1
|
Liu C, Huang H, Chen Y, Zhou Y, Meng T, Tan B, He W, Fu X, Xiao D. Dietary supplementation with mulberry leaf flavonoids and carnosic acid complex enhances the growth performance and antioxidant capacity via regulating the p38 MAPK/Nrf2 pathway. Front Nutr 2024; 11:1428577. [PMID: 39139650 PMCID: PMC11319276 DOI: 10.3389/fnut.2024.1428577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction This study aimed to investigate the regulatory effects of mulberry leaf flavonoids and carnosic acid complex (MCC) on the growth performance, intestinal morphology, antioxidant, and p38 MAPK/Nrf2 pathway in broilers. Methods A total of 256 healthy 8-day-old female yellow-feathered broilers were randomly divided into 4 equal groups: a control group (CON) fed a basal diet, an antibiotic group (CTC) supplemented with 50 mg/kg chlortetracycline, and two experimental groups (MCC75, MCC150) fed basal diets with 75 mg/kg and 150 mg/kg of MCC, respectively. The experiment lasted for 56 days, with days 1-28 designated as the initial phase and days 29-56 as the growth phase. Results The results on the growth performance showed that diets supplemented with MCC and CTC decreased the feed-to-gain ratio (F/G), diarrhea rate, and death rate, while significantly increasing the average daily weight gain (ADG) (p < 0.05). Specifically, the MCC150 group enhanced intestinal health, indicated by reduced crypt depth and increased villus height-to-crypt depth ratio (V/C) as well as amylase activity in the jejunum. Both the MCC and CTC groups exhibited increased villus height and V/C ratio in the ileal (p < 0.05). Additionally, all treated groups showed elevated serum total antioxidant capacity (T-AOC), and significant increases in catalase (CAT) and glutathione peroxidase (GSH-Px) activities were observed in both the MCC150 and CTC groups. Molecular analysis revealed an upregulation of the jejunal mRNA expression levels of PGC-1α, Nrf2, and Keap1 in the MCC and CTC groups, as well as an upregulation of ileum mRNA expression levels of P38, PGC-1α, Nrf2, and Keap1 in the MCC150 group, suggesting activation of the p38-MAPK/Nrf2 pathway. Discussion These findings indicate that dietary supplementation with MCC, particularly at a dosage of 150 mg/kg, may serve as a viable antibiotic alternative, enhancing growth performance, intestinal health, and antioxidant capacity in broilers by regulating the p38-MAPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hui Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yingjun Zhou
- College of Xiangya Pharmaceutical Sciences, Central South University, Changsha, China
- Geneham Pharmaceutical Co., Ltd., Changsha, China
| | - Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bihui Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Wenxiang He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Yuelushan Laboratory, Changsha, China
| |
Collapse
|
2
|
Kotańska M, Łanocha M, Bednarski M, Marcinkowska M. MM165 - A Small Hybrid Molecule Modulates the Kynurenine Pathway and Attenuates Lipopolysaccharide-Induced Memory Deficits and Inflammation. Neurochem Res 2024; 49:1200-1211. [PMID: 38381245 DOI: 10.1007/s11064-024-04105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland.
| | - Michał Łanocha
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| |
Collapse
|
3
|
Xu T, Hong A, Zhang X, Xu Y, Wang T, Zheng Q, Wei T, He Q, Ren Z, Qin T. Preparation and adjuvanticity against PCV 2 of Viola philippica polysaccharide loaded in Chitosan-Gold nanoparticle. Vaccine 2024; 42:2608-2620. [PMID: 38472066 DOI: 10.1016/j.vaccine.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The present Porcine circovirus type 2 virus (PCV2) vaccine adjuvants suffer from numerous limitations, such as adverse effects, deficient cell-mediated immune responses, and inadequate antibody production. In this study, we explored the potential of a novel nanoparticle (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Viola philippica polysaccharide (VPP) as efficient adjuvants for PCV2 vaccine. The characterization demonstrated that CS-Au-VPP NPs had a mean particle size of 507.42 nm and a zeta potential value of -21.93 mV. CS-Au-VPP NPs also exhibited good dispersion and a stable structure, which did not alter the polysaccharide properties. Additionally, the CS-Au-VPP NPs showed easy absorption and utilization by the organism. To investigate their immune-enhancing potential, mice were immunized with a mixture of CS-Au-VPP NPs and PCV2 vaccine. The evaluation of relevant immunological indicators, including specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations, confirmed their immune-boosting effects. The in vivo experiments revealed that the medium-dose CS-Au-VPP NPs significantly elevated the levels of specific IgG antibodies and their subclasses, cytokines, and T cell subpopulations in PCV2-immunized mice. These findings suggest that CS-Au-VPP NPs can serve as a promising vaccine adjuvant due to their stable structure and immunoenhancement capabilities.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ancan Hong
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yizhou Xu
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiuyue He
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Mao J, Wang Y, Duan T, Yin N, Dong C, Ren X, Liu N, An X, Qi J. Effect of fermented dandelion on productive performance, meat quality, immune function, and intestinal microbiota of broiler chickens. BMC Vet Res 2023; 19:178. [PMID: 37773158 PMCID: PMC10540353 DOI: 10.1186/s12917-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Dandelion has a great potential to be used as feed additive. Using microbial fermentation technology to degrade cell walls is conducive to enable better release of bioactive compounds of dandelion. This study intended to explore the effect of fermented dandelion (FD) on production performance, meat quality, immune function, and intestinal microbiota of broiler chickens. One-hundred and twenty 1-day-old male Arbor Acres broiler chickens were randomly allotted into three treatments: CON (basal diet, control), LFD and HFD (basal diet with 500 and 1000 mg/kg FD, respectively), with five replicates of eight birds each. The experiment lasted for 42 days. RESULTS The results showed that birds in HFD group had increased ADG during 1-21 days (P < 0.05). On day 21, the bursa of Fabricius index of birds in LFD group was higher (P < 0.05), while the serum contents of IFN-γ and TNF-ɑ were lower in HFD group (P < 0.05). FD supplementation decreased the observed_species, shannon, chao1 and ace indexes (P < 0.05) as well as the abundance of Bacteroidota, Bacteroides, and Alistipes (P < 0.05). Birds in HFD group had higher abundance of Firmicutes and lower abundance of Verrucomicrobiota (P < 0.05). LFD group had lower abundance of unidentified_bacteria (P < 0.05). On day 42, the abdominal fat yield of HFD group was decreased (P < 0.05). Birds in LFD group had lower L* and b* values of breast muscle (P < 0.05), while higher spleen index. The CAT activities of breast muscle of FD groups were higher (P < 0.05). CONCLUSION In summary, dietary FD supplementation at 1000 mg/kg improved production performance and immune function and modulated microbiota composition in ileum of broiler chickens. FD can be supplemented in the diet to enhance performance and health of broiler chickens, of which 1000 mg/kg FD is more effective.
