1
|
Shuba AA, Bogdanova EV, Anokhina EP, Umarkhanov RU. Current trends in the determination of microbiological indicators of dairy products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:453-470. [PMID: 39917348 PMCID: PMC11794779 DOI: 10.1007/s13197-025-06207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Milk and dairy products are the most common and widely consumed foods. At the same time, milk is often contaminated with pathogenic microorganisms by endo- and exogenous ways, which can cause various defects in raw materials and finished products. Recently, new techniques have been developed for monitoring microbiological indicators of milk, which are characterized by simplicity, ease of use and high reliability. In addition, the analysis time using the new techniques is significantly reduced compared to traditional ones. The review considers the microflora of milk and ways of its contamination with pathogenic microorganisms, as well as new methods for monitoring microbiological indicators that will be useful for specialists in the dairy industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-025-06207-0.
Collapse
Affiliation(s)
- A. A. Shuba
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies (VSUET), Revolutsii Avenue 19, Voronezh, 394036 Russia
| | - E. V. Bogdanova
- Department of Food Production From Animal Raw Materials, Voronezh State University of Engineering Technologies (VSUET), Revolutsii Avenue 19, Voronezh, 394036 Russia
| | - E. P. Anokhina
- Laboratory of Metagenomic and Food Biotechnology, Voronezh State University of Engineering Technologies (VSUET), Revolutsii Avenue 19, Voronezh, 394036 Russia
| | - R. U. Umarkhanov
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies (VSUET), Revolutsii Avenue 19, Voronezh, 394036 Russia
| |
Collapse
|
2
|
Kim SR, Corea Ventura P, Jin Z, Miura M, Stasiewicz MJ, Wang YC. Improving ready-to-eat meat safety: Evaluating the bacterial-inactivation efficacy of microplasma-based far-UVC light treatment of food-contact surfaces and deli turkey breast. Food Microbiol 2025; 126:104674. [PMID: 39638443 DOI: 10.1016/j.fm.2024.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 12/07/2024]
Abstract
The safety of ready-to-eat (RTE) deli meats, especially those sliced in retail establishments, may be improved by light-based surface decontamination. Conventional 254 nm ultraviolet-C (UVC) systems have strong germicidal effects but pose human-health hazards that make them unsuitable for retail use. This study therefore explores the efficacy of microplasma-based 222 nm far-UVC lamps as a safer alternative for decontaminating liquid buffer, two common food-contact surfaces (polyethylene terephthalate and stainless steel), and RTE turkey breast. In all three non-meat cases, the system achieved approximately 5-log reductions of both Listeria monocytogenes and Salmonella Typhimurium. The system also caused a 1.3-log reduction of L. monocytogenes and a 1-log reduction of S. Typhimurium on turkey breast at the highest tested dose of 786.3 mJ/cm2. Color is a key quality indicator for RTE meat consumers, and treatment caused no significant change in L∗, a∗, or b∗ color values (p > 0.05) until doses reached 224.7 mJ/cm2. However, higher doses could lead to statistically significant color changes. Given that far-UVC light has been deemed human-safe by other studies, the proposed system has considerable potential to improve RTE food-related safety in retail establishments, even when consumers and workers are present.
Collapse
Affiliation(s)
- Sei Rim Kim
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Paola Corea Ventura
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Mirai Miura
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
3
|
Pang X, Liu W, Zheng Z, Zheng X, Wang J, Wang Q, Niu L, Gao F. Hybridization-driven synchronous regeneration of biosensing interfaces for Listeria monocytogenes based on recognition of fullerol to single- and double-stranded DNA. Food Chem 2024; 461:140906. [PMID: 39173262 DOI: 10.1016/j.foodchem.2024.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
A novel sensitive and reusable electrochemical biosensor for Listeria monocytegenes DNA has been constructed based on the recognition of water-soluble hydroxylated fullerene (fullerol) to single- and double-stranded DNA. First, the fullerol was electrodeposited on glassy carbon electrode (GCE), acting as a matrix for non-covalent adsorption of single-stranded probe DNA. Upon hybridization with the target DNA, the double helix structure was formed and desorbed from the electrode surface, driving synchronous regeneration of the biosensing interfaces. The biosensor showed a probe DNA loading density of 144 pmol∙cm-2 with the hybridization efficiency of 72.2%. The biosensor is applicable for the analysis of target DNA in actual milk samples with recoveries between 101.0% and 104.0%. This sensing platform provides a simple method for the construction of sensitive and reusable biosensor to monitor Listeria monocytogenes-related food pollution.
Collapse
Affiliation(s)
- Xiangkun Pang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Wenjie Liu
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Zhenan Zheng
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Xuan Zheng
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Jiaai Wang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Qingxiang Wang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China.
| | - Li Niu
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China; Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Feng Gao
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China.
| |
Collapse
|
4
|
Maciejewska N, Stefanou C, Stathas L, Koutsoumanis K. Combined stochastic modelling of pathogenic and spoilage microorganisms. EFSA J 2024; 22:e221112. [PMID: 39712916 PMCID: PMC11659746 DOI: 10.2903/j.efsa.2024.e221112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Quantitative microbiological risk assessment (QMRA) of pathogens in food safety is well established, but steps are being taken to expand this methodology to food spoilage. Parallels can be drawn between the steps involved in a QMRA for pathogens and its application to specific spoilage organisms (SSO). During hazard characterisation for pathogens, the appropriate dose-response model is used to link the hazard level to the health outcome by estimating the probability of illness, resulting from the ingestion of a certain dose of the hazard. The dose-response model, in the case of food spoilage, may be translated into a spoilage-response relationship linking the spoilage-level with the probability the consumer will discard the food and not consume it. Such models are developed with sensory testing, assessing consumers sensitivity to microbial spoilage quality defects and correlating them to the SSO concentration. Ignoring food spoilage before the stated expiration date can lead to the final health risk being overestimated, since cases in which the food item poses a real risk to the consumer but is not consumed due to perceived spoilage are not excluded. Plenty of risk assessments have been carried out for pathogens in different RTE foods. What is missing is the integration of the two approaches into a single model that can estimate the risk of illness, factoring in the variability of consumer responses to spoilage. The spoilage-response relationship was combined with a stochastic modelling approach for lactic acid bacteria (LAB) and Listeria monocytogenes growth, also taking into account microbial interaction between LAB and L. monocytogenes (Jameson effect) to increase accuracy. The comparison of results between the 'Baseline' and the 'Spoilage-informed' approach showed significant difference in listeriosis cases, both for consumers under and over 65 years old. These results may suggest, that the hypothesis about overestimation of listeriosis risk in case of not taking into account product spoilage is correct. The combined QMRA model developed in the present study can be a useful tool for risk management decisions in the meat industry.
Collapse
Affiliation(s)
- Nikola Maciejewska
- Department of Food Quality, Prof. Waclaw Dabrowski Institute of Agriculture and Food BiotechnologyState Research InstituteLodzPoland
| | - Constantine‐Richard Stefanou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural EnvironmentAristotle University of ThessalonikiThessalonikiGreece
| | - Leonardos Stathas
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural EnvironmentAristotle University of ThessalonikiThessalonikiGreece
| | - Konstantinos Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural EnvironmentAristotle University of ThessalonikiThessalonikiGreece
| |
Collapse
|
5
|
Jung J, Young I, Sekercioglu F. Descriptive analysis of the most common types of food safety infractions at ready-to-eat meat processing plants in Ontario, Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1499-1510. [PMID: 37306113 DOI: 10.1080/09603123.2023.2223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Food safety inspections of meat processing plants and abattoirs that process ready-to-eat (RTE) meats have identified a lack of compliance with good manufacturing practices. This study was undertaken to identify common food safety infractions in the RTE meat processing sector in Ontario through an analysis of historical audit records. A total of 376,457 audit item results were evaluated across 912 unique audits of 204 different RTE meat plants. A nearly two-thirds overall item pass rate (64.4%; n = 242,478) was identified. Across all other risk categories, the highest rates of infractions were observed in the "maintenance of premises, equipment and utensils" (56.7%; n = 750). The overall item pass rate was higher in free-standing meat processing plants than abattoirs, while pass rates gradually decreased across the study period. The results of this study have identified key areas for improvement in future inspection, audit and outreach with RTE meat processing plants.
Collapse
Affiliation(s)
- Jiin Jung
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Ian Young
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Fatih Sekercioglu
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
6
|
de Oliveira TF, Kuniyoshi TM, Frota EG, Bermúdez-Puga S, Sakaue LN, Cassiano LL, Tachibana L, Piccoli RAM, Converti A, Oliveira RPDS. Anti-Listerial Activity of Bacteriocin-like Inhibitory Substance Produced by Enterococcus lactis LBM BT2 Using Alternative Medium with Sugarcane Molasses. Antibiotics (Basel) 2024; 13:210. [PMID: 38534645 PMCID: PMC10967575 DOI: 10.3390/antibiotics13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.
