1
|
Wosicka-Frąckowiak H, Poniedziałek K, Woźny S, Kuprianowicz M, Nyga M, Jadach B, Milanowski B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers (Basel) 2024; 16:2668. [PMID: 39339133 PMCID: PMC11435467 DOI: 10.3390/polym16182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Biomaterials have been the subject of extensive research, and their applications in medicine and pharmacy are expanding rapidly. Collagen and its derivatives stand out as valuable biomaterials due to their high biocompatibility, biodegradability, and lack of toxicity and immunogenicity. This review comprehensively examines collagen from various sources, its extraction and processing methods, and its structural and functional properties. Preserving the native state of collagen is crucial for maintaining its beneficial characteristics. The challenges associated with chemically modifying collagen to tailor its properties for specific clinical needs are also addressed. The review discusses various collagen-based biomaterials, including solutions, hydrogels, powders, sponges, scaffolds, and thin films. These materials have broad applications in regenerative medicine, tissue engineering, drug delivery, and wound healing. Additionally, the review highlights current research trends related to collagen and its derivatives. These trends may significantly influence future developments, such as using collagen-based bioinks for 3D bioprinting or exploring new collagen nanoparticle preparation methods and drug delivery systems.
Collapse
Affiliation(s)
- Hanna Wosicka-Frąckowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Kornelia Poniedziałek
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Martyna Nyga
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Bartłomiej Milanowski
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
2
|
Fatemi M, Meshkini A, Matin MM. A dual catalytic functionalized hollow mesoporous silica-based nanocarrier coated with bacteria-derived exopolysaccharides for targeted delivery of irinotecan to colorectal cancer cells. Int J Biol Macromol 2024; 259:129179. [PMID: 38181911 DOI: 10.1016/j.ijbiomac.2023.129179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
In this study, we introduced a multifunctional hollow mesoporous silica-based nanocarrier (HMSN) for the targeted delivery of irinotecan (IRT) to colorectal cancer cells. Due to their large reservoirs, hollow mesoporous silica nanoparticles are suitable platforms for loading significant amounts of drugs for sustained drug release. To respond to pH and redox, HMSNs were functionalized with cerium and iron oxides. Additionally, they were coated with bacterial-derived exopolysaccharide (EPS) as a biocompatible polymer. In vitro analyses revealed that cytotoxicity induced in cancer cells through oxidative stress, mediated by mature nanocarriers (EPS.IRT.Ce/Fe.HMSN), was surprisingly greater than that caused by free drugs. Cerium and iron ions, in synergy with the drug, were found to generate reactive oxygen species when targeting the acidic pH within lysosomes and the tumor microenvironment. This, in turn, triggered cascade reactions, leading to cell death. In vivo experiments revealed that the proposed nanocarriers had no noticeable effect on healthy tissues. These findings indicate the selective delivery of the drug to cancerous tissue and the induction of antioxidant effects due to the dual catalytic properties of cerium in normal cells. Accordingly, this hybrid drug delivery system provides a more effective treatment for colorectal cancer with the potential for cost-effective scaling up.
Collapse
Affiliation(s)
- Mohsen Fatemi
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Collagen Nanoparticles in Drug Delivery Systems and Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The versatile natural polymer, collagen, has gained vast attention in biomedicine. Due to its biocompatibility, biodegradability, weak antigenicity, biomimetics and well-known safety profile, it is widely used as a drug, protein and gene carrier, and as a scaffold matrix in tissue engineering. Nanoparticles develop favorable chemical and physical properties such as increased drug half-life, improved hydrophobic drug solubility and controlled and targeted drug release. Their reduced toxicity, controllable characteristics of scaffolds and stimuli-responsive behavior make them suitable in regenerative medicine and tissue engineering. Collagen associates and absorbs nanoparticles leading to significant impacts on their biological functioning in any biofluid. This review will discuss collagen nanoparticle preparation methods and their applications and developments in drug delivery systems and tissue engineering.
Collapse
|
4
|
Geanaliu-Nicolae RE, Andronescu E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5641. [PMID: 33321865 PMCID: PMC7764196 DOI: 10.3390/ma13245641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
Due to their unique properties-the are biocompatible, easily accessible, and inexpensive with programmable properties-biopolymers are used in pharmaceutical and biomedical research, as well as in cosmetics and food. Collagen is one of the most-used biomaterials in biomedicine, being the most abundant protein in animals with a triple helices structure, biocompatible, biomimetic, biodegradable, and hemostatic. Its disadvantages are its poor mechanical and thermal properties and enzymatic degradation. In order to solve this problem and to use its benefits, collagen can be used blended with other biomaterials such as alginate, chitosan, and cellulose. The purpose of this review article is to offer a brief paper with updated information on blended collagen-based formulations and their potential application in biomedicine.
Collapse
Affiliation(s)
- Ruxandra-Elena Geanaliu-Nicolae
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | |
Collapse
|
5
|
Bertesteanu S, Triaridis S, Stankovic M, Lazar V, Chifiriuc MC, Vlad M, Grigore R. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int J Pharm 2013; 463:119-26. [PMID: 24361265 DOI: 10.1016/j.ijpharm.2013.12.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022]
Abstract
Acute and chronic wounds represent a very common health problem in the entire world. The dermal wounds are colonized by aerobic and anaerobic bacterial and fungal strains, most of them belonging to the resident microbiota of the surrounding skin, oral cavity and gut, or from the external environment, forming polymicrobial communities called biofilms, which are prevalent especially in chronic wounds. A better understanding of the precise mechanisms by which microbial biofilms delay repair processes together with optimizing methods for biofilm detection and prevention may enhance opportunities for chronic wounds healing. The purpose of this minireview is to assess the role of polymicrobial biofilms in the occurrence and evolution of wound infections, as well as the current and future preventive and therapeutic strategies used for the management of polymicrobial wound infections.
Collapse
Affiliation(s)
- Serban Bertesteanu
- "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania; Otorhinolaryngology, "Carol Davila University" of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania
| | - Stefanos Triaridis
- Otolaryngology Department, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - Milan Stankovic
- Otolaryngology and Ophthalmology Department, Faculty of Medicine, University of Nis, Serbia
| | - Veronica Lazar
- University of Bucharest, Faculty of Biology, Microbiology Department, Ale. Portocalelor 1-3, 60101 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Microbiology Department, Ale. Portocalelor 1-3, 60101 Bucharest, Romania.
| | - Mihaela Vlad
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Raluca Grigore
- "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania; Otorhinolaryngology, "Carol Davila University" of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania
| |
Collapse
|