LIJUN, ZHANG XUDONG. Research progress on the role of adipocyte exosomes in cancer progression. Oncol Res 2024; 32:1649-1660. [PMID: 39308520 PMCID: PMC11413817 DOI: 10.32604/or.2024.043482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/07/2024] [Indexed: 09/25/2024] Open
Abstract
Exosomes, minute vesicles ubiquitously released by diverse cell types, serve as critical mediators in intercellular communication. Their pathophysiological relevance, especially in malignancies, has garnered significant attention. A meticulous exploration of the exosomal impact on cancer development has unveiled avenues for innovative and clinically valuable techniques. The cargo conveyed by exosomes exerts transformative effects on both local and distant microenvironments, thereby influencing a broad spectrum of biological responses in recipient cells. These membrane-bound extracellular vesicles (EVs) play a pivotal role in delivering bioactive molecules among cells and organs. Cellular and biological processes in recipient cells, ranging from stromal cell reprogramming to immunological responses, extracellular matrix formation, and modulation of cancer cell activation, expansion, and metastasis, are subject to exosome-mediated cell-to-cell communication. Moreover, exosomes have been implicated in endowing cancer cells with resistance to treatment. Extensive research has explored the potential of exosomes as therapeutic targets and diagnostic indicators. This comprehensive review seeks to provide an in-depth understanding of the pivotal components and roles of exosomes in tumorigenesis, growth, progression, and therapeutic responses. The insights into the multifaceted involvement of exosomes in malignant cancers are essential for the scientific community, fostering the development of novel therapeutic and diagnostic strategies in the relentless pursuit of cancer.
Collapse
Affiliation(s)
- YUN WANG
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - XIAOJIANG LI
- Department of Orthopaedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - DALONG LIU
- Department of Orthopaedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - ZHIFENG WANG
- Department of Internal Medicine, Changchun Chaoyang District Hospital of Traditional Chinese Medicine, Changchun, 130061, China
| | - JICHEN XIA
- Department of Orthopedics and Traumatology, Jilin Integrated Traditional Chinese and Western Medicine Hospital of Jilin Province, Jilin, 132012, China
| | - LIJUN WANG
- Department of Oncology, Liaoyuan Second People’s Hospital, Liaoyuan, 136299, China
| | - XUDONG ZHANG
- Department of Brain Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| |
Collapse
|
5
|
Zhang J, Zhang D, Zhao J, Zheng W. MiR-33a-5p in stored red blood cells regulates genes of innate immune response and promotes inflammation. Aging (Albany NY) 2024; 16:10239-10251. [PMID: 38942609 PMCID: PMC11236310 DOI: 10.18632/aging.205925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood transfusion is a common therapeutic procedure in hospitalized patients. Red blood cell (RBC) units undergo various biochemical and morphological changes during storage (storage lesion). miRNAs have been studied intensively regarding cellular metabolic processes, but the effect of miRNAs on blood storage is not well defined. MATERIALS AND METHODS We performed bioinformatics analysis on the public data set of miRNA expression of RBC based on R language, and performed the Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis on the target genes of differentially expressed miRNA. The expression of miRNA differential genes in blood samples stored at different times was verified by qRT-PCR. Next, we used ELISA and qRT-PCR to verify the expression of IL-1β, IL-6, IL-12 and TNF-α in blood at day 1 and day 42. In addition, in vitro, we transfected macrophages with overexpressed miRNA, and the effects of overexpressed miRNA on macrophage polarization and the release of inflammatory factors were verified by flow cytometry and qRT-PCR and ELISA. RESULTS This study combined bioinformatics analysis and experiments to discover the differentially expressed miRNAs in long-term stored blood. The results showed that compared to fresh blood samples, the inflammatory factors were significantly doubled by ELISA, as well as the higher mRNA expression at 42 day. Experimentally verified that miR-33a-5p promoted the M1 type macrophage polarization and increased the release of related inflammatory factors through PPARα/ACC2/AMPK/CPT-1a axis regulation. CONCLUSIONS This study elucidates a potential mechanism of inflammatory factor accumulation in long-term stored blood, providing a theoretical basis and a potential target to prevent transfusion-related adverse reactions.