Collapse
Affiliation(s)
- Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China.
| | - Ting Duan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Na Yin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Chenlin Dong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xuerong Ren
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| |
Collapse
|
5
|
El-Mallah C, Ragi MEE, Eid A, Obeid OA. Low-quality protein modulates inflammatory markers and the response to lipopolysaccharide insult: the case of lysine. Br J Nutr 2023; 130:944-957. [PMID: 36597807 PMCID: PMC10442798 DOI: 10.1017/s0007114522004068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
The relationship between non-communicable diseases and eating behaviour has long been attributed to a surplus of food and energy. However, the increase in the prevalence of non-communicable disease and their underlying low-grade inflammatory milieu among people of low socio-economic status has highlighted the existence of a confounding factor. In this work, we aim to study the effect of lysine deficiency on some inflammatory markers in the absence or presence of an inflammatory insult (lipopolysaccharide (LPS)). For this purpose, thirty-two 5-week-old male Sprague Dawley rats were randomly distributed into four groups: (1) control diet, (2) control diet+LPS, (3) lysine-deficient diet and (4) lysine-deficient diet + LPS. Groups were only allowed their experimental diets for 4 weeks, during which LPS (50 µg/kg) or saline injections were administered intraperitoneally three times per week. The study showed that lysine deficiency blunted growth and body compartments development, decreased albumin production and elevated liver C-reactive protein (CRP) expression, independently of IL-6 and IL-1β, the main precursors of CRP. Also, the insufficient levels of lysine in the diet increased hyperactivity and triggered an anxiety-like behaviour, exacerbated with LPS. This work presents evidence that various physiological changes are associated with the absence of a sufficient amount of lysine in the diet and can potentially increase the risk factor for diseases. Thus, the increment in non-communicable disease among the low socio-economic status populations, who heavily rely on cereals as a main source of protein, can be, at least partially, blamed on low lysine availability in diets.
Collapse
Affiliation(s)
- Carla El-Mallah
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Marie-Elizabeth E. Ragi
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omar A. Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Wang S, Li C, Zhang C, Liu G, Zheng A, Qiu K, Chang W, Chen Z. Effects of Sihuang Zhili Granules on the Diarrhea Symptoms, Immunity, and Antioxidant Capacity of Poultry Challenged with Lipopolysaccharide (LPS). Antioxidants (Basel) 2023; 12:1372. [PMID: 37507912 PMCID: PMC10376454 DOI: 10.3390/antiox12071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
A growing interest has been focused on Chinese herbs as alternatives to antimicrobial growth promoters, which are characterized by non-toxic side effects and drug resistance. The purpose of this study was to evaluate the effects of the Sihuang Zhili granule (abbreviated as Sihuang) on diarrhea, immunity, and antioxidation in poultry. Thirty male Leghorn chickens, aged 21 days, were randomly assigned to one of three groups with ten animals each. The control group (CON) received intraperitoneal saline injections, while the LPS-challenged group (LPS) and Sihuang intervention group (SH) received intraperitoneal injections of LPS (0.5 mg/kg of BW) and Sihuang (5 g/kg) at d 31, d 33, d 35, respectively. The control and LPS groups were fed a basal diet, while the SH group was fed a diet supplemented with Sihuang from d 21 to d 35. Analysis of the diarrhea index showed that the addition of Sihuang inhibited the increase in the diarrhea grade and the fecal water content caused by LPS, effectively alleviating poultry diarrhea symptoms. The results of the immune and antioxidant indexes showed that Sihuang significantly reduced the contents of the pro-inflammatory factors TNF- α and IL-1 β, as well as the oxidative stress markers ROS and MDA. Conversely, it increased the contents of the anti-inflammatory factors IL-4 and IL-10, along with the activities of antioxidant enzymes GSH-Px and CAT, thereby enhancing the immune and antioxidant abilities of chickens. Furthermore, Sihuang protected the chicken's ileum, liver, and immune organs from LPS invasion and maintained their normal development. In conclusion, this study confirmed the antidiarrheal effect of Sihuang in poultry farming and demonstrated its ability to improve poultry immunity and antioxidant capacity by modulating antioxidant enzyme activity and inflammatory cytokine levels.
Collapse
Affiliation(s)
- Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chaosheng Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Tejkalová H, Jakob L, Kvasnová S, Klaschka J, Sechovcová H, Mrázek J, Páleníček T, Fliegerová KO. The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon 2023; 9:e15417. [PMID: 37123951 PMCID: PMC10130227 DOI: 10.1016/j.heliyon.2023.e15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.
