1
|
Rosenzweig Z, Garcia J, Thompson GL, Perez LJ. Inactivation of bacteria using synergistic hydrogen peroxide with split-dose nanosecond pulsed electric field exposures. PLoS One 2024; 19:e0311232. [PMID: 39556570 PMCID: PMC11573215 DOI: 10.1371/journal.pone.0311232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
The use of pulsed electric fields (PEF) as a nonthermal technology for the decontamination of foods is of growing interest. This study aimed to enhance the inactivation of Escherichia coli, Listeria innocua, and Salmonella enterica in Gomori buffer using a combination of nsPEF and hydrogen peroxide (H2O2). Three sub-MIC concentrations (0.1, 0.3, and 0.5%) of H2O2 and various contact times ranging from 5-45 min were tested. PEF exposures as both single (1000 pulse) and split-dose (500+500 pulse) trains were delivered via square-wave, monopolar, 600 ns pulses at 21 kV/cm and 10 Hz. We demonstrate that >5 log CFU/mL reduction can be attained from combination PEF/H2O2 treatments with a 15 min contact time for E. coli (0.1%) and a 30 min contact time for L. innocua and S. enterica (0.5%), despite ineffective results from either individual treatment alone. A 5 log reduction in microbial population is generally the lowest acceptable level in consideration of food safety and represents inactivation of 99.999% of bacteria. Split-dose PEF exposures enhance lethality for several tested conditions, indicating greater susceptibility to PEF after oxidative damage has occurred.
Collapse
Affiliation(s)
- Zachary Rosenzweig
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, United States of America
| | - Jerrick Garcia
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, United States of America
| | - Gary L. Thompson
- WuXi AppTec, Philadelphia, Pennsylvania, United States of America
| | - Lark J. Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
2
|
Malakauskaitė P, Želvys A, Zinkevičienė A, Mickevičiūtė E, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Lekešytė B, Novickij J, Kašėta V, Novickij V. Mitochondrial depolarization and ATP loss during high frequency nanosecond and microsecond electroporation. Bioelectrochemistry 2024; 159:108742. [PMID: 38776865 DOI: 10.1016/j.bioelechem.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
It is predicted that ultra-short electric field pulses (nanosecond) can selectively permeabilize intracellular structures (e.g., mitochondria) without significant effects on the outer cell plasma membrane. Such a phenomenon would have high applicability in cancer treatment and could be employed to modulate cell death type or immunogenic response. Therefore, in this study, we compare the effects of 100 µs x 8 pulses (ESOPE - European Standard Operating Procedures on Electrochemotherapy) and bursts of 100 ns pulses for modulation of the mitochondria membrane potential. We characterize the efficacies of various protocols to trigger permeabilization, depolarize mitochondria (evaluated 1 h after treatment), the extent of ATP depletion and generation of reactive oxygen species (ROS). Finally, we employ the most prominent protocols in the context of Ca2+ electrochemotherapy in vitro. We provide experimental proof that 7.5-12.5 kV/cm x 100 ns pulses can be used to modulate mitochondrial potential, however, the permeabilization of the outer membrane is still a prerequisite for depolarization. Similar to 100 µs x 8 pulses, the higher the permeabilization rate, the higher the mitochondrial depolarization. Nevertheless, 100 ns pulses result in lesser ROS generation when compared to ESOPE, even when the energy input is several-fold higher than for the microsecond procedure. At the same time, it shows that even the short 100 ns pulses can be successfully used for Ca2+ electrochemotherapy, ensuring excellent cytotoxic efficacy.