Collapse
Affiliation(s)
- Taciana Freire de Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Taís Mayumi Kuniyoshi
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Elionio Galvão Frota
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Sebastián Bermúdez-Puga
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Letícia Naomy Sakaue
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| | - Luara Lucena Cassiano
- Aquaculture Research Center, Scientific Research of Fisheries Institute, APTA, SAA, Av. Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, Brazil; (L.L.C.); (L.T.)
| | - Leonardo Tachibana
- Aquaculture Research Center, Scientific Research of Fisheries Institute, APTA, SAA, Av. Conselheiro Rodrigues Alves, 1252, São Paulo 04014-002, Brazil; (L.L.C.); (L.T.)
| | - Rosane Aparecida Moniz Piccoli
- Bionanomanufacturing Nucleus, Institute for Technological Research (IPT), Av. Prof. Almeida Prado, 532, São Paulo 05508-901, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy;
| | - Ricardo Pinheiro de Souza Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, São Paulo 05508-000, Brazil; (T.F.d.O.); (T.M.K.); (E.G.F.); (S.B.-P.); (L.N.S.)
| |
Collapse
|
7
|
Gonzales-Barron U, Cadavez V, De Oliveira Mota J, Guillier L, Sanaa M. A Critical Review of Risk Assessment Models for Listeria monocytogenes in Meat and Meat Products. Foods 2024; 13:359. [PMID: 38338495 PMCID: PMC10855662 DOI: 10.3390/foods13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
A review of the published quantitative risk assessment (QRA) models of L. monocytogenes in meat and meat products was performed, with the objective of appraising the intervention strategies deemed suitable for implementation along the food chain as well as their relative effectiveness. A systematic review retrieved 23 QRA models; most of them (87%) focused on ready-to-eat meat products and the majority (78%) also covered short supply chains (end processing/retail to consumption, or consumption only). The processing-to-table scope was the choice of models for processed meats such as chorizo, bulk-cooked meat, fermented sausage and dry-cured pork, in which the effects of processing were simulated. Sensitivity analysis demonstrated the importance of obtaining accurate estimates for lag time, growth rate and maximum microbial density, in particular when affected by growth inhibitors and lactic acid bacteria. In the case of deli meats, QRA models showed that delicatessen meats sliced at retail were associated with a higher risk of listeriosis than manufacture pre-packed deli meats. Many models converged on the fact that (1) controlling cold storage temperature led to greater reductions in the final risk than decreasing the time to consumption and, furthermore, that (2) lower numbers and less prevalence of L. monocytogenes at the end of processing were far more effective than keeping low temperatures and/or short times during retail and/or home storage. Therefore, future listeriosis QRA models for meat products should encompass a processing module in order to assess the intervention strategies that lead to lower numbers and prevalence, such as the use of bio-preservation and novel technologies. Future models should be built upon accurate microbial kinetic parameters, and should realistically represent cross-contamination events along the food chain.
Collapse
Affiliation(s)
- Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Juliana De Oliveira Mota
- Department of Nutrition and Food Safety, World Health Organization (WHO), CH-1211 Geneva, Switzerland;
| | - Laurent Guillier
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France;
| | - Moez Sanaa
- Department of Nutrition and Food Safety, World Health Organization (WHO), CH-1211 Geneva, Switzerland;
| |
Collapse
|
8
|
Martín-Miguélez JM, Robledo J, Martín I, Castaño C, Delgado J, Córdoba JJ. Biocontrol of L. monocytogenes with Selected Autochthonous Lactic Acid Bacteria in Raw Milk Soft-Ripened Cheese under Different Water Activity Conditions. Foods 2024; 13:172. [PMID: 38201200 PMCID: PMC10779163 DOI: 10.3390/foods13010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The effect of selected autochthonous Lactic Acid Bacteria (LAB) against Listeria monocytogenes was evaluated in two elaborations of soft-ripened cheese performed under high and low relative humidity (RH) elaborations, to achieve aw ranging from 0.97 to 0.94 in ripened cheeses. Two selected autochthonous strains of Lacticaseibacillus casei 31 and 116 were used. In each elaboration, 8 batches were physicochemically and microbiologically evaluated throughout the ripening process. The aw and pH decreased during ripening to final values ranging from 0.944 to 0.972 aw and 5.0 to 5.3 pH, respectively. LAB was the only microbial group that increased throughout the ripening in high and low RH elaborations. In batches that were uninoculated with LAB strains, L. monocytogenes was either maintained at the initial inoculation level or showed a slight reduction by the end of the ripening process. However, in LAB-inoculated batches in the two elaborations, steady decreases of L. monocytogenes were observed throughout maturation. L. casei 31 alone or in combination with strain 116 provoked reductions of 2 to 4 log CFU/g in L. monocytogenes over 60 days of ripening, which could be enough as a strategy for biocontrol to deal with the usual contamination by L. monocytogenes during cheese processing.
Collapse
Affiliation(s)
- José M. Martín-Miguélez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Jurgen Robledo
- Laboratorio Hidromante S.L., C. Isaac Peral, 15. Pol. Ind. Sepes, 10600 Plasencia, Spain;
| | - Irene Martín
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Cristina Castaño
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| | - Juan J. Córdoba
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (J.M.M.-M.); (I.M.); (C.C.); (J.D.)
| |
Collapse
|
9
|
Prasad A, Khan S, Monteiro JK, Li J, Arshad F, Ladouceur L, Tian L, Shakeri A, Filipe CDM, Li Y, Didar TF. Advancing In Situ Food Monitoring through a Smart Lab-in-a-Package System Demonstrated by the Detection of Salmonella in Whole Chicken. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302641. [PMID: 37358057 DOI: 10.1002/adma.202302641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/16/2023] [Indexed: 06/27/2023]
Abstract
With food production shifting away from traditional farm-to-table approaches to efficient multistep supply chains, the incidence of food contamination has increased. Consequently, pathogen testing via inefficient culture-based methods has increased, despite its lack of real-time capabilities and need for centralized facilities. While in situ pathogen detection would address these limitations and enable individual product monitoring, accurate detection within unprocessed, packaged food products without user manipulation has proven elusive. Herein, "Lab-in-a-Package" is presented, a platform capable of sampling, concentrating, and detecting target pathogens within closed food packaging, without intervention. This system consists of a newly designed packaging tray and reagent-infused membrane that can be paired universally with diverse pathogen sensors. The inclined food packaging tray maximizes fluid localization onto the sensing interface, while the membrane acts as a reagent-immobilizing matrix and an antifouling barrier for the sensor. The platform is substantiated using a newly discovered Salmonella-responsive nucleic acid probe, which enables hands-free detection of 103 colony forming units (CFU) g-1 target pathogen in a packaged whole chicken. The platform remains effective when contamination is introduced with toolsand surfaces, ensuring widespread efficacy. Its real-world use for in situ detection is simulated using a handheld fluorescence scanner with smartphone connectivity.
Collapse
Affiliation(s)
- Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Fatima Arshad
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| |
Collapse
|
10
|
Nieto G, Peñalver R, Ortuño C, Hernández JD, Guillén I. Control of the Growth of Listeria monocytogenes in Cooked Ham through Combinations of Natural Ingredients. Foods 2023; 12:3416. [PMID: 37761125 PMCID: PMC10528306 DOI: 10.3390/foods12183416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In the ready-to-eat food industry, Listeria control is mandatory to ensure the food safety of the products since its presence could cause a disease called listeriosis. The objective of the present study was to carry out a challenge test to verify the efficiency of different combinations of natural antimicrobial ingredients against Listeria monocytogenes to be used in ready-to-eat foods. Six different formulations of cooked ham were prepared: a control formulation and five different formulations. An initial inoculation of 2 log cycles was used in the different products, and the growth of Listeria was monitored at different temperatures and times (4 °C for 17 w and 7 °C for 12 w). Control samples showed a progressive growth, reaching 5-6 log after 3 or 4 weeks. The rest of the samples showed constant counts of Listeria during the entire study. Only samples containing 100 ppm nitrite + 250 PPM ascorbic acid + 0.7% PRS-DV-5 did not control the growth of Listeria at 7 °C after 7 w of storage. The results obtained allowed us to classify the cooked ham prepared using natural ingredient combinations as a "Ready-to-eat food unable to support the growth of L. monocytogenes other than those intended for infants and for special medical purposes".