Collapse
Affiliation(s)
- Hana Tejkalová
- National Institute of Mental Health; Klecany, Czech Republic
| | - Lea Jakob
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
- Corresponding author. National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic,
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science of the Czech Academy of Sciences, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
- Czech University of Life Sciences in Prague, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
| | | |
Collapse
|
8
|
Huoxiang Zhengqi Oral Liquid Attenuates LPS-Induced Acute Lung Injury by Modulating Short-Chain Fatty Acid Levels and TLR4/NF- κB p65 Pathway. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6183551. [PMID: 36845637 PMCID: PMC9957650 DOI: 10.1155/2023/6183551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023]
Abstract
Huoxiang Zhengqi Oral Liquid (HZOL) is a classic Chinese patent medicine used in China for more than 1,000 years in treating gastrointestinal and respiratory diseases. Clinically applied HZOL in early respiratory disease stages can reduce the proportion of lung infection patients that progress to severe acute lung injury (ALI). However, few pharmacological studies evaluated its level of protection against ALI. We explored mechanisms of HZOL against ALI by employing network pharmacology, molecular docking, and rat experiments. Firstly, network pharmacology prediction and published biological evaluation of active ingredients of HZOL suggested that HZOL exerted the protective effect in treating ALI mainly in the areas of regulation of cell adhesion, immune response, and inflammatory response and closely related to the NF-κB pathway. Secondly, molecular docking results demonstrated that imperatorin and isoimperatorin combined well with targets in the NF-κB pathway. Finally, ALI rats induced by lipopolysaccharides (LPS) were used to validate prediction after pretreatment with HZOL for 2 weeks. Results confirmed that lung and colon injury occurred in ALI rats. Furthermore, HZOL exerts anti-inflammatory effects on LPS-induced ALI and gut injury by repairing lung and colon pathology, reducing and alleviating pulmonary edema, inhibiting abnormal enhancement of thymus and spleen index, modulating hematologic indices, and increasing levels of total short-chain fatty acids (SCFAs) in the cecum. Additionally, abnormal accumulation of inflammatory cytokines IL-6, IL-1β, TNF-α, and IFN-γ in serum and bronchoalveolar lavage fluid was significantly reduced after pretreating with HZOL. Furthermore, HZOL downregulated the expression of TLR4, CD14, and MyD88 and phosphorylation of NF-κB p65 in lung tissue. Altogether, HZOL was found to exert an anti-inflammatory effect regulation by increasing levels of SCFAs, inhibiting the accumulation of inflammatory cytokines, and attenuating the activation of the TLR4/NF-κB p65 pathway. Our study provided experimental evidences for the application of HZOL in preventing and treating ALI.
Collapse
|
9
|
Babu G, Mohanty B. Neurotensin modulation of lipopolysaccharide induced inflammation of gut-liver axis: Evaluation using neurotensin receptor agonist and antagonist. Neuropeptides 2023; 97:102297. [PMID: 36368076 DOI: 10.1016/j.npep.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Lipopolysaccharide (LPS), a toxic component of the cell wall of Gram-negative bacteria, is a potent immune stressor. LPS-induced inflammation of the gut-liver axis is well demonstrated. Neurotensin (NTS), a tri-decapeptide present in the gastrointestinal tract, has anti-inflammatory, anti-oxidative, and growth-promoting properties. This study elucidated the efficacy of PD149163, the type I NTS receptor agonist (NTS1) in the modulation of LPS-induced inflammation of the gut-liver axis of mice. Young-adult female mice (Age: 8 weeks; BW: 25 ± 2.5 g) were maintained in six groups (6/group); Group I as control and Group II, III & IV were exposed to LPS (1 mg/kg BW/Day; i.p.) for five days. LPS pre-exposed Group III and Group IV mice were treated with NTS1 agonist PD149163 (100 μg/kg BW i.p.) and antagonist SR48692 (0.5 mg/kg BW i.p.) respectively for 28 days. Group V and Group VI mice were exposed to only PD149163 and only SR48692 respectively with the doses as mentioned above for 28 days. Group I and LPS-exposed Group II mice were also maintained four weeks without further treatment. Histopathology revealed LPS-induced inflammation of the gut and liver. Significant elevation of plasma TNF-α and IL-6 and serum ALT and AST reflected as biomarkers of inflammation. Oxidative stress on both organs was distinct from decreased glutathione reductase and increased lipid peroxidation. PD149163 but not SR48692 ameliorated LPS-induced inflammation in both gut and liver counteracting inflammatory responses and oxidative stress. The use of NTS agonists including PD149163 could be exploited for therapeutic intervention of inflammatory diseases including that of the gut-liver axis.
Collapse
Affiliation(s)
- Gyan Babu
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
10
|
Jafari M, Boskabaday MH, Rezaee SA, Rezaeian S, Behrouz S, Ramezannejad R, Pourianfar HR. Lentinan and β-glucan extract from shiitake mushroom, Lentinula edodes, alleviate acute LPS-induced hematological changes in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:836-842. [PMID: 37396940 PMCID: PMC10311971 DOI: 10.22038/ijbms.2023.67669.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/18/2023] [Indexed: 07/04/2023]
Abstract
Objectives Immunomodulatory activity of β-glucans of shiitake mushroom (Lentinula edodes) has been known. We investigated whether β-glucans from L. edodes would attenuate the acute effects of lipopolysaccharides (LPS) on peripheral hematological parameters in mice. Materials and Methods An in-house β-glucans extract (BG) prepared from fruiting bodies of shiitake mushroom L. edodes was chemically measured and characterized using spectrophotometry and HPLC. Male BALB/c mice directly inhaled aerosolized LPS of 3 mg/ml and were treated with BG or commercial β-glucan (known as lentinan; LNT) (10 mg/kg bw) at 1 hr before or 6 hr after LPS inhalation. The blood samples were collected by cardiac puncture from euthanized mice at 16 hr post-treatment. Results The results showed a significant reduction in levels of blood parameters, including red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), and platelets (PLT); and a significant increase in blood lymphocyte counts in LPS-treated mice as compared with the control mice (P≤0.05). Total white blood cells, neutrophils, and monocyte counts did not show any significant difference among the groups. Treatment of LPS-challenged mice with LNT or BG significantly increased the levels of RBC, HGB, HCT, and PLT; and reduced blood lymphocyte counts as compared with LPS-treated mice (P≤0.05). Conclusion These findings suggest that β-glucans from L. edodes might be effective in attenuating the effects of inhaled LPS on peripheral blood parameters. Thus, these findings might be useful in acute inflammatory diseases particularly pulmonary infectious diseases in which the hematological parameters would be affected.