Collapse
Affiliation(s)
- Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | | | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Jurij Novickij
- Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Vytautas Kašėta
- State Research Institute Centre for Innovative Medicine, Department of Stem Cell Biology, Vilnius, Lithuania
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania.
| |
Collapse
|
3
|
Malyško-Ptašinskė V, Nemeikaitė-Čėnienė A, Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Malakauskaitė P, Lekešytė B, Novickij V. Threshold Interphase Delay for Bipolar Pulses to Prevent Cancellation Phenomenon during Electrochemotherapy. Int J Mol Sci 2024; 25:8774. [PMID: 39201461 PMCID: PMC11354671 DOI: 10.3390/ijms25168774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Electroporation-based procedures employing nanosecond bipolar pulses are commonly linked to an undesirable phenomenon known as the cancelation effect. The cancellation effect arises when the second pulse partially or completely neutralizes the effects of the first pulse, simultaneously diminishing cells' plasma membrane permeabilization and the overall efficiency of the procedure. Introducing a temporal gap between the positive and negative phases of the bipolar pulses during electroporation procedures may help to overcome the cancellation phenomenon; however, the exact thresholds are not yet known. Therefore, in this work, we have tested the influence of different interphase delay values (from 0 ms to 95 ms) using symmetric bipolar nanoseconds (300 and 500 ns) on cell permeabilization using 10 Hz, 100 Hz, and 1 kHz protocols. As a model mouse hepatoma, the MH-22a cell line was employed. Additionally, we conducted in vitro electrochemotherapy with cisplatin, employing reduced interphase delay values (0 ms and 0.1 ms) at 10 Hz. Cell plasma membrane permeabilization and viability dependence on a variety of bipolar pulsed electric field protocols were characterized. It was shown that it is possible to minimize bipolar cancellation, enabling treatment efficiency comparable to monophasic pulses with identical parameters. At the same time, it was highlighted that bipolar cancellation has a significant influence on permeabilization, while the effects on the outcome of electrochemotherapy are minimal.
Collapse
Affiliation(s)
- Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
| | - Aušra Nemeikaitė-Čėnienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eglė Mickevičiūtė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Barbora Lekešytė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| |
Collapse
|
4
|
Polajžer T, Peng W, Yao C, Miklavčič D. Changes in Mitochondrial Membrane Potential in In Vitro Electroporation with Nano- and Microsecond Pulses. Bioelectricity 2024; 6:97-107. [PMID: 39119574 PMCID: PMC11305006 DOI: 10.1089/bioe.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
With the introduction of nanosecond (ns) pulses, it was suggested that such pulses could be used to permeabilize intracellular membranes, including the mitochondrial membrane. The results presented thus far, however, are not conclusive. Interestingly, the effect of longer microsecond (μs) pulses on changes in mitochondria has never been investigated. We, therefore, investigated the changes in mitochondrial membrane permeability through changes in mitochondrial membrane potential (MMP) in CHO and H9c2 cells after electroporation with 4 ns, 200 ns, and 100 μs pulses. In the range of reversible electroporation, the decrease in MMP generally depended on the cell line. In CHO, ns pulses decreased MMP at lower electroporation intensities than μs. In H9c2, ns and μs were equally effective. In the range of irreversible electroporation, MMP decreased even further, regardless of pulse duration and cell type. The analysis at different time points showed that the changes in MMP within the first hour after pulse treatment are dynamic. Our results on the efficacy of ns pulses are consistent with published data, but with this study we show that μs pulses cause similar changes in MMP as ns pulses, demonstrating that electroporation affects MMP regardless of pulse duration. At the same time, however, differences in MMP changes were observed between different cell lines, indicating some dependence of MMP changes on cell type.