Collapse
Affiliation(s)
- Jingrui Zhang
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Dan Zhang
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Jing Zhao
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Wei Zheng
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| |
Collapse
|
6
|
Zhang G, Liu P, Liang R, Ying F, Liu D, Su M, Chen L, Zhang Q, Liu Y, Liu S, Zhao G, Li Q. Transcriptome analysis reveals the genes involved in spermatogenesis in white feather broilers. Poult Sci 2024; 103:103468. [PMID: 38359768 PMCID: PMC10875292 DOI: 10.1016/j.psj.2024.103468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Semen volume is an important economic trait of broilers and one of the important indices for continuous breeding. The objective of this study was to identify genes related to semen volume through transcriptome analysis of the testis tissue of white feather broilers. The testis samples with the highest semen volume (H group, n = 5) and lowest semen volume (L group, n = 5) were selected from 400-day-old roosters for transcriptome analysis by RNA sequencing. During the screening of differentially expressed genes (DEGs) between the H and L groups, a total of 386 DEGs were identified, among which 348 were upregulated and 38 were downregulated. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the immune response, leukocyte differentiation, cell adhesion molecules and collagen binding played vital roles in spermatogenesis. The results showed that 4 genes related to spermatogenesis, namely, COL1A1, CD74, ARPC1B and APOA1, were significantly expressed in Group H, which was consistent with the phenotype results. Our findings may provide a basis for further research on the genetic mechanism of semen volume in white feather broilers.
Collapse
Affiliation(s)
- Gaomeng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Peihao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ruiping Liang
- Beijing Changping District Center for Animal Disease Prevention and Control, Beijing, P. R. China
| | - Fan Ying
- MiLe Xinguang Agricultural and Animal Industrials Corporation, Mile, P. R. China
| | - Dawei Liu
- MiLe Xinguang Agricultural and Animal Industrials Corporation, Mile, P. R. China
| | - Meng Su
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Qi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yuhong Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Sha Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| |
Collapse
|
7
|
Huang Y, Liu X, Wang HY, Chen JY, Zhang X, Li Y, Lu Y, Dong Z, Liu K, Wang Z, Wang Q, Fan G, Zou J, Liu S, Shao C. Single-cell transcriptome landscape of zebrafish liver reveals hepatocytes and immune cell interactions in understanding nonalcoholic fatty liver disease. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109428. [PMID: 38325594 DOI: 10.1016/j.fsi.2024.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease in the world. Immunity is the major contributing factor in NAFLD; however, the interaction of immune cells and hepatocytes in disease progression has not been fully elucidated. As a popular species for studying NAFLD, zebrafish, whose liver is a complex immune system mediated by immune cells and non-immune cells in maintaining immune tolerance and homeostasis. Understanding the cellular composition and immune environment of zebrafish liver is of great significance for its application in NAFLD. Here, we established a liver atlas that consists of 10 cell types using single-cell RNA sequencing (scRNA-seq). By examining the heterogeneity of hepatocytes and analyzing the expression of NAFLD-associated genes in the specific cluster, we provide a potential target cell model to study NAFLD. Additionally, our analysis identified two subtypes of distinct resident macrophages with inflammatory and non-inflammatory functions and characterized the successive stepwise development of T cell subclusters in the liver. Importantly, we uncovered the possible regulation of macrophages and T cells on target cells of fatty liver by analyzing the cellular interaction between hepatocytes and immune cells. Our data provide valuable information for an in-depth study of immune cells targeting hepatocytes to regulate the immune balance in NAFLD.
Collapse
Affiliation(s)
- Yingyi Huang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Xiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Hong-Yan Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Jian-Yang Chen
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Xianghui Zhang
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Yubang Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Yifang Lu
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Kaiqiang Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, Shandong, China; Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, Shandong, China; BGI Research, 518083, Shenzhen, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, Shanghai, China
| | - Shanshan Liu
- MGI Tech, 518083, Shenzhen, China; BGI Research, 518083, Shenzhen, China.