Collapse
Affiliation(s)
- Mojdeh Jafari
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | | | - Seyed Abdolrahim Rezaee
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | - Sharareh Rezaeian
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Ramezannejad
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Pourianfar
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
11
|
Lin YK, Lin YH, Chiang CF, Yeh TM, Shih WL. Lactobacillus delbrueckii subsp. bulgaricus strain TCI904 reduces body weight gain, modulates immune response, improves metabolism and anxiety in high fat diet-induced obese mice. 3 Biotech 2022; 12:341. [PMCID: PMC9636364 DOI: 10.1007/s13205-022-03356-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractThe multiple probiotic characteristics of strain TCI904 isolated in this study from natural fermented milk were investigated using a mouse model. TCI904 was identified as Lactobacillus delbrueckii subsp. bulgaricu (LDB), a well-known lactic acid starter bacterium found in yogurt. TCI904 exhibited an outstanding pancreatic lipase inhibition activity among several strains of lactic acid bacteria in vitro. Its in vivo effects were further studied. In a comparison of mice fed a high-fat diet (HFD) and those fed a HFD combined with TCI904 for 9 weeks, differences were observed in various aspects of health, and the adverse effects of a HFD were prevented in the latter group. TCI904 effectively prevented fat and body weight accumulation without reducing food intake; it also modulated innate immunity and increased the level of IgA in feces, reversing the increased blood sugar and insulin levels and attenuated the hyperlipidemia caused by a HFD. Based on biochemical test data, compared with the HFD group, a HFD combined with TCI904 induced significant lowering of insulin resistance indicator, homeostasis model assessment-insulin resistance (HOMA-IR) and atherogenic indices of plasma (AIP), the atherogenic coefficient (AC) and cardiac risk ratio (CRR) and increased the cardioprotective index (CPI). In addition, the administration of TCI904 alleviated mood disorders caused by a HFD. Taking the recommended human dose of TCI904 did not affect the liver or kidney function, indicating that TCI904 has sufficient in vivo safety. Taken together, the results of the present study contributed towards validation of the probiotic benefits of lactic acid starter microflora. Orally taken TCI904 exhibited positive immune- and metabolic-modulating, and anxiolytic properties, especially in HFD-induced obesity.
Collapse
|
12
|
Infection, Learning, and Memory: Focus on Immune Activation and Aversive Conditioning. Neurosci Biobehav Rev 2022; 142:104898. [PMID: 36183862 DOI: 10.1016/j.neubiorev.2022.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Here we review the effects of immune activation primarily via lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, on hippocampal and non-hippocampal-dependent learning and memory. Rodent studies have found that LPS alters both the acquisition and consolidation of aversive learning and memory, such as those evoking evolutionarily adaptive responses like fear and disgust. The inhibitory effects of LPS on the acquisition and consolidation of contextual fear memory are discussed. LPS-induced alterations in the acquisition of taste and place-related conditioned disgust memory within bottle preference tasks and taste reactivity tests (taste-related), in addition to conditioned context avoidance tasks and the anticipatory nausea paradigm (place-related), are highlighted. Further, conditioned disgust memory consolidation may also be influenced by LPS-induced effects. Growing evidence suggests a central role of immune activation, especially pro-inflammatory cytokine activity, in eliciting the effects described here. Understanding how infection-induced immune activation alters learning and memory is increasingly important as bacterial and viral infections are found to present a risk of learning and memory impairment.
Collapse
|
13
|
He Z, Li Y, Xiong T, Nie X, Zhang H, Zhu C. Effect of dietary resveratrol supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged with lipopolysaccharide. Front Microbiol 2022; 13:977087. [PMID: 36090096 PMCID: PMC9453244 DOI: 10.3389/fmicb.2022.977087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (RES) displays strong antioxidant and anti-inflammatory properties in protecting the animals from various stressors and inflammatory injuries, but its interrelationship with the gut microbiota remained largely unclear. This study was carried out to investigate the effects of dietary RES supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged by lipopolysaccharide (LPS). A total of 240 yellow-feathered broilers were randomly assigned to four treatment groups in a 2 × 2 factorial design. The broilers were fed with the control diet or control diet supplemented with 400 mg/kg RES, followed by challenge with LPS or the same amount of saline. Dietary RES supplementation significantly alleviated the decreases in the final body weight (BW), average daily gain (ADG), and ADFI induced by LPS (P < 0.05). LPS challenge significantly increased plasma concentrations of triglyceride, high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and cortisol levels, but decreased triiodothyronine (T3) and insulin levels (P < 0.05). Dietary supplementation with RES significantly reversed the elevated creatinine concentrations and the decreased concentrations of T3 and insulin caused by LPS (P < 0.05). Moreover, dietary RES supplementation significantly increased plasma total antioxidant capacity (T-AOC) and catalase (CAT) activities and superoxide dismutase (SOD) and T-AOC activities in jejunal mucosa and reduced malondialdehyde (MDA) concentration in the plasma (P < 0.05). The reduction in the villus height to crypt depth ratio in duodenum, jejunum and ileum and the shortening of villus height in jejunum and ileum caused by LPS were also alleviated by RES treatment (P < 0.05). Furthermore, the increased concentrations of intestinal tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β caused by LPS were significantly decreased by RES treatment (P < 0.05). Dietary RES treatment increased the mRNA expression of claudin-1, claudin-5, occludin, and zonula occludens-1 (ZO-1), and decreased mRNA expression of IL-1β, IL-8, IL-17, and TNF-α after LPS challenge (P < 0.05). Dietary RES treatments significantly decreased the dominance of cecal microbiota, and increased the Pieiou-e and Simpson index. Moreover, dietary RES supplementation increased relative abundance of UCG_ 009, Erysipelotrichaceae, Christensenellaceae_R-7_group, Anaerotruncus, RF39, and Ruminococcus while decreasing the abundance of Alistipes at genus level. Spearman correlation analysis revealed that the microbes at the order and genus levels significantly correlated with indicators of growth performance, antioxidant capacity, and intestinal health. Collectively, dietary supplementation with 400 mg/kg RES could improve growth performance and antioxidant capacity, and modulate intestinal immunity in yellow-feathered broilers challenged by LPS at early stage, which might be closely associated with the regulation of gut microbiota community composition.