Collapse
Affiliation(s)
- Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Wencheng Peng
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, Republic of China
| | - Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, Republic of China
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Scuderi M, Dermol-Cerne J, Scancar J, Markovic S, Rems L, Miklavcic D. The equivalence of different types of electric pulses for electrochemotherapy with cisplatin - an in vitro study. Radiol Oncol 2024; 58:51-66. [PMID: 38378034 PMCID: PMC10878774 DOI: 10.2478/raon-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Electrochemotherapy (ECT) is a treatment involving the administration of chemotherapeutics drugs followed by the application of 8 square monopolar pulses of 100 μs duration at a repetition frequency of 1 Hz or 5000 Hz. However, there is increasing interest in using alternative types of pulses for ECT. The use of high-frequency short bipolar pulses has been shown to mitigate pain and muscle contractions. Conversely, the use of millisecond pulses is interesting when combining ECT with gene electrotransfer for the uptake of DNA-encoding proteins that stimulate the immune response with the aim of converting ECT from a local to systemic treatment. Therefore, the aim of this study was to investigate how alternative types of pulses affect the efficiency of the ECT. MATERIALS AND METHODS We performed in vitro experiments, exposing Chinese hamster ovary (CHO) cells to conventional ECT pulses, high-frequency bipolar pulses, and millisecond pulses in the presence of different concentrations of cisplatin. We determined cisplatin uptake by inductively coupled plasma mass spectrometry and cisplatin cytotoxicity by the clonogenic assay. RESULTS We observed that the three tested types of pulses potentiate the uptake and cytotoxicity of cisplatin in an equivalent manner, provided that the electric field is properly adjusted for each pulse type. Furthermore, we quantified that the number of cisplatin molecules, resulting in the eradication of most cells, was 2-7 × 107 per cell. CONCLUSIONS High-frequency bipolar pulses and millisecond pulses can potentially be used in ECT to reduce pain and muscle contraction and increase the effect of the immune response in combination with gene electrotransfer, respectively.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Dermol-Cerne
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Stefan Markovic
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Morozas A, Malyško-Ptašinskė V, Kulbacka J, Ivaška J, Ivaškienė T, Novickij V. Electrochemotherapy for head and neck cancers: possibilities and limitations. Front Oncol 2024; 14:1353800. [PMID: 38434679 PMCID: PMC10905418 DOI: 10.3389/fonc.2024.1353800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Head and neck cancer continues to be among the most prevalent types of cancer globally, yet it can be managed with appropriate treatment approaches. Presently, chemotherapy and radiotherapy stand as the primary treatment modalities for various groups and regions affected by head and neck cancer. Nonetheless, these treatments are linked to adverse side effects in patients. Moreover, due to tumor resistance to multiple drugs (both intrinsic and extrinsic) and radiotherapy, along with numerous other factors, recurrences or metastases often occur. Electrochemotherapy (ECT) emerges as a clinically proven alternative that offers high efficacy, localized effect, and diminished negative factors. Electrochemotherapy involves the treatment of solid tumors by combining a non-permeable cytotoxic drug, such as bleomycin, with a locally administered pulsed electric field (PEF). It is crucial to employ this method effectively by utilizing optimal PEF protocols and drugs at concentrations that do not possess inherent cytotoxic properties. This review emphasizes an examination of diverse clinical practices of ECT concerning head and neck cancer. It specifically delves into the treatment procedure, the choice of anti-cancer drugs, pre-treatment planning, PEF protocols, and electroporation electrodes as well as the efficacy of tumor response to the treatment and encountered obstacles. We have also highlighted the significance of assessing the spatial electric field distribution in both tumor and adjacent tissues prior to treatment as it plays a pivotal role in determining treatment success. Finally, we compare the ECT methodology to conventional treatments to highlight the potential for improvement and to facilitate popularization of the technique in the area of head and neck cancers where it is not widespread yet while it is not the case with other cancer types.