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain
| | - Carmen Ortuño
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| | - Juan D. Hernández
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| | - Isidro Guillén
- Cathedra Biotechnology PROSUR, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain (J.D.H.)
| |
Collapse
|
11
|
Centorotola G, Ziba MW, Cornacchia A, Chiaverini A, Torresi M, Guidi F, Cammà C, Bowa B, Mtonga S, Magambwa P, D’Alterio N, Scacchia M, Pomilio F, Muuka G. Listeria monocytogenes in ready to eat meat products from Zambia: phenotypical and genomic characterization of isolates. Front Microbiol 2023; 14:1228726. [PMID: 37711697 PMCID: PMC10498467 DOI: 10.3389/fmicb.2023.1228726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The contamination of ready to eat foods (RTE) products due to Listeria monocytogenes could compromise the products safety becoming a great risk for the consumers. The high presence of L. monocytogenes in RTE products has been described worldwide, but few data are available about these products from African countries. The aims of this study were to report the presence of L. monocytogenes in Zambian RTE products, providing genomic characterization and data on similarity with African circulating strains using whole genome sequencing (WGS). A total of 304 RTE products, produced by different Zambian manufacturers, were purchased at retail, from major supermarkets located in Lusaka, Zambia, comprising 130 dairy and 174 meat products. L. monocytogenes was detected only in 18 (10.3%) RTE meat products of the 174 samples tested. The MLST analysis grouped the 18 L. monocytogenes isolates in 7 clonal complexes (CCs): CC1 (n = 5), CC2 (n = 4), CC9 (n = 4), CC5 (n = 2), CC121 (n = 1), CC155 (n = 1), and CC3 (n = 1). According to the cgMLST results, several clusters were detected, in particular belonging to hyper-virulent clones CC1 and CC2. Regarding the virulence factors, a complete L. monocytogenes Pathogenicity Island 3 (LIPI-3) was present both in the CC1 and CC3, in addition to LIPI-1. Several resistance genes and mobile genetic elements were detected, including Stress Islands, the bcrABC cassette and Tn6188_qac transposon, plasmids and intact prophages. Despite being a first preliminary work with a limited number of samples and isolates, this study helped to increase existing knowledge on contaminated RTE products in Zambia, confirming the presence of hyper-virulent L. monocytogenes CCs, which could play an important role in human diseases, posing a public health concern for consumers.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maureen Wakwamba Ziba
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Benson Bowa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Samson Mtonga
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Phelly Magambwa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Geoffrey Muuka
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| |
Collapse
|
12
|
Nogueira R, Cabo ML, García-Sanmartín L, Sánchez-Ruiloba L, Rodríguez-Herrera JJ. Risk factor-based clustering of Listeria monocytogenes in food processing environments using principal component analysis. Food Res Int 2023; 170:112989. [PMID: 37316020 DOI: 10.1016/j.foodres.2023.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Listeria monocytogenes has a range of strategies that allow it to persist as biofilms in food processing environments (FPE), making it a pathogen of concern to the food industry. The properties of these biofilms are highly variable among strains, and this significantly affects the risk of food contamination. The present study therefore aims to conduct a proof-of-concept study to cluster strains of L. monocytogenes by risk potential using principal component analysis, a multivariate approach. A set of 22 strains, isolated from food processing environments, were typed by serogrouping and pulsed-field gel electrophoresis, showing a relatively high diversity. They were characterized in terms of several biofilm properties that might pose a potential risk of food contamination. The properties studied were tolerance to benzalkonium chloride (BAC), the structural parameters of biofilms (biomass, surface area, maximum and average thickness, surface to biovolume ratio and roughness coefficient) measured by confocal laser scanning microscopy and (3) transfer of biofilm cells to smoked salmon. The PCA correlation circle revealed that the tolerance of biofilms to BAC was positively correlated with roughness, but negatively with biomass parameters. On the contrary, cell transfers were not related to three-dimensional structural parameters, which suggests the role of other variables yet unexplored. Additionally, hierarchical clustering grouped strains into three different clusters. One of them included the strains with high tolerance to BAC and roughness. Another one consisted of strains with enhanced transfer ability, whereas the third cluster contained those that stood out for the thickness of biofilms. The present study represents a novel and effective way to classify L. monocytogenes strains according to biofilm properties that condition the potential risk of reaching the consumer through food contamination. It would thus allow the selection of strains representative of different worst-case scenarios for future studies in support of QMRA and decision-making analysis.
Collapse
Affiliation(s)
- Raquel Nogueira
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Marta López Cabo
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Lucía García-Sanmartín
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Lucía Sánchez-Ruiloba
- Optical Microscopy and Image Analysis Facility, Scientific-Technical Support Unit, Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Juan José Rodríguez-Herrera
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
13
|
Bodie AR, O'Bryan CA, Olson EG, Ricke SC. Natural Antimicrobials for Listeria monocytogenes in Ready-to-Eat Meats: Current Challenges and Future Prospects. Microorganisms 2023; 11:1301. [PMID: 37317275 DOI: 10.3390/microorganisms11051301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Listeria monocytogenes, an intra-cellular, Gram-positive, pathogenic bacterium, is one of the leading agents of foodborne illnesses. The morbidity of human listeriosis is low, but it has a high mortality rate of approximately 20% to 30%. L. monocytogenes is a psychotropic organism, making it a significant threat to ready-to-eat (RTE) meat product food safety. Listeria contamination is associated with the food processing environment or post-cooking cross-contamination events. The potential use of antimicrobials in packaging can reduce foodborne disease risk and spoilage. Novel antimicrobials can be advantageous for limiting Listeria and improving the shelf life of RTE meat. This review will discuss the Listeria occurrence in RTE meat products and potential natural antimicrobial additives for controlling Listeria.
Collapse
Affiliation(s)
- Aaron R Bodie
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Corliss A O'Bryan
- Food Science Department, University of Aransas-Fayetteville, Fayetteville, AR 72701, USA
| | - Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
14
|
Felton S, Armstrong C, Chen CY, He Y, Lee J, Reed S, Akula N, Walker S, Berger BW, Capobianco J. Enhancing detection of Listeria monocytogenes in food products using an enzyme. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Zakrzewski AJ, Kurpas M, Zadernowska A, Chajęcka-Wierzchowska W, Fraqueza MJ. A Comprehensive Virulence and Resistance Characteristics of Listeria monocytogenes Isolated from Fish and the Fish Industry Environment. Int J Mol Sci 2023; 24:ijms24043581. [PMID: 36834997 PMCID: PMC9967382 DOI: 10.3390/ijms24043581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Listeria monocytogenes is an important pathogen, often associated with fish, that can adapt and survive in products and food processing plants, where it can persist for many years. It is a species characterized by diverse genotypic and phenotypic characteristics. Therefore, in this study, a total of 17 L. monocytogenes strains from fish and fish-processing environments in Poland were characterized for their relatedness, virulence profiles, and resistance genes. The Core Genome Multilocus Sequence Typing (cgMLST) analysis revealed that the most frequent serogroups were IIa and IIb; sequence types (ST) were ST6 and ST121; and clonal complexes (CC) were CC6 and CC121. Core genome multilocus sequence typing (cgMLST) analysis was applied to compare the present isolates with the publicly available genomes of L. monocytogenes strains recovered in Europe from humans with listeriosis. Despite differential genotypic subtypes, most strains had similar antimicrobial resistance profiles; however, some of genes were located on mobile genetic elements that could be transferred to commensal or pathogenic bacteria. The results of this study showed that molecular clones of tested strains were characteristic for L. monocytogenes isolated from similar sources. Nevertheless, it is worth emphasizing that they could present a major public health risk due to their close relation with strains isolated from human listeriosis.
Collapse
Affiliation(s)
| | - Monika Kurpas
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, University of Warmia and Mazrui, 10-726 Olsztyn, Poland
- Correspondence:
| | | | - Maria João Fraqueza
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
16
|
Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli. Foods 2023; 12:foods12040685. [PMID: 36832760 PMCID: PMC9955718 DOI: 10.3390/foods12040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
Ready-to-eat meat products have been identified as a potential vehicle for Listeria monocytogenes. Postprocessing contamination (i.e., handling during portioning and packaging) can occur, and subsequent cold storage together with a demand for products with long shelf life can create a hazardous scenario. Good hygienic practice is augmented by intervention measures in controlling post-processing contamination. Among these interventions, the application of 'cold atmospheric plasma' (CAP) has gained interest. The reactive plasma species exert some antibacterial effect, but can also alter the food matrix. We studied the effect of CAP generated from air in a surface barrier discharge system (power densities 0.48 and 0.67 W/cm2) with an electrode-sample distance of 15 mm on sliced, cured, cooked ham and sausage (two brands each), veal pie, and calf liver pâté. Colour of samples was tested immediately before and after CAP exposure. CAP exposure for 5 min effectuated only minor colour changes (ΔE max. 2.7), due to a decrease in redness (a*), and in some cases, an increase in b*. A second set of samples was contaminated with Listeria (L.) monocytogenes, L. innocua and E. coli and then exposed to CAP for 5 min. In cooked cured meats, CAP was more effective in inactivating E. coli (1 to 3 log cycles) than Listeria (from 0.2 to max. 1.5 log cycles). In (non-cured) veal pie and calf liver pâté that had been stored 24 h after CAP exposure, numbers of E. coli were not significantly reduced. Levels of Listeria were significantly reduced in veal pie that had been stored for 24 h (at a level of ca. 0.5 log cycles), but not in calf liver pâté. Antibacterial activity differed between but also within sample types, which requires further studies.