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266072, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266072, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
9
|
Jin Y, Sun F, Yang A, Yu X, Li Y, Liang S, Jing X, Wang K, Zhang L, Xiao S, Zhang W, Wang X, Zhao G, Gao B. Insulin-like growth factor binding protein-1 and insulin in polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1279717. [PMID: 38174331 PMCID: PMC10762309 DOI: 10.3389/fendo.2023.1279717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Background Insulin-like growth factor binding protein-1 (IGFBP-1) is considered a decline in polycystic ovary syndrome (PCOS), but it remains controversial that whether such reduction is attributed to obesity. Aims This systematic review aims to explore whether IGFBP-1 is reduced in PCOS, and whether such reduction is associated with obesity. Results Our pooled study included 12 studies with a total of 450 participants. IGFBP-1 levels in PCOS were significantly lower than that in non-PCOS (SMD (95%CI)=-0.49(-0.89, -0.09), P=0.02). No significant difference in IGFBP-1 levels between patients with or without PCOS classified by BMI. Whilst, stratification by PCOS status revealed a significant decrease in IGFBP-1 in overweight (SMD (95%CI)=-0.92(-1.46, -0.37), P=0.001). When comparing fasting insulin in the same way, PCOS patients had significantly elevated fasting insulin level but not statistically declined IGFBP-1 after classified by BMI. Conclusion This meta-analysis provides evidence that the decrease of IGFBP-1 in PCOS was more strongly influenced by comorbid obesity than by PCOS itself. Additionally, contrast to previous findings that insulin significantly suppresses IGFBP-1, our results suggested that the suppression of PCOS-related hyperinsulinemia on IGFBP-1 seemed diminished. Overall, our work may provide a novel perspective on the mechanism between insulin and IGFBP-1 underlying PCOS development.
Collapse
Affiliation(s)
- Yuxin Jin
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Fei Sun
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Aili Yang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xinwen Yu
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yi Li
- Department of Gynaecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Shengru Liang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaorui Jing
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Kai Wang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Lan Zhang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Sa Xiao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - WenCheng Zhang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaoguang Wang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Guohong Zhao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Duan J, Liu D, Zhao Z, Liang L, Pan S, Tian F, Yu P, Li G, Liu Z. Short-term duration of diabetic retinopathy as a predictor for development of diabetic kidney disease. J Transl Int Med 2023; 11:449-458. [PMID: 38130638 PMCID: PMC10732346 DOI: 10.2478/jtim-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Diabetic retinopathy (DR) is a risk factor for diabetic kidney disease (DKD). Whether the duration, especially the short-term duration, of DR is associated with the development and progression of DKD remains unclear. Materials and Methods A retrospective study and two-sample Mendelian randomization (MR) analysis were conducted. Kidney disease was defined by the urinary albumin-to-creatinine ratio (ACR) and the estimated glomerular filtration rate (eGFR). DR was diagnosed by an expert ophthalmologist by using a digital fundus camera. Binary and ordinal logistic regression analyses were performed. A restricted cubic spline was utilized to detect nonlinear associations. Summary statistics for DR- and DKD-associated single-nuclear polymorphisms (SNPs) were extracted from the FinnGen and the UK Biobank consortia. Results A total of 2674 patients with type 2 diabetes mellitus (T2DM) and type 2 diabetic kidney disease (T2DKD) were included. The prevalence and mean duration of DR increased with elevation of ACR and decline in eGFR. Renal function was significantly reduced in patients with DR in the fifth year of life. Binary and ordinal logistic regression showed that each 1-year increase in DR duration was associated with a 19% risk increase in the development of DKD, 16% in the elevation of ACR, and 21% in the decline of renal function. MR estimates indicated that DR was causally associated with DKD development, with an odds ratio of 2.89. Conclusions DR and the duration of DR were independent risk factors for the development and progression of DKD. The short-term duration of DR may be associated with DKD development. DR had a statistically significant effect on DKD.