Collapse
|
14
|
Pal S, Haldar C, Verma R. Melatonin attenuates LPS-induced ovarian toxicity via modulation of SIRT-1, PI3K/pAkt, pErk1/2 and NFĸB/COX-2 expressions. Toxicol Appl Pharmacol 2022; 451:116173. [PMID: 35878799 DOI: 10.1016/j.taap.2022.116173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The association between inflammation and metabolic disturbances leads to various female pathophysiological conditions. Bacterial lipopolysaccharide (LPS), found in the outer membrane of gram-negative bacteria, elicits an oxidative and inflammatory response that profoundly interferes with female reproductive health. We investigated the ameliorative action of melatonin on LPS-induced ovarian pathophysiology in golden hamsters, Mesocricetus auratus. Hamsters were administered with exogenous melatonin (5 mg/kg BW) and LPS (100 μg/kg BW) intraperitoneally for 7 days. LPS treatment impaired ovarian folliculogenesis as evident by histoarchitecture (elevated number of atretic follicles, reduced number of growing follicles and corpus luteum) and steroidogenesis (decreased aromatase/ERα, estradiol and progesterone). On the other hand, LPS administration also perturbed thyroid hormone (T3 and T4) homeostasis, ovarian melatonin receptor (MT-1) expression, antioxidant potential (SOD and catalase) and concomitantly elevated nitro-oxidative stress (decreased SOD, catalase and elevated CRP, TNFα and nitrate/nitrite level) and inflammatory load (NFĸB and COX-2) which culminated into ovarian follicular apoptosis (elevated caspase-3). LPS also disrupted metabolic homeostasis as indicated by hyperinsulinemia with a simultaneous decrease in ovarian IR/GLUT-4 and glucose content. Moreover, LPS treatment decreased expressions of key markers of ovarian physiology (SIRT-1, pErk1/2, PI3K and pAkt). Melatonin co-treatment with LPS improve these detrimental changes proposing melatonin as a potent therapeutic candidate against ovarian dysfunction induced by endotoxin.
Collapse
Affiliation(s)
- Sriparna Pal
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Chandana Haldar
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Rakesh Verma
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| |
Collapse
|
15
|
Kisipan ML, Ojoo RO, Kanui TI, Abelson KSP. Bodyweight, locomotion, and behavioral responses of the naked mole rat (Heterocephalus glaber) to lipopolysaccharide administration. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:493-504. [PMID: 35731263 PMCID: PMC9250917 DOI: 10.1007/s00359-022-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
The naked mole rat has unique biologic characteristics that include atypical inflammatory responses. Lipopolysaccharide induces inflammation which triggers brain centers controlling feeding, and behavior to result in “sick animal behavior”. We characterized the bodyweight, locomotor, and other behavioral responses of this rodent to lipopolysaccharide administration. Lipopolysaccharide caused weight losses, which were not prevented by TAK 242. In the open field test, lipopolysaccharide did not depress locomotion, while urination, defecation, and activity freezing were rare. The animals exhibited walling but not rearing and fast backward movements that were unaffected by lipopolysaccharide. Failure to depress locomotion suggests either a unique immunity-brain crosstalk or motor responses/centers that tolerate depressive effects of inflammation. The absence of activity freezing and rarity of urination and defecation suggests that novel environments or lipopolysaccharide do not induce anxiety, or that anxiety is expressed differently in the animal. The absence of rearing could be due to the design of the animal’s locomotor apparatus while fast backward movement could be a mechanism for quick escape from threats in the tunnels of their habitat. Our results elucidate the unique biology of this rodent, which elicits interest in the animal as a model for inflammatory research, although the findings require mechanistic corroborations.
Collapse
Affiliation(s)
- Mosiany Letura Kisipan
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Veterinary Anatomy and Physiology, Egerton University, Njoro, Kenya.