Collapse
|
17
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
18
|
Bucur FI, Borda D, Neagu C, Grigore-Gurgu L, Nicolau AI. Deterministic Approach and Monte Carlo Simulation to Predict Listeria monocytogenes Time to Grow on Refrigerated Ham: A Study Supporting Risk-based Decisions for Consumers' Health. J Food Prot 2023; 86:100026. [PMID: 36916585 DOI: 10.1016/j.jfp.2022.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
This study assessed the growth of Listeria monocytogenes in ready-to-eat (RTE) ham during storage under conditions simulating domestic practices with the intention to offer support in the elaboration of food safety policies that should better protect consumers against food poisoning at home. RTE ham, artificially contaminated at either medium (102-103 CFU/g) or high (104-105 CFU/g) concentration, was stored at both isothermal (4℃ in a refrigerator able to maintain a relatively constant temperature and 5℃ and 7℃ in a refrigerator with fluctuating temperature) and dynamic (5℃ and 7℃ with intermittent exposure to ambient temperature, e.g. 25℃) conditions. Under isothermal conditions, the increasing storage temperature determined a significantly increased (p < 0.05) capacity of L. monocytogenes to grow. The kinetic growth parameters were derived by fitting the Baranyi and Roberts model to the experimental data and, based on the maximum specific growth rates, it was estimated the temperature dependence of L. monocytogenes growth in RTE ham. At medium contamination level, sanitary risk time calculation revealed that, unlike storage at 5℃ and 7℃, storage at 4℃ of the RTE ham extends the time period during which the product is safe for consumption by ∼40 and 52%, respectively. However, the real temperature fluctuations included in the Monte Carlo simulations at low L. monocytogenes counts (1, 5 and 10 CFU/g) have shortened the safety margins. Stochastic models also proved to be useful tools for describing the pathogen's behavior when refrigeration of the RTE ham alternates with periods of ham being kept at room temperature, considered dynamic conditions of growth.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Daniela Borda
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Corina Neagu
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Leontina Grigore-Gurgu
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania
| | - Anca Ioana Nicolau
- Dunărea de Jos University of Galați, Faculty of Food Science and Engineering, Domnească Street 111, Galați 800201, Romania.
| |
Collapse
|
19
|
Bai X, Wang Z, Li W, Xiao F, Huang J, Xu Q, Xu H. Rapid and accurate detection for Listeria monocytogenes in milk using ampicillin-mediated magnetic separation coupled with quantitative real-time PCR. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Zambon A, Perez AG, Spilimbergo S, Fernández Escámez PS. Training in tools to develop quantitative microbial risk assessment along the food chain of Spanish products. EFSA J 2022; 20:e200903. [PMID: 36523424 PMCID: PMC9748752 DOI: 10.2903/j.efsa.2022.e200903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Food safety is a widespread challenge. Every year it is estimated that almost 1 in 10 people in the world fall ill after eating contaminated food resulting in over 400,000 deaths. The risk of outbreaks is higher when consuming ready-to-eat (RTE) products because they are eaten without a further cooking process that could inactivate pathogenic microorganisms. Hence, food processing is essential to increase the safety of RTE products. Microbiological risk assessment (MRA) integrates food science, microbiology and data science to provide a comprehensive understanding of the safety of the food system. MRA provides qualitative and/or quantitative information to decision makers, which might promote the adoption of better food practices. In this contest, this project aims to study and implement tools for quantitative microbial risk assessment (QMRA) of food products along the food chain. A common RTE product (cured ham) from Spain was used as a case study. Following, the exposure assessment model was implemented using mathematical models and statistical software to describe the microbial behaviour along the food chain. The study presents the possibility to identify the risk exposure in different scenarios (e.g. growth during different storage conditions, inactivation induced by traditional or innovative decontamination techniques), showing the flexibility of the predictive tools developed.
Collapse
Affiliation(s)
- Alessandro Zambon
- Departamento de Ingeniería AgronómicaETSIA‐Universidad Politécnica de CartagenaPaseo Alfonso XIII, 4830203CartagenaSpain
- Department of Industrial EngineeringUniversity of Paduavia Marzolo 935131PaduaItaly
| | - Alberto Garre Perez
- Departamento de Ingeniería AgronómicaETSIA‐Universidad Politécnica de CartagenaPaseo Alfonso XIII, 4830203CartagenaSpain
| | - Sara Spilimbergo
- Department of Industrial EngineeringUniversity of Paduavia Marzolo 935131PaduaItaly
| | - Pablo S Fernández Escámez
- Departamento de Ingeniería AgronómicaETSIA‐Universidad Politécnica de CartagenaPaseo Alfonso XIII, 4830203CartagenaSpain
| |
Collapse
|
21
|
Li Y, Gao Y, Ling N, Shen Y, Zhang D, Ou D, Zhang X, Jiao R, Zhu C, Ye Y. Rapid and simple quantitative identification of Listeria monocytogenes in cheese by isothermal sequence exchange amplification based on surface-enhanced Raman spectroscopy. J Dairy Sci 2022; 105:9450-9462. [DOI: 10.3168/jds.2022-22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
22
|
Souza VR, Illera AE, Keener KM. High voltage atmospheric cold plasma technology as a food safety intervention for decontamination of cutting tools during ready-to-eat poultry meat slicing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ability of Two Strains of Lactic Acid Bacteria To Inhibit Listeria monocytogenes by Spot Inoculation and in an Environmental Microbiome Context. Microbiol Spectr 2022; 10:e0101822. [PMID: 35852346 PMCID: PMC9431016 DOI: 10.1128/spectrum.01018-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We evaluated the ability of two strains of lactic acid bacteria (LAB) to inhibit L. monocytogenes using spot inoculation and environmental microbiome attached-biomass assays. LAB strains (PS01155 and PS01156) were tested for antilisterial activity toward 22 phylogenetically distinct L. monocytogenes strains isolated from three fruit packing environments (F1, F2, and F3). LAB strains were tested by spot inoculation onto L. monocytogenes lawns (108 and 107 CFU/mL) and incubated at 15, 20, 25, or 30°C for 3 days. The same LAB strains were also cocultured at 15°C for 3, 5, and 15 days in polypropylene conical tubes with L. monocytogenes and environmental microbiome suspensions collected from F1, F2, and F3. In the spot inoculation assay, PS01156 was significantly more inhibitory toward less concentrated L. monocytogenes lawns than more concentrated lawns at all the tested temperatures, while PS01155 was significantly more inhibitory toward less concentrated lawns only at 15 and 25°C. Furthermore, inhibition of L. monocytogenes by PS01156 was significantly greater at 15°C than higher temperatures, whereas the temperature did not have an effect on the inhibitory activity of PS01155. In the assay using attached environmental microbiome biomass, L. monocytogenes concentration was significantly reduced by PS01156, but not PS01155, when cocultured with microbiomes from F1 and F3 and incubated for 3 days at 15°C. Attached biomass microbiota composition was significantly affected by incubation time but not by LAB strain. This study demonstrates that LAB strains that may exhibit inhibitory properties toward L. monocytogenes in a spot inoculation assay may not maintain antilisterial activity within a complex microbiome. IMPORTANCEListeria monocytogenes has previously been associated with outbreaks of foodborne illness linked to consumption of fresh produce. In addition to conventional cleaning and sanitizing, lactic acid bacteria (LAB) have been studied for biocontrol of L. monocytogenes in food processing environments that are challenging to clean and sanitize. We evaluated whether two specific LAB strains, PS01155 and PS01156, can inhibit the growth of L. monocytogenes strains in a spot inoculation and in an attached-biomass assay, in which they were cocultured with environmental microbiomes collected from tree fruit packing facilities. LAB strains PS01155 and PS01156 inhibited L. monocytogenes in a spot inoculation assay, but the antilisterial activity was lower or not detected when they were grown with environmental microbiota. These results highlight the importance of conducting biocontrol challenge tests in the context of the complex environmental microbiomes present in food processing facilities to assess their potential for application in the food industry.
Collapse
|
24
|
Xiang YZ, Wu G, Zhang YP, Yang LY, Zhang YM, Zhao ZS, Deng XY, Zhang QL. Inhibitory effect of a new bacteriocin RSQ04 purified from Lactococcus lactis on Listeria monocytogenes and its application on model food systems. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Hadjicharalambous C, Grispoldi L, Chalias T, Goga BC. A quantitative risk assessment of Listeria monocytogenes from prevalence and concentration data: Application to a traditional ready to eat (RTE) meat product. Int J Food Microbiol 2022; 379:109843. [DOI: 10.1016/j.ijfoodmicro.2022.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
|
26
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
27
|
Xu Q, Liu S, Ji S, Wang Z, Wang M, Liu Y, Gong X, Fu B, Ye C, Chang H, Sui Z. Development and application of a flow cytometry-based method for rapid and multiplexed quantification of three foodborne pathogens in chicken breast. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Comparison of Selected Phenotypic Features of Persistent and Sporadic Strains of Listeria monocytogenes Sampled from Fish Processing Plants. Foods 2022; 11:foods11101492. [PMID: 35627065 PMCID: PMC9140201 DOI: 10.3390/foods11101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
(1) Background: The main source of transmission of Listeria monocytogenes is contaminated food, e.g., fish and meat products and raw fruit and vegetables. The bacteria can remain for 13 years on machines in food processing plants, including fish plants. (2) Methods: A total of 720 swabs were collected from a salmon filleting line. The research material consisted of 62 (8.6%) L. monocytogenes isolates. Pulsed Field Gel Electrophoresis (PFGE) allowed detecting a pool of persistent strains. All persistent strains (n = 6) and a parallel group of strains collected sporadically (n = 6) were characterized by their ability to invade HT-29 cells, biofilm formation ability, and minimum bactericidal concentrations (MBC) of selected disinfectants. (3) Results: Among the obtained isolates, 38 genetically different strains were found, including 6 (15.8%) persistent strains. The serogroup 1/2a-3a represented 28 strains (73.7%), including the persistent ones. There were no significant differences in invasiveness between the persistent and sporadic strains. The persistent strains tolerated higher concentrations of the tested disinfectants, except for iodine-based compounds. The persistent strains initiated the biofilm formation process faster and formed it more intensively. (4) Conclusions: The presence of persistent strains in the food processing environment is a great challenge for producers to ensure consumer safety. This study attempts to elucidate the phenotypic characteristics of persistent L. monocytogenes strains.