Collapse
Affiliation(s)
- Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Zihao Zhao
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Lulu Liang
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Fei Tian
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Pei Yu
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| | - Guangpu Li
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- TCM-Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Henan Province Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
| |
Collapse
|
11
|
Li W, Xu H, Li Y, Shi X, Ma Z, Yang F, Chen W. Identifying Ferroptosis-Related Genes Associated with Weight Loss Outcomes and Regulation of Adipocyte Microenvironment. Mol Nutr Food Res 2023; 67:e2300168. [PMID: 37599272 DOI: 10.1002/mnfr.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Indexed: 08/22/2023]
Abstract
SCOPE The study is about the influence of ferroptosis-related genes combined with the immune microenvironment exerted on weight control outcomes and systematic analysis. METHODS AND RESULTS Subcutaneous adipose tissue (sWAT) samples from 11 subjects with good outcome and 10 subjects with poor outcome in weight management are obtained from the Gene Expression Omnibus database. The results are validated in vivo in animal models with different weight loss outcomes. The CIBERSORT algorithm is used to evaluate the differences in immune cell infiltration in each sample. Patients with poor outcome have higher levels of ferroptosis in the adipose tissue. Remarkable differences in cytokine production, nuclear factor kappa-B(NF-κB) transcription factor activity, leukocyte migration involved in the inflammatory response, and other biological processes are also observed compared to that in the well-controlled group. Aldo-keto reductase family 1-member C1(AKR1C1), nuclear receptor coactivator 4(NCOA4), and glutamate-cysteine ligase catalytic subunit(GCLC) are identified as core predictive markers and their expression patterns are confirmed in animal models. CONCLUSIONS Ferroptosis and its mediated inflammation play an important role in long-term weight control, and analyses of the role of ferroptosis-related genes(FRGs) in weight control may provide new potential therapeutic targets for long-term weight control. Anti-inflammatory diets that mitigate inflammatory responses and affect ferroptosis may be considered in the future to improve weight control.
Collapse
Affiliation(s)
- Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Hanyuan Xu
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Xiaodong Shi
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
12
|
Pan D, Li G, Jiang C, Hu J, Hu X. Regulatory mechanisms of macrophage polarization in adipose tissue. Front Immunol 2023; 14:1149366. [PMID: 37283763 PMCID: PMC10240406 DOI: 10.3389/fimmu.2023.1149366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
In adipose tissue, macrophages are the most abundant immune cells with high heterogeneity and plasticity. Depending on environmental cues and molecular mediators, adipose tissue macrophages (ATMs) can be polarized into pro- or anti-inflammatory cells. In the state of obesity, ATMs switch from the M2 polarized state to the M1 state, which contributes to chronic inflammation, thereby promoting the pathogenic progression of obesity and other metabolic diseases. Recent studies show that multiple ATM subpopulations cluster separately from the M1 or M2 polarized state. Various factors are related to ATM polarization, including cytokines, hormones, metabolites and transcription factors. Here, we discuss our current understanding of the potential regulatory mechanisms underlying ATM polarization induced by autocrine and paracrine factors. A better understanding of how ATMs polarize may provide new therapeutic strategies for obesity-related diseases.
