1
|
Lambaren K, Trac N, Fehrenbach D, Madhur M, Chung EJ. T Cell-Targeting Nanotherapies for Atherosclerosis. Bioconjug Chem 2025; 36:332-346. [PMID: 39979082 DOI: 10.1021/acs.bioconjchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Karla Lambaren
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Trac
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Daniel Fehrenbach
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Meena Madhur
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Eun Ji Chung
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Dashwood A, Makuyana N, van der Kant R, Ghodsinia A, Hernandez AR, Lienart S, Burton O, Dooley J, Ali M, Kouser L, Naranjo F, Holt MG, Rousseau F, Schymkowitz J, Liston A. Directed disruption of IL2 aggregation and receptor binding sites produces designer biologics with enhanced specificity and improved production capacity. Comput Struct Biotechnol J 2025; 27:1112-1123. [PMID: 40190571 PMCID: PMC11968297 DOI: 10.1016/j.csbj.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 04/09/2025] Open
Abstract
The pleotropic nature of interleukin-2 (IL2) has allowed it to be used as both a pro-inflammatory and anti-inflammatory therapeutic agent, through promotion of regulatory T cell (Treg) responses via the trimeric IL2RABG receptor or promotion of CD8 T cell responses via the dimeric IL2RBG receptor, respectively. However, the utility of IL2 as a treatment is limited by this same pleiotropy, and protein engineering to bias specificity towards either Treg or CD8 T cell lineage often requires a trade-off in protein production or total bioactivity. Here we use SolubiS and dTANGO, computational algorithm-based methods, to predict mutations within the IL2 structure to improve protein production yield in muteins with altered cellular selectivity, to generate combined muteins with elevated therapeutic potential. The design and testing process identified the V106R (murine) / V91R (human) mutation as a Treg-enhancing mutein, creating a cation repulsion to inhibit primary binding to IL2RB, with a post-IL2RA confirmational shift enabling secondary IL2RB binding, and hence allowing the trimeric receptor complex to form. In human IL2, additional N90R T131R aggregation-protecting mutations could improve protein yield of the V91R mutation. The approach also generated novel CD8 T cell-promoting mutations. Y59K created a cation-cation repulsion with IL2RA, while Q30W enhanced CD8 T cell activity through potential π-stacking enhancing binding to IL2RB, with the combination highly stimulatory for CD8 T cells. For human IL2, Y45K (homolog to murine Y59K) coupled with E62K prevented IL2RA binding, however it required the aggregation-protecting mutations of N90R T131R to rescue production. These muteins, designed with both cellular specificity and protein production features, have potential as both biological tools and therapeutics.
Collapse
Affiliation(s)
- Amy Dashwood
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Ntombizodwa Makuyana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Rob van der Kant
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Arman Ghodsinia
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alvaro R. Hernandez
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stephanie Lienart
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lubna Kouser
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Francisco Naranjo
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Matthew G. Holt
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Frederic Rousseau
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Joost Schymkowitz
- KU Leuven, Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
3
|
Gardell JL, Maurer ME, Childs MM, Pham MN, Meengs B, Julien SH, Tan C, Boster DR, Quach P, Therriault JH, Hermansky G, Patton DT, Bowser J, Chen A, Morgan NN, Gilbertson EA, Bogatzki L, Encarnacion K, McMahan CJ, Crane CA, Swiderek KM. Preclinical characterization of MTX-101: a novel bispecific CD8 Treg modulator that restores CD8 Treg functions to suppress pathogenic T cells in autoimmune diseases. Front Immunol 2024; 15:1452537. [PMID: 39559361 PMCID: PMC11570885 DOI: 10.3389/fimmu.2024.1452537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Regulatory CD8 T cells (CD8 Treg) are responsible for the selective killing of self-reactive and pathogenic CD4 T cells. In autoimmune disease, CD8 Treg may accumulate in the peripheral blood but fail to control the expansion of pathogenic CD4 T cells that subsequently cause tissue destruction. This CD8 Treg dysfunction is due in part to the expression of inhibitory killer immunoglobulin-like receptors (KIR; KIR2DL isoforms [KIR2DL1, KIR2DL2, and KIR2DL3]); these molecules serve as autoimmune checkpoints and limit CD8 Treg activation. Methods Here we describe the pre-clinical characterization of MTX-101, a bispecific antibody targeting inhibitory KIR and CD8. Using human peripheral blood mononuculear cells (PBMC) derived from healthy donors and autoimmune patients, humanized mouse models, and human derived tissue organoids, we evaluated the molecular mechanisms and functional effects of MTX-101. Results By binding to KIR, MTX-101 inhibited KIR signaling that can restore CD8 Treg ability to eliminate pathogenic CD4 T cells. MTX-101 bound and activated CD8 Treg in human peripheral blood mononuclear cells (PBMC), resulting in increased CD8 Treg cytolytic capacity, activation, and prevalence. Enhancing CD8 Treg function with MTX-101 reduced pathogenic CD4 T cell expansion and inflammation, without increasing pro-inflammatory cytokines or activating immune cells that express either target alone. MTX-101 reduced antigen induced epithelial cell death in disease affected tissues, including in tissue biopsies from individuals with autoimmune disease (i.e., celiac disease, Crohn's disease). The effects of MTX-101 were specific to autoreactive CD4 T cells and did not suppress responses to viral and bacterial antigens. In a human PBMC engrafted Graft versus Host Disease (GvHD) mouse model of acute inflammation, MTX-101 bound CD8 Treg and delayed onset of disease. MTX-101 induced dose dependent binding, increased prevalence and cytolytic capacity of CD8 Treg, as well as increased CD4 T cell death. MTX-101 selectively bound CD8 Treg without unwanted immune cell activation or increase of pro-inflammatory serum cytokines and exhibited an antibody-like half-life in pharmacokinetic and exploratory tolerability studies performed using IL-15 transgenic humanized mice with engrafted human lymphocytes, including CD8 Treg at physiologic ratios. Conclusion Collectively, these data support the development of MTX-101 for the treatment of autoimmune diseases.