Collapse
|
29
|
Antibiotic Resistance Patterns of Listeria Species Isolated from Broiler Abattoirs in Lusaka, Zambia. Antibiotics (Basel) 2022; 11:antibiotics11050591. [PMID: 35625235 PMCID: PMC9137566 DOI: 10.3390/antibiotics11050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
L. monocytogenes is a public health threat linked to fast foods such as broiler chickens. This study aimed to verify the occurrence of Listeria species in chickens from abattoirs and evaluate their antimicrobial resistance. In total, 150 broiler carcass swabs distributed as cloacal (n = 60), exterior surface (n = 60), and environmental (n = 30) were collected. Listeria species were characterized using biochemical tests and PCR. We conducted antibiotic resistance tests using the disc diffusion and Etest (Biomerieux, Durham, NC, USA) methods. Overall isolation of Listeria species was 15% (23/150) 95% CI (10.16–22.33), 2% (3/150) 95% CI (0.52–6.19) and 13% (20/150) 95% CI (8.53–20.08) came from environmental swabs and carcass swabs, respectively. Proportions of positive Listeria isolates were L. monocytogenes 74% (17/23), L. welshimeri 22% (5/23), and L. innocua 4% (1/23). Listeria species from the exterior carcass swabs was 61% (14/23), cloacal swabs 26% (6/23), and environmental swabs 3% (3/23). L. monocytogenes had the greatest resistance percentage to the following antibiotics: clindamycin (61%, 10/23), tetracycline 30% (7/23), and erythromycin 13%, (3/23). Isolation of L. monocytogenes in relatively high numbers, including the antimicrobial profiles, suggests a potential risk of the pathogen remaining viable in the food continuum and a public health risk to would-be consumers.
Collapse
|
30
|
Martín I, Rodríguez A, Delgado J, Córdoba JJ. Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods 2022; 11:foods11040542. [PMID: 35206018 PMCID: PMC8871320 DOI: 10.3390/foods11040542] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens. This microorganism is a serious concern in the ready-to-eat (RTE) meat and dairy-ripened products industries. The use of lactic acid bacteria (LAB)-producing anti-L. monocytogenes peptides (bacteriocins) and/or lactic acid and/or other antimicrobial system could be a promising tool to control this pathogen in RTE meat and dairy products. This review provides an up to date about the strategies of use of LAB and their metabolites in RTE meat products and dairy foods by selecting the most appropriate strains, by analysing the mechanism by which they inhibit L. monocytogenes and methods of effective application of LAB, and their metabolites in these kinds of products to control this pathogen throughout the processing and storage. The selection of LAB with anti-L. monocytogenes activity allows to dispose of effective strains in meat and dairy-ripened products, achieving reductions form 2–5 logarithmic cycles of this pathogen throughout the ripening process. The combination of selected LAB strains with antimicrobial compounds, such as acid/sodium lactate and other strategies, as the active packaging could be the next future innovation for eliminating risk of L. monocytogenes in meat and dairy-ripened products.
Collapse
|
31
|
Cavalcanti AAC, Limeira CH, Siqueira IND, Lima ACD, Medeiros FJPD, Souza JGD, Medeiros NGDA, Oliveira Filho AAD, Melo MAD. The prevalence of Listeria monocytogenes in meat products in Brazil: A systematic literature review and meta-analysis. Res Vet Sci 2022; 145:169-176. [PMID: 35217271 DOI: 10.1016/j.rvsc.2022.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Listeria monocytogenes, a foodborne pathogen that causes human listeriosis, is commonly found in meat products. This study aimed to estimate the prevalence of L. monocytogenes in a variety of Brazilian meat products, using a meta-analysis of data from the literature. A total of 29 publications from five databases, published between January 1, 2009, and December 31, 2019, were included in the study. Estimated by the random-effects model, the combined prevalence of L. monocytogenes was 13%, ranging from 0 to 59%. The combined prevalence of L. monocytogenes was 14% and 11% for raw meat and ready-to-eat (RTE) meat, respectively. The prevalence of L. monocytogenes was higher in the swine species' meat products and the Southeast region of Brazil. Regarding the type of establishment, it was the retail market that presented the highest combined prevalence rate (19%). The most prevalent serotypes of L. monocytogenes were 4b, 1/2a, 1/2b, and 1/2c. The knowledge of differences in the prevalence levels of L. monocytogenes in different meat products can guide in its efficient control by the competent authorities and by industry.
Collapse
Affiliation(s)
| | - Clécio Henrique Limeira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | - Iara Nunes de Siqueira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Joyce Galvão de Souza
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | | | - Marcia Almeida de Melo
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil.
| |
Collapse
|
32
|
Bodie AR, Dittoe DK, Feye KM, Knueven CJ, Ovall C, Ricke SC. Comparison of ready-to-eat “organic” antimicrobials, sodium bisulfate, and sodium lactate, on Listeria monocytogenes and the indigenous microbiome of organic uncured beef frankfurters stored under refrigeration for three weeks. PLoS One 2022; 17:e0262167. [PMID: 35051217 PMCID: PMC8775584 DOI: 10.1371/journal.pone.0262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes has been implicated in several ready-to-eat (RTE) foodborne outbreaks, due in part to its ability to survive under refrigerated conditions. Thus, the objective of this study was to evaluate the effects of sodium bisulfate (SBS), sodium lactate (SL), and their combination as short-duration antimicrobial dips (10-s) on L. monocytogenes and the microbiome of inoculated organic frankfurters (8 Log10 CFU/g). Frankfurters were treated with tap water (TW), SBS0.39%, SBS0.78%, SL0.78%, SL1.56%, SBS+SL0.39%, SBS+SL0.78%. In addition, frankfurters were treated with frankfurter solution water (HDW)+SBS0.78%, HDW+SL1.56%, and HDW+SBS+SL0.78%. After treatment, frankfurters were vacuum packaged and stored at 4°C. Bacterial enumeration and 16S rDNA sequencing occurred on d 0, 7, 14, 21. Counts were Log10 transformed and calculated as growth potential from d 0 to d 7, 14, and 21. Data were analyzed in R using mixed-effects model and One-Way ANOVA (by day) with differences separated using Tukey’s HSD at P ≤ 0.05. The 16S rDNA was sequenced on an Illumina MiSeq and analyzed in Qiime2-2018.8 with significance at P ≤ 0.05 and Q ≤ 0.05 for main and pairwise effects. An interaction of treatment and time was observed among the microbiological plate data with all experimental treatments reducing the growth potential of Listeria across time (P < 0.0001). Efficacy of treatments was inconsistent across time; however, on d 21, SBS0.39% treated franks had the lowest growth potential compared to the control. Among diversity metrics, time had no effect on the microbiota (P > 0.05), but treatment did (P < 0.05). Thus, the treatments potentially promoted a stable microbiota across time. Using ANCOM, Listeria was the only significantly different taxa at the genus level (P < 0.05, W = 52). Therefore, the results suggest incorporating SBS over SL as an alternative antimicrobial for the control of L. monocytogenes in organic frankfurters without negatively impacting the microbiota. However, further research using multiple L. monocytogenes strains will need to be utilized in order to determine the scope of SBS use in the production of RTE meat.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Dana K. Dittoe
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kristina M. Feye
- Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Carl J. Knueven
- Jones-Hamilton Co., Walbridge, Ohio, United States of America
| | - Christina Ovall
- Jones-Hamilton Co., Walbridge, Ohio, United States of America
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
33
|
Listeria decontamination of chicken meat with beer brewed with bacteriocin producing Saccharomyces boulardii. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Tooby M, Morton V, Nesbitt A, Ciampa N, Thomas MK. Consumption of High-Risk Foods in the Canadian Population, Foodbook Study, 2014 to 2015. J Food Prot 2021; 84:1925-1936. [PMID: 34185825 DOI: 10.4315/jfp-21-101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Many foods have the potential to cause foodborne illness; however, some pose a higher risk. Data were collected through the Foodbook study, a population-based telephone survey conducted between 2014 and 2015 that assessed 10,942 Canadians' food exposures using a 7-day recall period. The 19 foods included in the survey were identified as high risk for common foodborne pathogens in Canada. Results were analyzed by age group, gender, region of residence, income, and education. Consumption proportions of high-risk foods ranged from 0.4% (raw oysters) to 49.3% (deli meats). Roughly 94% of the population reported consuming one or more high-risk food in the past week. Certain high-risk food behaviors were associated with demographic characteristics. High-risk adults such as those 65 years or older still report consuming high-risk foods of concern, including deli meats (41.8%), soft cheeses (13.7%), and smoked fish (6.3%). Consumption of certain foods differed between genders, with males consuming significantly more deli meats, hot dogs, and raw or undercooked eggs and females consuming significantly more prebagged mixed salad greens. The overall number of high-risk foods consumed was similar, with both genders most frequently consuming three to five high-risk foods. High-risk food consumption was seen to increase with increasing household income, with 14.2% of the highest income level consuming six-plus high-risk foods in the past week, compared with 7.1% of the lowest income level. If a respondent had heard of a risk of foodborne illness associated with a food, it did not affect whether it was consumed. Additional consumer food safety efforts put in place alongside current messaging may improve high-risk food consumption behaviors. Enhancing current messaging by using multifaceted communications (e.g., social media and information pamphlets) and highlighting the large incidence and severity of foodborne illnesses in Canada are important strategies to improve behavior change. HIGHLIGHTS