Collapse
Affiliation(s)
- Dun Pan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunlin Jiang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Zhao Z, Yan Q, Li D, Li G, Cai J, Pan S, Duan J, Liu D, Liu Z. Relationship between serum iPTH and peritonitis episodes in patients undergoing continuous ambulatory peritoneal dialysis. Front Endocrinol (Lausanne) 2023; 14:1081543. [PMID: 37051200 PMCID: PMC10083419 DOI: 10.3389/fendo.2023.1081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Background Peritonitis is considered as one of the most serious complications that cause hospitalization in patients undergoing continuous ambulatory peritoneal dialysis (CAPD). There is limited evidence on the impact of the parathyroid hormone (PTH) on the first peritoneal dialysis (PD)-associated peritonitis episode. We aimed to investigate the influence of serum intact parathyroid hormone (iPTH) on peritonitis in patients undergoing PD. Methods This was a retrospective cohort study. Patients undergoing initial CAPD from a single center in China were enrolled. The baseline characteristics and clinical information were recorded. The primary outcome of interest was the occurrence of the first PD-associated peritonitis episode. Five Cox proportional hazard models were constructed in each group set. In group set 1, all participants were divided into three subgroups by tertiles of the serum concentration of iPTH; in group set 2, all participants were divided into three subgroups based on the serum concentration of iPTH with 150 pg/ml interval (<150, 150-300, and >300 pg/ml). Hazard ratios and 95% confidence intervals (CIs) were calculated for each model. The multivariate linear regression analysis elimination procedure assessed the association between the clinical characteristics at baseline and the iPTH levels. Restricted cubic spline models were constructed, and stratified analyses were also conducted. Results A total of 582 patients undergoing initial PD (40% women; mean age, 45.1 ± 11.5 years) from a single center in China were recruited. The median follow-up duration was 25.3 months. Multivariate Cox regression analysis showed that, in the fully adjusted model, a higher serum iPTH level (tertile 3, iPTH >300 pg/ml) was significantly associated with a higher risk of PD-associated peritonitis at 3 years [tertile 3: hazard ratio (HR) = 1.53, 95%CI = 1.03-2.55, p = 0.03; iPTH > 300 pg/ml: HR = 1.57, 95%CI = 1.08-2.27, p = 0.02]. The hazard ratio for every 100 pg/ml increase in serum iPTH level was 1.12 (95%CI = 1.05-1.20, p < 0.01) in the total cohort when treating iPTH as a continuous variable. Conclusions An elevated iPTH level was significantly associated with an increased risk of peritonitis in patients undergoing CAPD.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Duopin Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Guangpu Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Jingjing Cai
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jiayu Duan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
14
|
Pan S, Li Z, Wang Y, Liang L, Liu F, Qiao Y, Liu D, Liu Z. A Comprehensive Weighted Gene Co-expression Network Analysis Uncovers Potential Targets in Diabetic Kidney Disease. J Transl Int Med 2022; 10:359-368. [PMID: 36860636 PMCID: PMC9969566 DOI: 10.2478/jtim-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background and Objectives Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes. It has always been difficult to explore novel biomarkers and therapeutic targets of DKD. We aimed to identify new biomarkers and further explore their functions in DKD. Methods The weighted gene co-expression network analysis (WGCNA) method was used to analyze the expression profile data of DKD, obtain key modules related to the clinical traits of DKD, and perform gene enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the mRNA expression of the hub genes in DKD. Spearman's correlation coefficients were used to determine the relationship between gene expression and clinical indicators. Results Fifteen gene modules were obtained via WGCNA analysis, among which the green module had the most significant correlation with DKD. Gene enrichment analysis revealed that the genes in this module were mainly involved in sugar and lipid metabolism, regulation of small guanosine triphosphatase (GTPase) mediated signal transduction, G protein-coupled receptor signaling pathway, peroxisome proliferator-activated receptor (PPAR) molecular signaling pathway, Rho protein signal transduction, and oxidoreductase activity. The qRT-PCR results showed that the relative expression of nuclear pore complex-interacting protein family member A2 (NPIPA2) and ankyrin repeat domain 36 (ANKRD36) was notably increased in DKD compared to the control. NPIPA2 was positively correlated with the urine albumin/creatinine ratio (ACR) and serum creatinine (Scr) but negatively correlated with albumin (ALB) and hemoglobin (Hb) levels. ANKRD36 was positively correlated with the triglyceride (TG) level and white blood cell (WBC) count. Conclusion NPIPA2 expression is closely related to the disease condition of DKD, whereas ANKRD36 may be involved in the progression of DKD through lipid metabolism and inflammation, providing an experimental basis to further explore the pathogenesis of DKD.
Collapse
Affiliation(s)
- Shaokang Pan
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Zhengyong Li
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Yixue Wang
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Lulu Liang
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Fengxun Liu
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Yingjin Qiao
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Dongwei Liu
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| | - Zhangsuo Liu
- Department of TCM-Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University; Research Institute of Nephrology, Zhengzhou University; Research Center for Kidney Disease, Henan Province; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
15
|
A comprehensive weighted gene co-expression network analysis uncovers potential targets in diabetic kidney disease. J Transl Int Med 2022. [DOI: 10.2478/jtim-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background and Objectives
Diabetic kidney disease (DKD) is one of the most common microvascular complications of diabetes. It has always been difficult to explore novel biomarkers and therapeutic targets of DKD. We aimed to identify new biomarkers and further explore their functions in DKD.