| | - Rodi Omondi Ojoo
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Titus Ikusya Kanui
- Department of Agricultural Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Klas S P Abelson
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Tian S, Jiang X, Tang Y, Han T. Laminaria japonica fucoidan ameliorates cyclophosphamide-induced liver and kidney injury possibly by regulating Nrf2/HO-1 and TLR4/NF-κB signaling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2604-2612. [PMID: 34689333 DOI: 10.1002/jsfa.11602] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/08/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND During clinical practice, cyclophosphamide (CTX) can lead to liver and kidney injury in vivo. In this study, we established a liver and kidney injury model by injecting CTX (80 mg kg-1 d-1 ) into male ICR mice, and then mice were treated with saline and fucoidan (20 or 40 mg kg-1 ), respectively. Subsequently, the liver and kidney toxicity indices, the expression levels of malonic dialdehyde (MDA), inflammatory factors, and the main protein levels of the Nrf2/HO-1 and TLR4/NF-κB pathways were determined. RESULTS Our results indicated that fucoidan could significantly decrease serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and urea (BUN) in the test group compared to the model group. Fucoidan administration caused reductions in MDA, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α) levels and improved superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in the liver and kidney of CTX-induced mice. Fucoidan up-regulated the Nrf2/HO-1 pathway and enhanced the protein levels of Nrf2, HO-1, GCLM, and NQO1. Moreover, fucoidan down-regulated the TLR4/NF-κB pathway, as indicated by decreased levels of TLR4, NF-κB p65, NF-κB p50, and increased IκBα level in liver and kidney tissues. CONCLUSION Our studies suggest that fucoidan can ameliorate CTX-induced liver and kidney injury, potentially via up-regulating the Nrf2/HO-1 pathway and inhibiting the TLR4/NF-κB pathway. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanshan Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
17
|
Yu Y, Li Q, Zeng X, Xu Y, Jin K, Liu J, Cao G. Effects of Probiotics on the Growth Performance, Antioxidant Functions, Immune Responses, and Caecal Microbiota of Broilers Challenged by Lipopolysaccharide. Front Vet Sci 2022; 9:846649. [PMID: 35265699 PMCID: PMC8899207 DOI: 10.3389/fvets.2022.846649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
We aimed to study the effects of dietary Bacillus coagulans (B. coagulans) and Lactobacillus plantarum (L. plantarum) on broilers challenged by Escherichia coli lipopolysaccharide (LPS). One-day-old Cobb 500 chicks (360) were divided randomly into three treatment groups for 47 days: no supplementation (control, CON), B. coagulans supplementation (BC), and L. plantarum supplementation (LA). Broilers were routinely fed for 42 days and intraperitoneally injected with 500 μg LPS per kg body weight at 43, 45, and 47 days of age, respectively. Samples were collected 3 h after the last injection. At 1-21 days of age, the ADG in the BC and LA groups was higher than that in the CON group, and the feed to gain ratio (F/G) in the BC group was significantly decreased (P < 0.05). Compared with that in CON birds, the ADG was increased and the F/G was decreased in the BC and LA birds at 22-42 and 1-42 days of age, respectively (P < 0.05). After LPS stimulation, the endotoxin (ET), diamine oxidase (DAO), and D-lactic acid (D-LA) levels in the BC group were lower than those in the CON group (P < 0.05). The IgY, IgA, and IgM contents in the BC group and the IgY and IgM contents in the LA group were higher than those in the CON group (P < 0.05). The pro-inflammatory factor and interferon-β (IFN-β) contents (P < 0.05) decreased, and the anti-inflammatory factor content in the serum (P < 0.05) increased in the BC and LA groups. Compared with the CON and LA treatments, the BC treatment increased the concentrations of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT), and decreased that of malondialdehyde (MDA) (P < 0.05). In contrast with the CON treatment, the BC and LA treatments increased the abundance of Ruminococcaceae and reduced that of Desulfovibrio (P < 0.05). Moreover, BC increased the abundance of beneficial bacteria. Overall, supplementation with B. coagulans and L. plantarum promoted the growth of broilers, improved their immunity and antioxidant capacity, and alleviated the LPS-stimulated inflammatory response by regulating the intestinal flora.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Ani-mal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Ani-mal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xinfu Zeng
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Health Animal Husbandry of Zhejiang Province, Zhejiang Province Engineering Laboratory for Animal Health and Internet Technology, College of Ani-mal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Kan Jin
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| |
Collapse
|
18
|
Alazouny ZM, Alghonamy NM, Mohamed SR, Abdel Aal SM. Mesenchymal stem cells microvesicles versus granulocytes colony stimulating factor efficacy in ameliorating septic induced acute renal cortical injury in adult male albino rats (Histological and Immunohistochemical Study). Ultrastruct Pathol 2022; 46:164-187. [PMID: 35193482 DOI: 10.1080/01913123.2022.2039826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sepsis is the most common cause of acute kidney injury in ICU patients, with increasing mortalities. Treatment septic AKI is unsatisfactory; therefore, more effective therapies must be investigated. MSCs-MVs have the same effectiveness in tissue repair as their original cells. Granulocyte colony-stimulating factor (G-CSF) is considered a simple and convenient tool in regenerative medicine. This study aimed to compare the probable therapeutic effect of MSCs-MVs versus G-CSF on septic AKI in rats. Forty-eight adult male rats were divided into four groups; I control group (IA-ID), II induced-sepsis group, III G-CSF, and IV MSC-MVs groups. Sepsis was induced in groups II, III, IV through a single IV injection of 10 mg/ kg of E.Coli-LPS dissolved in 1 ml saline. Four hours later, group IV received a single IV injection of MSCs-MVs, while group III received a SC injection of Neupogen for 5 days. All animals were sacrificed 7 days from the start. Serum and tissue samples of each group were used for biochemical study. Sections from all groups were subjected to light and electron microscopic examination. A fluorescent microscope examination for subgroup ID and group IV was done. Morphometric and statistical analyses were performed. Group II showed features of acute tubular injury. Group III showed some improvement (biochemically, LM & EM level) however, group IV showed more improvement. MVs injection caused a marked improvement in septic AKI; G-CSF can also meliorate the degenerative effect of sepsis on renal cortex, but to a lesser extent than MSCs-MVs.
Collapse
Affiliation(s)
- Zeinab M Alazouny
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nabila M Alghonamy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar R Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara M Abdel Aal
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Li A, Zhang X, Luo Q. Neohesperidin alleviated pathological damage and immunological imbalance in rat myocardial ischemia-reperfusion injury via inactivation of JNK and NF-κB p65. Biosci Biotechnol Biochem 2021; 85:251-261. [PMID: 33604646 DOI: 10.1093/bbb/zbaa064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neohesperidin (NEO) exerts antiviral, antioxidant, anti-inflammation, and antitumor effects in some diseases. The purpose of this study was to investigate the effect and mechanism of NEO on myocardial ischemia-reperfusion (I/R) injury. Results indicated that NEO suppressed the levels of serum inflammatory cytokines, myocardial damage markers, and oxidative stress markers, and increased the levels of antioxidant in myocardial I/R rats. NEO also inhibited cell apoptosis. Besides, NEO also inhibited the phosphorylation of c-Jun N-terminal kinases (JNK) and nuclear factor kappa B (NF-κB) p65. Furthermore, the protective effects of NEO on myocardial tissue damage, inflammatory cytokines, myocardial injury markers, oxidative stress markers, cell apoptosis, spleen, thymus and liver indices, and phagocytic indices were reversed by JNK activator and NF-κB activator, respectively. In conclusion, NEO alleviates myocardial damage, oxidative stress, cell apoptosis, and immunological imbalance in I/R injury via the inactivation of JNK and NF-κB, making NEO a potential agent for myocardial I/R therapy.