Collapse
|
4
|
Santana S, Papillion A, Foote JB, Bachus H, León B, Miguel CD, Ballesteros-Tato A. Cutting Edge: Low-dose Recombinant IL-2 Treatment Prevents Autoantibody Responses in Systemic Lupus Erythematosus via Regulatory T Cell-independent Depletion of T Follicular Helper Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1053-1060. [PMID: 39195194 PMCID: PMC11606552 DOI: 10.4049/jimmunol.2400264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
The expansion of T follicular helper (Tfh) cells correlates with disease progression in human and murine systemic lupus erythematosus (SLE). Unfortunately, there are no therapies to deplete Tfh cells. Importantly, low-dose rIL-2-based immunotherapy shows potent immunosuppressive effects in SLE patients and lupus-prone mice, primarily attributed to the expansion of regulatory T cells (Tregs). However, IL-2 can also inhibit Tfh cell differentiation. In this study, we investigate the potential of low-dose rIL-2 to deplete Tfh cells and prevent autoantibody responses in SLE. Our data demonstrate that low-dose rIL-2 efficiently depletes autoreactive Tfh cells and prevents autoantibody responses in lupus-prone mice. Importantly, this immunosuppressive effect was independent of the presence of Tregs. The therapeutic potential of eliminating Tfh cells was confirmed by selectively deleting Tfh cells in lupus-prone mice. Our findings demonstrate the critical role of Tfh cells in promoting autoantibody responses and unveil, (to our knowledge), a novel Treg-independent immunosuppressive function of IL-2 in SLE.
Collapse
Affiliation(s)
- Silvia Santana
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber Papillion
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Holly Bachus
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - André Ballesteros-Tato
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Horwitz DA, Wang JH, Kim D, Kang C, Brion K, Bickerton S, La Cava A. Nanoparticles loaded with IL-2 and TGF-β promote transplantation tolerance to alloantigen. Front Immunol 2024; 15:1429335. [PMID: 39131162 PMCID: PMC11310063 DOI: 10.3389/fimmu.2024.1429335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
We have previously reported that nanoparticles (NPs) loaded with IL-2 and TGF-β and targeted to T cells induced polyclonal T regulatory cells (Tregs) that protected mice from graft-versus-host disease (GvHD). Here, we evaluated whether administration of these NPs during alloantigen immunization could prevent allograft rejection by converting immunogenic responses to tolerogenic ones. Using C57BL/6 mice and BALB/c mice as either donors or recipients of allogeneic splenocytes, we found that treatment with the tolerogenic NPs in both strains of mice resulted in a marked inhibition of mixed lymphocyte reaction (MLR) to donor cell alloantigen but not to third-party control mouse cells after transfer of the allogeneic cells. The decreased alloreactivity associated with a four- to fivefold increase in the number of CD4+ and CD8+ T regulatory cells (Tregs) and the acquisition of a tolerogenic phenotype by recipient dendritic cells (DCs) in NP-treated mice. As allogeneic cells persisted in NP-treated mice, these findings suggest that tolerogenic NPs can induce alloantigen-specific Tregs and tolerogenic DCs promoting tolerogenic responses to alloantigen. By inhibiting reactivity to allotransplant, this approach could help reduce the need for immune suppression for the maintenance of allografts.
Collapse
Affiliation(s)
- David A. Horwitz
- General Nanotherapeutics, Santa Monica, CA, United States
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ju Hua Wang
- General Nanotherapeutics, Santa Monica, CA, United States
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Chang Kang
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Katja Brion
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sean Bickerton
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicina Molecolare e Biotecnologie Mediche, Federico II University of Naples, Naples, Italy
| |
Collapse
|
6
|
Mizui M, Kono M. Novel therapeutic strategies targeting abnormal T-cell signaling in systemic lupus erythematosus. Clin Immunol 2024; 262:110182. [PMID: 38458302 DOI: 10.1016/j.clim.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Therapeutic strategies for autoimmune diseases have been based on the use of glucocorticoids and immunosuppressive agents that broadly suppress immune responses. Therefore, organ damage from long-term use and infections due to immunocompromised status have been significant issues. Safer immunosuppressants and biological agents are now available, but there is still an urgent need to develop specific drugs to replace glucocorticoids. T-lymphocytes, central players in immune responses, could be crucial targets in the treatment of autoimmune diseases. Extensive research has been conducted on the phenotypic changes of T-cells in systemic lupus erythematosus, which has led to the discovery of various therapeutic strategies. In this comprehensive review, we discuss novel treatment approaches and target molecules with expected effectiveness in humans and mice, based on research for lymphocytes involved in autoimmune diseases, especially T-cells in SLE.
Collapse
Affiliation(s)
- Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|