Methods
The weighted gene co-expression network analysis (WGCNA) method was used to analyze the expression profile data of DKD, obtain key modules related to the clinical traits of DKD, and perform gene enrichment analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the mRNA expression of the hub genes in DKD. Spearman’s correlation coefficients were used to determine the relationship between gene expression and clinical indicators.
Results
Fifteen gene modules were obtained via WGCNA analysis, among which the green module had the most significant correlation with DKD. Gene enrichment analysis revealed that the genes in this module were mainly involved in sugar and lipid metabolism, regulation of small guanosine triphosphatase (GTPase) mediated signal transduction, G protein-coupled receptor signaling pathway, peroxisome proliferator-activated receptor (PPAR) molecular signaling pathway, Rho protein signal transduction, and oxidoreductase activity. The qRT-PCR results showed that the relative expression of nuclear pore complex-interacting protein family member A2 (NPIPA2) and ankyrin repeat domain 36 (ANKRD36) was notably increased in DKD compared to the control. NPIPA2 was positively correlated with the urine albumin/creatinine ratio (ACR) and serum creatinine (Scr) but negatively correlated with albumin (ALB) and hemoglobin (Hb) levels. ANKRD36 was positively correlated with the triglyceride (TG) level and white blood cell (WBC) count.
Conclusion
NPIPA2 expression is closely related to the disease condition of DKD, whereas ANKRD36 may be involved in the progression of DKD through lipid metabolism and inflammation, providing an experimental basis to further explore the pathogenesis of DKD.
Collapse
|
16
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Lu X, Jin Y, Li D, Zhang J, Han J, Li Y. Multidisciplinary Progress in Obesity Research. Genes (Basel) 2022; 13:1772. [PMID: 36292657 PMCID: PMC9601416 DOI: 10.3390/genes13101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Obesity is a chronic disease that endangers human health. In recent years, the phenomenon of obesity has become more and more common, and it has become a global epidemic. Obesity is closely associated with many adverse metabolic changes and diseases, such as insulin resistance, type 2 diabetes mellitus, coronary heart disease, nervous system diseases and some malignant tumors, which have caused a huge burden on the country's medical finance. In most countries of the world, the incidence of cancer caused by obesity is increasing year on year. Diabetes associated with obesity can lead to secondary neuropathy. How to treat obesity and its secondary diseases has become an urgent problem for patients, doctors and society. This article will summarize the multidisciplinary research on obesity and its complications.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yuxin Jin
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Dexin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing 100191, China
- Beijing Laboratory of Integrative Microangiopathy, Beijing 100191, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing 100191, China
| |
Collapse
|
18
|
lncRNA ZFAS1 Positively Facilitates Endothelial Ferroptosis via miR-7-5p/ACSL4 Axis in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9004738. [PMID: 36092160 PMCID: PMC9453005 DOI: 10.1155/2022/9004738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Accumulating evidence has suggested the significant role of long noncoding RNAs (lncRNA) in regulating ferroptosis, while its regulatory mechanism in diabetic retinopathy (DR) remains unelucidated. In this work, we first demonstrated that lncRNA zinc finger antisense 1 (ZFAS1) is upregulated in high glucose-cultured human retinal endothelial cells (hRECs) and ZFAS1 inhibition attenuated high glucose- (HG-) induced ferroptosis, which was evidenced by cell viability, total iron and ferrous iron levels, reactive oxygen species (ROS) level, and Glutathione Peroxidase 4 (GPX4) expression detection. Mechanistically, we validated that ZFAS1 may act as a competing endogenous RNA by competitively binding with microRNA-7-5p (miR-7-5p) and modulating the expression of its downstream molecule acyl-CoA synthetase long-chain family member 4 (ACSL4), which is now identified as a classic driver gene of ferroptosis process. In conclusion, our results demonstrate that HG-induced ZFAS1 elevation activates ferroptosis in hRECs and the ZFAS1/miR-7-5p/ACSL4 axis may serve as a therapeutic target for endothelial dysfunction in DR.