Collapse
Affiliation(s)
- Arnoldas Morozas
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| | | | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Justinas Ivaška
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
7
|
Radzevičiūtė-Valčiukė E, Želvys A, Mickevičiūtė E, Gečaitė J, Zinkevičienė A, Malyško-Ptašinskė V, Kašėta V, Novickij J, Ivaškienė T, Novickij V. Calcium Electrochemotherapy for Tumor Eradication and the Potential of High-Frequency Nanosecond Protocols. Pharmaceuticals (Basel) 2023; 16:1083. [PMID: 37630998 PMCID: PMC10460074 DOI: 10.3390/ph16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium electroporation (CaEP) is an innovative approach to treating cancer, involving the internalization of supraphysiological amounts of calcium through electroporation, which leads to cell death. CaEP enables the replacement of chemotherapeutics (e.g., bleomycin). Here, we present a standard microsecond (μsCaEP) and novel high-frequency nanosecond protocols for calcium electroporation (nsCaEP) for the elimination of carcinoma tumors in C57BL/6J mice. We show the efficacy of CaEP in eliminating tumors and increasing their survival rates in vivo. The antitumor immune response after the treatment was observed by investigating immune cell populations in tumors, spleens, lymph nodes, and blood, as well as assessing antitumor antibodies. CaEP treatment resulted in an increased percentage of CD4+ and CD8+ central memory T cells and decreased splenic myeloid-derived suppressor cells (MDSC). Moreover, increased levels of antitumor IgG antibodies after CaEP treatment were detected. The experimental results demonstrated that the administration of CaEP led to tumor growth delay, increased survival rates, and stimulated immune response, indicating a potential synergistic relationship between CaEP and immunotherapy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Eglė Mickevičiūtė
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Tatjana Ivaškienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
8
|
Polajžer T, Miklavčič D. Immunogenic Cell Death in Electroporation-Based Therapies Depends on Pulse Waveform Characteristics. Vaccines (Basel) 2023; 11:1036. [PMID: 37376425 DOI: 10.3390/vaccines11061036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, electroporation-based therapies such as electrochemotherapy (ECT), gene electrotransfer (GET) and irreversible electroporation (IRE) are performed with different but typical pulse durations-100 microseconds and 1-50 milliseconds. However, recent in vitro studies have shown that ECT, GET and IRE can be achieved with virtually any pulse duration (millisecond, microsecond, nanosecond) and pulse type (monopolar, bipolar-HFIRE), although with different efficiency. In electroporation-based therapies, immune response activation can affect treatment outcome, and the possibility of controlling and predicting immune response could improve the treatment. In this study, we investigated if different pulse durations and pulse types cause different or similar activations of the immune system by assessing DAMP release (ATP, HMGB1, calreticulin). Results show that DAMP release can be different when different pulse durations and pulse types are used. Nanosecond pulses seems to be the most immunogenic, as they can induce the release of all three main DAMP molecules-ATP, HMGB1 and calreticulin. The least immunogenic seem to be millisecond pulses, as only ATP release was detected and even that assumingly occurs due to increased permeability of the cell membrane. Overall, it seems that DAMP release and immune response in electroporation-based therapies can be controlled though pulse duration.
Collapse
Affiliation(s)
- Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
High-Frequency Nanosecond Bleomycin Electrochemotherapy and its Effects on Changes in the Immune System and Survival. Cancers (Basel) 2022; 14:cancers14246254. [PMID: 36551739 PMCID: PMC9776811 DOI: 10.3390/cancers14246254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a time-dependent and time-independent study on bleomycin-based high-frequency nsECT (3.5 kV/cm × 200 pulses) for the elimination of LLC1 tumours in C57BL/6J mice is performed. We show the efficiency of nsECT (200 ns and 700 ns delivered at 1 kHz and 1 MHz) for the elimination of tumours in mice and increase of their survival. The dynamics of the immunomodulatory effects were observed after electrochemotherapy by investigating immune cell populations and antitumour antibodies at different timepoints after the treatment. ECT treatment resulted in an increased percentage of CD4+ T, splenic memory B and tumour-associated dendritic cell subsets. Moreover, increased levels of antitumour IgG antibodies after ECT treatment were detected. Based on the time-dependent study results, nsECT treatment upregulated PD 1 expression on splenic CD4+ Tr1 cells, increased the expansion of splenic CD8+ T, CD4+CD8+ T, plasma cells and the proportion of tumour-associated pro inflammatory macrophages. The Lin- population of immune cells that was increased in the spleens and tumour after nsECT was identified. It was shown that nsECT prolonged survival of the treated mice and induced significant changes in the immune system, which shows a promising alliance of nanosecond electrochemotherapy and immunotherapy.
Collapse
|