Collapse
Affiliation(s)
- Megan Tooby
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Vanessa Morton
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Andrea Nesbitt
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Nadia Ciampa
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - M Kate Thomas
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| |
Collapse
|
35
|
Castrica M, Andoni E, Intraina I, Curone G, Copelotti E, Massacci FR, Terio V, Colombo S, Balzaretti CM. Prevalence of Listeria monocytogenes and Salmonella spp. in Different Ready to Eat Foods from Large Retailers and Canteens over a 2-Year Period in Northern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010568. [PMID: 34682313 PMCID: PMC8535721 DOI: 10.3390/ijerph182010568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
This study aims to give an overview of the prevalence of Listeria monocytogenes and Salmonella spp. in 9727 samples (2996 for L. monocytogenes and 6731 for Salmonella spp.) from different categories of ready-to-eat (RTE) foods, collected over 2 years from 28 large retailers and 148 canteens in the regions of northern Italy. The RTE samples were classified into two groups according to the preparation methods: (i) multi-ingredient preparations consisting of fully cooked food ready for immediate consumption, or with minimal further handling before consumption (Group A), and (ii) multi-ingredient preparations consisting of cooked and uncooked food, or preparations consisting of only raw ingredients (Group B). L. monocytogenes and Salmonella spp. were investigated in both of these categories. The overall prevalence of L. monocytogenes and Salmonella spp. was 0.13% and 0.07%, respectively. More specifically, L. monocytogenes was found in 0.04% of 2442 analysed RTE food samples belonging to group A and in 0.54% of 554 samples belonging to group B. Furthermore, 0.03% of 5367 RTE food samples from group A and 0.21% of 1364 samples from group B tested positive for Salmonella spp. In conclusion, the results obtained in this study can provide a significant contribution to L. monocytogenes and Salmonella spp. risk analysis in RTE foods.
Collapse
Affiliation(s)
- Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via dell’ Università 6, 26900 Lodi, Italy; (I.I.); (E.C.); (C.M.B.)
- Correspondence:
| | - Egon Andoni
- Department of Public Health, Agricultural University of Tirana, Rr “Pajsi Vodica” Koder-Kamez, 1023 Tirana, Albania;
| | - India Intraina
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via dell’ Università 6, 26900 Lodi, Italy; (I.I.); (E.C.); (C.M.B.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| | - Emma Copelotti
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via dell’ Università 6, 26900 Lodi, Italy; (I.I.); (E.C.); (C.M.B.)
| | - Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Gaetano Salvemini 1, 06126 Perugia, Italy;
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy;
| | - Silvia Colombo
- Chemservice S.r.l.-Lab Analysis Group, Via F. lli Beltrami, 15, Novate Milanese, 20026 Milan, Italy;
| | - Claudia Maria Balzaretti
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Via dell’ Università 6, 26900 Lodi, Italy; (I.I.); (E.C.); (C.M.B.)
| |
Collapse
|
36
|
León Y, Faherty CS. Bacteriophages against enteropathogens: rediscovery and refinement of novel antimicrobial therapeutics. Curr Opin Infect Dis 2021; 34:491-499. [PMID: 34524200 PMCID: PMC8447223 DOI: 10.1097/qco.0000000000000772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Alarming rates of antibiotic resistance in bacteria and gastrointestinal dysbiosis associated with traditional antimicrobial therapy have led to renewed interests in developing bacteriophages as novel therapeutics. In this review, we highlight some of the recent advances in bacteriophage therapeutic development targeting important enteropathogens of the gastrointestinal tract. RECENT FINDINGS Bacteriophages are viruses that infect bacteria, either to utilize the bacterial machinery to produce new progeny or stably integrate into the bacterial chromosome to ensure maintenance of the viral genome. With recent advances in synthetic biology and the discovery of CRISPR-Cas systems used by bacteria to protect against bacteriophages, novel molecular applications are taking us beyond the discovery of bacteriophages and toward innovative applications, including the targeting of bacterial virulence factors, the use of temperate bacteriophages, and the production of bacteriophage proteins as antimicrobial agents. These technologies offer promise to target enteropathogens without disrupting the healthy microbiota of the gastrointestinal tract. Moreover, the use of nanoparticle technology and other modifications are helping researchers circumvent the harsh gastrointestinal conditions that could limit the efficacy of bacteriophages against enteric pathogens. SUMMARY This era of discovery and development offers significant potential to modify bacteriophages and overcome the global impact of enteropathogens.
Collapse
Affiliation(s)
- Yrvin León
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Corrêa JAF, Santos JVGD, Evangelista AG, Pinto ACSM, Macedo REFD, Luciano FB. Combined application of phenolic acids and essential oil components against Salmonella Enteritidis and Listeria monocytogenes in vitro and in ready-to-eat cooked ham. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Ariza JJ, García-López D, Sánchez-Nieto E, Guillamón E, Baños A, Martínez-Bueno M. Antilisterial Effect of a Natural Formulation Based on Citrus Extract in Ready-To-Eat Foods. Foods 2021; 10:1475. [PMID: 34202152 PMCID: PMC8305249 DOI: 10.3390/foods10071475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Controlling Listeria in food is a major challenge, especially because it can persist for years in food processing plants. The best option to control this pathogen is the implementation of effective cleaning and disinfection procedures that guarantee the safety and quality of the final products. In addition, consumer trends are changing, being more aware of the importance of food safety and demanding natural foods, minimally processed and free of chemical additives. For this reason, the current consumption model is focusing on the development of preservatives of natural origin, from plants or microorganisms. In sum, this study aimed to evaluate the antimicrobial effectiveness of a citrus extract formulation rich in flavonoids against several L. monocytogenes and L. innocua strains, using in vitro test (agar diffusion test, minimum bactericidal concentration (MBC), and time-kill curves) and challenge test in food trials (carne mechada, salami, fresh salmon, lettuce, brine, and mozzarella cheese). The results presented in this work show that citrus extract, at doses of 5 and 10%, had a relevant antimicrobial activity in vitro against the target strains tested. Besides this, citrus extract applied on the surface of food had a significant antilisterial activity, mainly in carne mechada and mozzarella cheese, with reductions of up to eight logarithmic units with respect to the control. These results suggest that citrus extract can be considered a promising tool to improve the hygienic quality of ready-to-eat foods.
Collapse
Affiliation(s)
- Juan José Ariza
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain;
| | - David García-López
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
| | - Esperanza Sánchez-Nieto
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
| | - Enrique Guillamón
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain; (J.J.A.); (D.G.-L.); (E.S.-N.); (E.G.)
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain;
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain;
| |
Collapse
|
40
|
Tantala J, Rachtanapun P, Rachtanapun C. Synergistic Antimicrobial Activities of Thai Household Essential Oils in Chitosan Film. Polymers (Basel) 2021; 13:polym13091519. [PMID: 34065089 PMCID: PMC8125964 DOI: 10.3390/polym13091519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Foodborne pathogens mostly contaminate ready-to-eat (RTE) meat products by post-process contamination and cause foodborne disease outbreaks. Preventing post-process contamination and controlling microbial growth during storage by packing the RTE meats with active antimicrobial film from chitosan combined with the synergism of Thai household essential oils was investigated. Here, we analyzed antimicrobial activity and mechanical properties of chitosan films incorporated with essential oil of fingerroot (EOF) and holy basil (EOH) based on their fractional inhibitory concentration and isobolograms. We showed that antimicrobial activities of chitosan film and chitosan films formulated with EOF:EOH displayed a dramatical reduction of Listeria monocytogenes Scott A concentration by 7 Log in 12 h. Chitosan film incorporated with EOF:EOH at ratio 0.04:0.04% v/v/w strongly retarded growth of total viable count of L. monocytogenes on vacuum-packed bologna slices during seven days of storage at 4 and 10 °C. Combined EOF and EOH added to chitosan films did not alter thickness, elongation (%) and colors (L*, a* and b*) of the chitosan film, but it increased water vapor transmission rate and decreased film tensile strength. Results suggested that chitosan film had strong antibacterial properties. Its effectiveness in inhibiting foodborne pathogenic bacteria in ready-to-eat meat products was enhanced by adding a combination of EOF:EOH.