Collapse
|
19
|
Gao J, Deng M, Li Y, Yin Y, Zhou X, Zhang Q, Hou G. Resistin as a Systemic Inflammation-Related Biomarker for Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease. Front Nutr 2022; 9:921399. [PMID: 35903456 PMCID: PMC9315354 DOI: 10.3389/fnut.2022.921399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 12/16/2022] Open
Abstract
Background Sarcopenia is common in patients with chronic obstructive pulmonary disease (COPD) and is mainly caused by systemic inflammation. Resistin acts as a proinflammatory cytokine and is involved in the activation of multiple inflammatory signaling pathways. The aim of this study was to determine the relationship between resistin levels and systemic inflammation and to assess the clinical value of circulating resistin for sarcopenia in patients with COPD. Methods In this prospective observational study, we enrolled 235 patients with COPD who were divided into development and validation sets. The definition of sarcopenia followed the guidelines from the Asian Working Group for Sarcopenia. Serum concentrations of resistin and TNF-α were measured using an enzyme-linked immunosorbent assay (ELISA). Results In this study, higher serum resistin levels were significantly associated with lower skeletal muscle mass and muscular strength. The serum resistin levels in patients with sarcopenia were significantly higher than those in patients without sarcopenia. The serum resistin level had positive correlations with the serum TNF-α level (r = 0.250, p = 0.007). The predictive efficacy of the serum resistin level (AUC: 0.828) for sarcopenia was superior to that of the serum TNF-α level (AUC: 0.621). The cutoff point (7.138 ng/ml) for the serum resistin level was validated in the validation set (AUC: 0.818). Conclusions Serum resistin levels were associated with systemic inflammation and can be used accurately and easily to predict sarcopenia in patients with COPD.
Collapse
Affiliation(s)
- Jinghan Gao
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yanxia Li
- Respiratory Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
20
|
Ghrelin and Cancer: Examining the Roles of the Ghrelin Axis in Tumor Growth and Progression. Biomolecules 2022; 12:biom12040483. [PMID: 35454071 PMCID: PMC9032665 DOI: 10.3390/biom12040483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Ghrelin, a hormone produced and secreted from the stomach, is prim arily known as an appetite stimulant. Recently, it has emerged as a potential regulator/biomarker of cancer progression. Inconsistent results on this subject make this body of literature difficult to interpret. Here, we attempt to identify commonalities in the relationships between ghrelin and various cancers, and summarize important considerations for future research. The main players in the ghrelin family axis are unacylated ghrelin (UAG), acylated ghrelin (AG), the enzyme ghrelin O-acyltransferase (GOAT), and the growth hormone secretagogue receptor (GHSR). GOAT is responsible for the acylation of ghrelin, after which ghrelin can bind to the functional ghrelin receptor GHSR-1a to initiate the activation cascade. Splice variants of ghrelin also exist, with the most prominent being In1-ghrelin. In this review, we focus primarily on the potential of In1-ghrelin as a biomarker for cancer progression, the unique characteristics of UAG and AG, the importance of the two known receptor variants GHSR-1a and 1b, as well as the possible mechanisms through which the ghrelin axis acts. Further understanding of the role of the ghrelin axis in tumor cell proliferation could lead to the development of novel therapeutic approaches for various cancers.