Collapse
Affiliation(s)
- Aihua Li
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Zhang
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qiuping Luo
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
20
|
Sun Y, Ni A, Jiang Y, Li Y, Huang Z, Shi L, Xu H, Chen C, Li D, Han Y, Chen J. Effects of Replacing In-feed Antibiotics with Synergistic Organic Acids on Growth Performance, Health, Carcass, and Immune and Oxidative Statuses of Broiler Chickens Under Clostridium perfringens Type A Challenge. Avian Dis 2021; 64:393-400. [PMID: 33205169 DOI: 10.1637/aviandiseases-d-19-00101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/06/2020] [Indexed: 11/05/2022]
Abstract
This study was conducted to investigate the effects of replacing in-feed antibiotics with synergistic organic acids on growth performance, health, carcass, and immune and oxidative statuses of broiler chickens under Clostridium perfringens (CP) type A challenge. Two organic acid products were tested: organic acid 1 (OA1), consisting of butyrate, medium-chain fatty acids, organic acids, and phenolics; and organic acid 2 (OA2), consisting of buffered short-chain fatty acids. Six hundred 1-day-old male Arbor Acres broiler chicks were randomly assigned to one of five treatments: Control 1, basal diet, nonchallenged birds; Control 2, basal diet, with CP challenge; antimicrobial growth promoters (AGP), basal diet supplemented with Aureomycin (chlortetracycline), with CP challenge; OA1, basal diet supplemented with OA1, with CP challenge; and OA1OA2, basal diet supplemented with OA1 and OA2, with CP challenge. Each treatment had eight replicate pens of 15 birds. The experiments lasted for 29 days. The disease challenge was performed on days 15-17, with an oral gavage of 0.5 mL of CP culture (2.0 × 108 colony-forming units [CFU]/mL) for each bird. Body weights (BWs), intestinal lesion scores, immune organ indices, and serum malondialdehyde (MDA) concentrations were measured on days 19, 22, and 29, respectively, in three birds per pen. Carcass characteristics were determined on day 29. No treatment-related differences in mortality were noted before (P = 0.28) or after (P = 0.64) challenge or over the whole study period (days 0-28; P = 0.66). On day 19, the BW of Control 2 was lower than other treatments (P < 0.0001). On day 22, AGP, OA1, and OA1OA2 had higher BW than Control 2 (P = 0.001). The breast muscle yield of OA1 and OA1OA2 was higher than AGP (P < 0.05). The abdominal fat yield of OA1OA2 was lower than AGP and Control 2 (P < 0.05). On day 22, the birds fed OA1OA2 showed lower intestinal lesion scores than OA1 (P < 0.05). No treatment-related differences in immune organ (spleen, thymus, and bursa) indices were noted (P > 0.05). On day 29, the MDA concentration of OA1 and OA1OA2 was lower than those of Control 1 and AGP (P < 0.05). In conclusion, the addition of organic acids may protect broiler chickens from severe intestinal lesions and oxidative stress and may help reduce abdominal fat mass deposition. There is potential for organic acid-based products as alternatives for AGP in preventing necrotic enteritis in broilers.
Collapse
Affiliation(s)
- Yanyan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Ying Jiang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yunlei Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Ziyan Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Lei Shi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Hong Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Chao Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Dongli Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yanming Han
- Trouw Nutrition R & D, Stationsstraat 77, 3811 MH, Amersfoort, the Netherlands
| | - Jilan Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
21
|
Adetuyi BO, Farombi EO. 6-Gingerol, an active constituent of ginger, attenuates lipopolysaccharide-induced oxidation, inflammation, cognitive deficits, neuroplasticity, and amyloidogenesis in rat. J Food Biochem 2021; 45:e13660. [PMID: 33624846 DOI: 10.1111/jfbc.13660] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 01/23/2023]
Abstract
This study examined the protective effect of 6-Gingerol (6G) against lipopolysaccharide (LPS)-induced cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation. Male rats were allocated into six groups in this manner; Group I placed on normal saline only. Group II was treated for 7 days with LPS alone intraperitoneally at 250 µg/kg body weight (bw). Group III received 6G alone at 50 mg/kg bw orally for 14 days. Groups IV and V received 6G at 20 and 50 mg/kg bw for 7 days, respectively, and LPS for another 7 days to induce neurotoxicity. Group VI received 5 mg/kg bw of donepezil for 7 days and LPS for 7 days. Pretreatment with 20 and 50 mg/kg bw of 6G protected against LPS-mediated learning and memory function, and also locomotor and motor deficits. Besides, 20 and 50 mg/kg bw 6G mitigated LPS-induced alteration in markers of oxidative stress. Furthermore, induction of amyloidogenesis associated with disruption of histoarchitecture and high expression of interleukin 1β, inducible nitric oxide synthase, amyloid precursor protein (APP), β-secretase 1, and brain-derived neurotrophic factor by LPS was mitigated by the two doses of 6G in the rat hippocampus and cerebral cortex region of the brain. 6G pretreatment at the two doses mitigated LPS-mediated histopathological changes in the hippocampus and cerebral cortex of rats. Overall, our results demonstrate that the protective effect of 6G is mediated through the reversal of neurobehavioral deficit, oxidative stress, inflammation, and amyloidogenesis, thus making 6G a possible chemoprophylactic agent against brain injury as a result of LPS exposure. PRACTICAL APPLICATIONS: In the search for a holistic prevention of inflammation-associated neurodegeneration, nutraceuticals are becoming prominent. Hence, this study presents 6G, an active constituent of ginger, as a chemoprotective, antioxidant, and anti-inflammatory agent, which is able to ameliorate cognitive impairments, oxidative stress, neuroplasticity, amyloidogenesis, and inflammation in LPS-induced rat model of neuroinflammation.