Collapse
Affiliation(s)
- Juthamas Tantala
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
- Center for Advanced Studied Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2562-5000 (ext. 5206)
| |
Collapse
|
41
|
Oswaldi V, Dzierzon J, Thieme S, Merle R, Meemken D. Slaughter pigs as carrier of Listeria monocytogenes in Germany. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractListeria (L.) monocytogenes as the cause of human listeriosis is widespread in the environment and a hazard considering food safety. Almost all animal species as well as humans can be asymptomatic carriers of this bacterium. In pigs, the tonsils are identified as the organ with the highest detection rate compared to other sample matrices. We sampled 430 pigs in total in two slaughterhouses in Northwest and East Germany, two structurally different and important regions in pig production, to re-examine pigs as a possible source of Listeria-contamination of pork products. We detected a low prevalence of L. monocytogenes in tonsil samples of 1.6% (7/430) on single animal level and of 11.6% (5/43) on herd level with no significant difference between the two German regions. Apart from L. monocytogenes, the usually non-pathogenic L. innocua had a prevalence of 1.2% (5/430) on single animal level. From 200 pigs from Northwest Germany, intestinal content samples were analysed in addition to tonsil samples from the same animals, but no positive sample was found for L. monocytogenes (0.0%, 0/200), while four pigs were positive for L. innocua (2.0%, 4/200). Although the prevalence of L. monocytogenes in tonsils is low, the risk of cross-contaminating meat with the pathogen is still given.
Collapse
|
42
|
Tsaloumi S, Aspridou Z, Tsigarida E, Gaitis F, Garofalakis G, Barberis K, Tzoumanika F, Dandoulaki M, Skiadas R, Koutsoumanis K. Quantitative risk assessment of Listeria monocytogenes in ready-to-eat (RTE) cooked meat products sliced at retail stores in Greece. Food Microbiol 2021; 99:103800. [PMID: 34119094 DOI: 10.1016/j.fm.2021.103800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
A quantitative microbial risk assessment (QMRA) model predicting the listeriosis risk related to the consumption of Ready- To- Eat (RTE) cooked meat products sliced at retail stores in Greece was developed. The probability of illness per serving assessed for 87 products available in the Greek market was found highly related to the nitrite concentration; products having a lower concentration showed a higher risk per serving. The predicted 95th percentiles of the annual listeriosis cases totaled 33 of which 13 cases were <65 years old and 20 cases ≥65 years old. The highest number of cases was predicted for mortadella, smoked turkey, boiled turkey and parizer, which were the most frequently consumed product categories. Two scenarios for assessing potential interventions to reduce the risk were tested: setting a use-by date of 14 days (these products have no use-by date based on current European Union legislation) and improving the temperature control during domestic storage. The two scenarios resulted in a decrease of the 95th and 99th percentiles of the total annual cases by 97% and 88%, respectively.
Collapse
Affiliation(s)
- Sofia Tsaloumi
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | | | | | | | | | | | | | - Konstantinos Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
43
|
Lianou A, Raftopoulou O, Spyrelli E, Nychas GJE. Growth of Listeria monocytogenes in Partially Cooked Battered Chicken Nuggets as a Function of Storage Temperature. Foods 2021; 10:foods10030533. [PMID: 33806490 PMCID: PMC8001785 DOI: 10.3390/foods10030533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
Battered poultry products may be wrongly regarded and treated by consumers as ready-to-eat and, as such, be implicated in foodborne disease outbreaks. This study aimed at the quantitative description of the growth behavior of Listeria monocytogenes in fresh, partially cooked (non-ready-to-eat) battered chicken nuggets as function of temperature. Commercially prepared chicken breast nuggets were inoculated with L. monocytogenes and stored at different isothermal conditions (4, 8, 12, and 16 °C). The pathogen’s growth behavior was characterized via a two-step predictive modelling approach: estimation of growth kinetic parameters using a primary model, and description of the effect of temperature on the estimated maximum specific growth rate (μmax) using a secondary model. Model evaluation was undertaken using independent growth data under both constant and dynamic temperature conditions. According to the findings of this study, L. monocytogenes may proliferate in battered chicken nuggets in the course of their shelf life to levels potentially hazardous for susceptible population groups, even under well-controlled refrigerated storage conditions. Model evaluation demonstrated a satisfactory performance, where the estimated bias factor (Bf) was 0.92 and 1.08 under constant and dynamic temperature conditions, respectively, while the accuracy factor (Af) value was 1.08, in both cases. The collected data should be useful in model development and quantitative microbiological risk assessment in battered poultry products.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Correspondence: (A.L.); (G.-J.E.N.)
| | - Ourania Raftopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA
| | - Evgenia Spyrelli
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
- Correspondence: (A.L.); (G.-J.E.N.)
| |
Collapse
|
44
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Mattila M, Somervuo P, Korkeala H, Stephan R, Tasara T. Transcriptomic and Phenotypic Analyses of the Sigma B-Dependent Characteristics and the Synergism between Sigma B and Sigma L in Listeria monocytogenes EGD-e. Microorganisms 2020; 8:microorganisms8111644. [PMID: 33114171 PMCID: PMC7690807 DOI: 10.3390/microorganisms8111644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Numerous gene expression and stress adaptation responses in L. monocytogenes are regulated through alternative sigma factors σB and σL. Stress response phenotypes and transcriptomes were compared between L. monocytogenes EGD-e and its ΔsigB and ΔsigBL mutants. Targeted growth phenotypic analysis revealed that the ΔsigB and ΔsigBL mutants are impaired during growth under cold and organic-acid stress conditions. Phenotypic microarrays revealed increased sensitivity in both mutants to various antimicrobial compounds. Genes de-regulated in these two mutants were identified by genome-wide transcriptome analysis during exponential growth in BHI. The ΔsigB and ΔsigBL strains repressed 198 and 254 genes, respectively, compared to the parent EGD-e strain at 3 °C, whereas 86 and 139 genes, respectively, were repressed in these mutants during growth at 37 °C. Genes repressed in these mutants are involved in various cellular functions including transcription regulation, energy metabolism and nutrient transport functions, and viral-associated processes. Exposure to cold stress induced a significant increase in σB and σL co-dependent genes of L. monocytogenes EGD-e since most (62%) of the down-regulated genes uncovered at 3 °C were detected in the ΔsigBL double-deletion mutant but not in ΔsigB or ΔsigL single-deletion mutants. Overall, the current study provides an expanded insight into σB and σL phenotypic roles and functional interactions in L. monocytogenes. Besides previously known σB- and σL-dependent genes, the transcriptomes defined in ΔsigB and ΔsigBL mutants reveal several new genes that are positively regulated by σB alone, as well as those co-regulated through σB- and σL-dependent mechanisms during L. monocytogenes growth under optimal and cold-stress temperature conditions.