Collapse
|
21
|
Yan Q, Zhao Z, Liu D, Li J, Pan S, Duan J, Dong J, Liu Z. Integrated analysis of potential gene crosstalk between non-alcoholic fatty liver disease and diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1032814. [PMID: 36387855 PMCID: PMC9642911 DOI: 10.3389/fendo.2022.1032814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Growing evidence indicates that non-alcoholic fatty liver disease (NAFLD) is related to the occurrence and development of diabetic nephropathy (DN). This bioinformatics study aimed to explore optimal crosstalk genes and related pathways between NAFLD and DN. METHODS Gene expression profiles were downloaded from Gene Expression Omnibus. CIBERSORT algorithm was employed to analyze the similarity of infiltrating immunocytes between the two diseases. Protein-protein interaction (PPI) co-expression network and functional enrichment analysis were conducted based on the identification of common differentially expressed genes (DEGs). Least absolute shrinkage and selection operator (LASSO) regression and Boruta algorithm were implemented to initially screen crosstalk genes. Machine learning models, including support vector machine, random forest model, and generalized linear model, were utilized to further identify the optimal crosstalk genes between DN and NAFLD. An integrated network containing crosstalk genes, transcription factors, and associated pathways was developed. RESULTS Four gene expression datasets, including GSE66676 and GSE48452 for NAFLD and GSE30122 and GSE1009 for DN, were involved in this study. There were 80 common DEGs between the two diseases in total. The PPI network built with the 80 common genes included 77 nodes and 83 edges. Ten optimal crosstalk genes were selected by LASSO regression and Boruta algorithm, including CD36, WIPI1, CBX7, FCN1, SLC35D2, CP, ZDHHC3, PTPN3, LPL, and SPP1. Among these genes, LPL and SPP1 were the most significant according to NAFLD-transcription factor network. Five hundred twenty-nine nodes and 1,113 edges comprised the PPI network of activated pathway-gene. In addition, 14 common pathways of these two diseases were recognized using Gene Ontology (GO) analysis; among them, regulation of the lipid metabolic process is closely related to both two diseases. CONCLUSIONS This study offers hints that NAFLD and DN have a common pathogenesis, and LPL and SPP1 are the most relevant crosstalk genes. Based on the common pathways and optimal crosstalk genes, our proposal carried out further research to disclose the etiology and pathology between the two diseases.
Collapse
Affiliation(s)
- Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jia Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jiayu Duan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| | - Jiancheng Dong
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Jiayu Duan, ; Jiancheng Dong, ; Zhangsuo Liu,
| |
Collapse
|
22
|
Zang P, Yang CH, Liu J, Lei HY, Wang W, Guo QY, Lu B, Shao JQ. Relationship Between Acyl and Desacyl Ghrelin Levels with Insulin Resistance and Body Fat Mass in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:2763-2770. [PMID: 36105430 PMCID: PMC9464628 DOI: 10.2147/dmso.s368770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Although strong evidence suggests that ghrelin plays an important role in regulating energy balance, the effects of acylated ghrelin (AG) and deacylated ghrelin (DAG) on fat mass are largely undefined. This study aimed to investigate the differential associations of both forms of ghrelin with insulin resistance and body fat mass in patients with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS A total of 162 patients with type 2 diabetes were recruited and classified based on BMI and visceral fat area (VFA) as VFA normal group (n = 78), normal-BMI VFA obesity group (n = 20) and high-BMI VFA obesity group (n = 64). VFA and subcutaneous fat area (SFA) were detected by bioelectrical impedance analysis. Blood samples were collected to measure fasting glucose, insulin, lipids, AG and DAG levels after clinical examination. RESULTS Compared with VFA normal group, DAG levels were significantly lower (421.7 ± 106.0 and 388.7 ± 96.5 pg/mL vs 524.4 ± 141.5 pg/mL, P < 0.01) in the two VFA obesity groups. No significant difference was found in AG levels within three groups. Among all subjects, BMI, VFA, SFA, fasting insulin and HOMA-IR were negatively correlated with DAG but positively with AG/DAG ratio (P < 0.01). In contrast, AG was positively correlated with HOMA-IR and fasting glucose (P < 0.01). Multiple stepwise regression analysis showed that fasting glucose was the independent factor of AG, VFA and HOMA-IR were the independent factors related to DAG. CONCLUSION DAG levels have a strong negative association with excess body fat mass and insulin resistance, whereas AG levels are closely related to elevated blood glucose levels in T2DM patients.
Collapse
Affiliation(s)
- Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Cui-Hua Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Jun Liu
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, People’s Republic of China
| | - Hai-Yan Lei
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, People’s Republic of China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Qing-Yu Guo
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Jia-Qing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
- Correspondence: Jia-Qing Shao, Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, People’s Republic of China, Tel +86-25-80860354, Email
| |
Collapse
|