Collapse
Affiliation(s)
- Babatunde Oluwafemi Adetuyi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer Olatunde Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
22
|
Wang Z, Wang K, Feng Y, Jiang S, Zhao Y, Zeng M. Preparation, characterization of L-aspartic acid chelated calcium from oyster shell source and its calcium supplementation effect in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Park JH, Sureshkumar S, Kim IH. Influences of dietary flavonoid (quercetin) supplementation on growth performance and immune response of growing pigs challenged with Escherichia coli lipopolysaccharide. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:605-613. [PMID: 33089226 PMCID: PMC7553839 DOI: 10.5187/jast.2020.62.5.605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022]
Abstract
This study was conducted to evaluate the effects of dietary supplementation of plant flavonoid (quercetin) on immune parameters, growth performance, and nutrient digestibility in growing pigs challenged with Escherichia coli lipopolysaccharide (LPS). A total of 40 crossbred ([Landrace × Yorkshire] × Duroc) growing pigs; initial body weight (BW) of 26.95 ± 1.26 kg were used in a six-week experimental trial. Pigs were randomly allocated into one of four treatment groups in a 2 × 2 factorial arrangement with the following factors; without LPS challenge and with LPS challenge (day 21) supplemented with or without 0.1% flavonoid according to BW (2 replicate pens per treatment with 2 gilts and 3 barrows per pen). The single- dose LPS (100 ug / kg BW) injection showed trends tended to be increased in interleukin-6 (IL-6) after 2 h and 6 h of challenge compared with unchallenged pigs. However, other measured immune indices (white blood cell, immunoglobulin G, lymphocyte, and tumor necrosis factor), growth performance, and nutrient digestibility were not significantly different between challenged and non-challenged animals. The supplementation of flavonoid significantly increased (p < 0.05) average daily gain (ADG) during day 0-21, tended to increase dry matter and nitrogen digestibility, significantly reduced IL-6, increased Ig-G and WBC concentrations and increased lymphocytes percentage regardless of LPS challenge.
Collapse
Affiliation(s)
- Jae-Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | | | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
24
|
Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K. A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl Psychiatry 2020; 10:186. [PMID: 32518376 PMCID: PMC7283282 DOI: 10.1038/s41398-020-00878-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The vagus nerve plays a role in the cross talk between the brain and gut microbiota, which could be involved in depression. The subdiaphragmatic vagus nerve serves as a major modulatory pathway between the brain and gut microbiota. Here, we investigated the effects of subdiaphragmatic vagotomy (SDV) on the depression-like phenotype and the abnormal composition of gut microbiota in mice after lipopolysaccharide (LPS) administration. LPS caused a depression-like phenotype, inflammation, increase in spleen weight, and downregulation of synaptic proteins in the medial prefrontal cortex (mPFC) in the sham-operated mice. In contrast, LPS did not produce a depression-like phenotype and downregulated synaptic proteins in the mPFC after SDV. The spleen weight and plasma levels of pro-inflammatory cytokines in the SDV + LPS group were lower than those of the sham + LPS group. Interestingly, there were positive correlations between the plasma levels of pro-inflammatory cytokines and spleen weight, suggesting a relationship between inflammatory events and spleen weight. Furthermore, LPS led to significant alterations in gut microbiota diversity in sham-operated mice, but not SDV-operated mice. In an unweighted UniFrac PCoA, the dots representing the sham + LPS group were located far away from the dots representing the other three groups. Our results suggest that LPS produces a depression-like phenotype, increases spleen weight, triggers inflammation, downregulates synaptic proteins in the mPFC, and leads to abnormal composition of gut microbiota via the subdiaphragmatic vagus nerve. It is likely that the vagus nerve plays a crucial role in the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Jiancheng Zhang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan ,grid.33199.310000 0004 0368 7223Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 PR China
| | - Li Ma
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Lijia Chang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Yaoyu Pu
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Youge Qu
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
25
|
Savran M, Aslankoc R, Ozmen O, Erzurumlu Y, Savas HB, Temel EN, Kosar PA, Boztepe S. Agomelatine could prevent brain and cerebellum injury against LPS-induced neuroinflammation in rats. Cytokine 2019; 127:154957. [PMID: 31869757 DOI: 10.1016/j.cyto.2019.154957] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 02/08/2023]
Abstract
Sepsis, systemic hyper-inflammatory immune response, causes the increase of morbidity and mortality rates due to multi-organ diseases such as neurotoxicity. Lipopolysaccharide (LPS) induces inflammation, oxidative stress and apoptosis to cause brain damage. We aimed to evaluate the antioxidant, anti-inflammatory and antiapoptotic effects of Agomelatine (AGM) on LPS induced brain damage via NF-kB signaling. Twenty-four animals were divided into three groups as control, LPS (5 mg/kg) and LPS + AGM (20 mg/kg). Six hours after the all administrations, rats were sacrificed, brain tissues were collected for biochemical, histopathological and immunohistochemical analysis. In LPS group; total oxidant status (TOS), OSI index, Caspase-8 (Cas-8), NF-kß levels increased and Total antioxidant status (TAS) levels decreased biochemically and Cas-8, haptoglobin and IL-10 expressions increased and sirtuin-1 (SIRT-1) levels decreased immunohistochemically. AGM treatment reversed these parameters except haptoglobin levels in hippocampus and SIRT-1 levels in cerebellum. Besides, AGM treatment blocked the phosphorylation of NF-kB biochemically and ameliorated increased the levels of hyperemia, edema and degenerative changes histopathologically. In conclusion, AGM enhanced SIRT-1 levels to negatively regulate the transcription and activation of p-NF-kB/p65 which caused to ameliorate inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- M Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - R Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - O Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Y Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - H B Savas
- Department of Medical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - E N Temel
- Department of Infectious Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - P A Kosar
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - S Boztepe
- Department of Anesthesia and Reanimation, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| |
Collapse
|