Collapse
Affiliation(s)
- Mirjami Mattila
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland;
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland;
- Correspondence: ; Tel.: +41-44-635-8669
| |
Collapse
|
46
|
HOLST MEGHANM, BROWN LAURAG, HOOVER EDWARDRICKAMER, JULIAN ERNEST, FAW BRENDAV, HEDEEN NICOLE, MCKELVEY WENDY, NICHOLAS DAVID, RIPLEY DANNY. Retail Deli Characteristics Associated with Sanitizing Solution Concentrations. J Food Prot 2020; 83:1667-1672. [PMID: 32421819 PMCID: PMC8213014 DOI: 10.4315/jfp-20-142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is commonly found in retail delicatessen environments. Proper types and concentrations of sanitizers must be used to eliminate this pathogen from surfaces and reduce the consumer's risk for infection. In 2012, the Environmental Health Specialists Network of the Centers for Disease Control and Prevention completed a study on practices in retail delis that can help prevent cross-contamination and growth of L. monocytogenes. The present study focuses on the sanitizing solution used in delis, given its importance to cleaning and reducing pathogen contamination in retail food environments. We identified deli, manager, and worker characteristics associated with use of improper concentrations of sanitizing solution to wipe down food contact surfaces; 22.8% of sanitizing solutions used for wiping food contact surfaces were at improper concentrations. Independent delis were more likely to use improper concentrations of sanitizing solution, as were delis that sold fewer chubs (plastic tubes of meat) per week. Use of improper sanitizing solution concentrations was associated with required food safety training for managers; additional analyses suggest that this relationship is significant for independent but not chain delis. Cleaning and sanitizing must be emphasized in food safety efforts focused on independent and smaller delis. HIGHLIGHTS
Collapse
Affiliation(s)
- MEGHAN M. HOLST
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Highway, Atlanta, Georgia 30341;,Author for correspondence. Tel: 404-498-1076; Fax: 770-488-7310;
| | - LAURA G. BROWN
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Highway, Atlanta, Georgia 30341
| | - EDWARD RICKAMER HOOVER
- Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 Buford Highway, Atlanta, Georgia 30341
| | - ERNEST JULIAN
- Rhode Island Department of Health, 3 Capitol Hill, Providence, Rhode Island 02908
| | - BRENDA V. FAW
- California Department of Public Health, P.O. Box 997377, MS 0500, Sacramento, California 95899
| | - NICOLE HEDEEN
- Minnesota Department of Health, 625 Robert Street North, St. Paul, Minnesota 55164
| | - WENDY MCKELVEY
- New York City Department of Health and Mental Hygiene, 125 Worth Street CN-34E, New York, New York 10013
| | - DAVID NICHOLAS
- New York State Department of Health, Empire State Plaza, Albany, New York 12237
| | - DANNY RIPLEY
- Tennessee Department of Health, 710 James Robertson Parkway, Nashville, Tennessee 37243, USA
| |
Collapse
|
47
|
Evaluation of non-traditional visualization methods to detect surface attachment of biofilms. Colloids Surf B Biointerfaces 2020; 196:111320. [PMID: 32956995 DOI: 10.1016/j.colsurfb.2020.111320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
In food safety and food quality, biofilm research is of great importance for mitigating food-borne pathogens in food processing environments. To supplement the traditional staining techniques for biofilm characterization, we introduce several non-traditional imaging methods for detecting biofilm attachment to the solid-liquid and air-liquid interfaces. For strains of Pseudomonas aeruginosa (the positive control), Acinetobacter baumanii, Listeria monocytogenes and Salmonella enterica, the traditional crystal violet assay showed evidence of biofilm attachment to the well plate base as well as inferred the presence of an air-liquid biofilm attached on the upper well walls where the meniscus was present. However, air-liquid biofilms and solid-surface-attached biofilms were not detected for all of these strains using the non-traditional imaging methods. For L. monocytogenes, we were unable to detect biofilms at a particle-laden, air-liquid interface as evidenced through microscopy, which contradicts the meniscus staining test and suggests that the coffee-ring effect may lead to false positives when using meniscus staining. Furthermore, when L. monocytogenes was cultivated in a pendant droplet in air, only microbial sediment at the droplet apex was observed without any apparent bacterial colonization of the droplet surface. All other strains showed clear evidence of air-liquid biofilms at the air-liquid interface of a pendant droplet. To non-invasively detect if and when air-liquid pellicles form in a well plate, we also present a novel in situ reflection assay that demonstrates the capacity to do this quantitatively.
Collapse
|
48
|
Mamber SW, Mohr TB, Leathers C, Mbandi E, Bronstein PA, Barlow K, Silverman M, Aston C, Izsak Y, Saini NS, LaBARRE D, Minocha U, Smedra J, Levine P, Kause J. Occurrence of Listeria monocytogenes in Ready-to-Eat Meat and Poultry Product Verification Testing Samples from U.S. Department of Agriculture-Regulated Producing Establishments, 2005 through 2017. J Food Prot 2020; 83:1598-1606. [PMID: 32324844 DOI: 10.4315/jfp-20-010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ready-to-eat (RTE) meat and poultry product samples collected between 2005 and 2017 from RTE-producing establishments for the U.S. Department of Agriculture, Food Safety and Inspection Service (FSIS) ALLRTE/RTEPROD_RAND (random) and RTE001/RTEPROD_RISK (risk-based) sampling projects were tested for Listeria monocytogenes (Lm). Data for 45,897 ALLRTE/RTEPROD_RAND samples collected from 3,607 distinct establishments and 112,347 RTE001/RTEPROD_RISK samples collected from 3,283 distinct establishments were analyzed for the presence of Lm. These data were also analyzed based upon the percentages of establishments with positive samples, annual production volume, sanitation control alternatives, geographic location, and season or month of sample collection. Results revealed low occurrence of Lm-positive samples from the random and risk-based sampling projects, with 152 (0.33%) positive samples for ALLRTE/RTEPROD_RAND and 403 (0.36%) positive samples for RTE001/RTEPROD_RISK. The percentage of positive samples significantly decreased over time, from about 0.7% in 2005 and 2006 to about 0.2% in 2017 (P < 0.05). From 2005 to 2017, 3.9% of establishments sampled under the ALLRTE/RTEPROD_RAND sampling project had at least one Lm-positive sample. Similarly, 10.0% of establishments sampled under the RTE001/RTEPROD_RISK sampling project had at least one positive sample. Samples positive for Lm were found in all geographic regions in all months. Thus, in 13 years of RTE product sampling in FSIS-regulated establishments (2005 through 2017), <0.4% of samples were positive for Lm in both risk-based and random sampling projects. The low prevalence of Lm in these products suggests that the combination of FSIS policies and industry practices may be effective for controlling Lm contamination. Information obtained from these sampling projects is relevant to the ongoing prevention of foodborne Lm illnesses from RTE meat and poultry products. HIGHLIGHTS
Collapse
Affiliation(s)
- Stephen W Mamber
- U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Planning, Analysis and Risk Management, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Tim B Mohr
- Office of Public Health Science, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Carrie Leathers
- Office of Policy and Program Development, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Evelyne Mbandi
- Office of Public Health Science, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Philip A Bronstein
- Office of Field Operations, 1400 Independence Avenue S.W., Washington, DC 20024, USA (ORCID: https://orcid.org/0000-0002-4003-7102 [S.W.M.])
| | - Kristina Barlow
- Office of Policy and Program Development, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Meryl Silverman
- Office of Policy and Program Development, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Christopher Aston
- U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Planning, Analysis and Risk Management, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Yoel Izsak
- U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Planning, Analysis and Risk Management, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Navpreet S Saini
- U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Planning, Analysis and Risk Management, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Davi LaBARRE
- Office of Public Health Science, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Udit Minocha
- Office of Public Health Science, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Jude Smedra
- Office of Public Health Science, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Priscilla Levine
- Office of Public Health Science, 1400 Independence Avenue S.W., Washington, DC 20024
| | - Janell Kause
- Office of Public Health Science, 1400 Independence Avenue S.W., Washington, DC 20024
| |
Collapse
|
49
|
Genetic Subtyping, Biofilm-Forming Ability and Biocide Susceptibility of Listeria monocytogenes Strains Isolated from a Ready-to-Eat Food Industry. Antibiotics (Basel) 2020; 9:antibiotics9070416. [PMID: 32708754 PMCID: PMC7400149 DOI: 10.3390/antibiotics9070416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen of special concern for ready-to-eat food producers. The control of its presence is a critical step in which food-grade sanitizers play an essential role. L. monocytogenes is believed to persist in food processing environments in biofilms, exhibiting less susceptibility to sanitizers than planktonic cells. This study aimed to test the susceptibility of L. monocytogenes in planktonic culture and biofilm to three commercial food-grade sanitizers and to benzalkonium chloride; together with the genetic subtyping of the isolates. L. monocytogenes isolates were collected from raw materials, final products and food-contact surfaces during a 6-year period from a ready-to-eat meat-producing food industry and genetically characterized. Serogrouping and pulsed-field gel electrophoresis (PFGE) revealed genetic variability and differentiated L. monocytogenes isolates in three clusters. The biofilm-forming ability assay revealed that the isolates were weak biofilm producers. L. monocytogenes strains were susceptible both in the planktonic and biofilm form to oxidizing and ethanol-based compounds and to benzalkonium chloride, but not to quaternary ammonium compound. A positive association of biofilm-forming ability and LD90 values for quaternary ammonium compound and benzalkonium chloride was found. This study highlights the need for preventive measures improvement and for a conscious selection and use of sanitizers in food-related environments to control Listeria monocytogenes.
Collapse
|
50
|
Matereke LT, Okoh AI. Listeria monocytogenes Virulence, Antimicrobial Resistance and Environmental Persistence: A Review. Pathogens 2020; 9:E528. [PMID: 32629911 PMCID: PMC7400505 DOI: 10.3390/pathogens9070528] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/06/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for the well-known listeriosis disease. This bacterium has become a common contaminant of food, threatening the food processing industry. Once consumed, the pathogen is capable of traversing epithelial barriers, cellular invasion, and intracellular replication through the modulation of virulence factors such as internalins and haemolysins. Mobile genetic elements (plasmids and transposons) and other sophisticated mechanisms are thought to contribute to the increasing antimicrobial resistance of L. monocytogenes. The environmental persistence of the pathogen is aided by its ability to withstand environmental stresses such as acidity, cold stress, osmotic stress, and oxidative stress. This review seeks to give an insight into L. monocytogenes biology, with emphasis on its virulence factors, antimicrobial resistance, and adaptations to environmental stresses.
Collapse
Affiliation(s)
- Lavious Tapiwa Matereke
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|