1
|
Dai N, Su X, Li A, Li J, Jiang D, Wang Y. DVL/GSK3/ISL1 pathway signaling: unraveling the mechanism of SIRT3 in neurogenesis and AD therapy. Stem Cell Res Ther 2024; 15:299. [PMID: 39267160 PMCID: PMC11395226 DOI: 10.1186/s13287-024-03925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The established association between Alzheimer's disease (AD) and compromised neural regeneration is well-documented. In addition to the mitigation of apoptosis in neural stem cells (NSCs), the induction of neurogenesis has been proposed as a promising therapeutic strategy for AD. Our previous research has demonstrated the effective inhibition of NSC injury induced by microglial activation through the repression of oxidative stress and mitochondrial dysfunction by Sirtuin 3 (SIRT3). Nonetheless, the precise role of SIRT3 in neurogenesis remains incompletely understood. METHODS In vivo, SIRT3 overexpression adenovirus was firstly injected by brain stereotaxic localization to affect the hippocampal SIRT3 expression in APP/PS1 mice, and then behavioral experiments were performed to investigate the cognitive improvement of SIRT3 in APP/PS1 mice, as well as neurogenic changes in hippocampal region by immunohistochemistry and immunofluorescence. In vitro, under the transwell co-culture condition of microglia and neural stem cells, the mechanism of SIRT3 improving neurogenesis of neural stem cells through DVL/GSK3/ISL1 axis was investigated by immunoblotting, immunofluorescence and other experimental methods. RESULTS Our findings indicate that the overexpression of SIRT3 in APP/PS1 mice led to enhanced cognitive function and increased neurogenesis. Additionally, SIRT3 was observed to promote the differentiation of NSCs into neurons during retinoic acid (RA)-induced NSC differentiation in vitro, suggesting a potential role in neurogenesis. Furthermore, we observed the activation of the Wnt/ß-catenin signaling pathway during this process, with Glycogen Synthase Kinase-3a (GSK3a) primarily governing NSC proliferation and GSK3ß predominantly regulating NSC differentiation. Moreover, the outcomes of our study demonstrate that SIRT3 exerts a protective effect against microglia-induced apoptosis in neural stem cells through its interaction with DVLs. CONCLUSIONS Our results show that SIRT3 overexpressing APP/PS1 mice have improved cognition and neurogenesis, as well as improved neurogenesis of NSC in microglia and NSC transwell co-culture conditions through the DVL/GSK3/ISL1 axis.
Collapse
Affiliation(s)
- Nan Dai
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiaorong Su
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, 10# Zhenhai Road, Xiamen, China
| | - Aihua Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jinglan Li
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Deqi Jiang
- Department of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Laboratory of Research of New Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
2
|
Moreira DDP, Suzuki AM, Silva ALTE, Varella-Branco E, Meneghetti MCZ, Kobayashi GS, Fogo M, Ferrari MDFR, Cardoso RR, Lourenço NCV, Griesi-Oliveira K, Zachi EC, Bertola DR, Weinmann KDS, de Lima MA, Nader HB, Sertié AL, Passos-Bueno MR. Neuroprogenitor Cells From Patients With TBCK Encephalopathy Suggest Deregulation of Early Secretory Vesicle Transport. Front Cell Neurosci 2022; 15:803302. [PMID: 35095425 PMCID: PMC8793280 DOI: 10.3389/fncel.2021.803302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Biallelic pathogenic variants in TBCK cause encephaloneuropathy, infantile hypotonia with psychomotor retardation, and characteristic facies 3 (IHPRF3). The molecular mechanisms underlying its neuronal phenotype are largely unexplored. In this study, we reported two sisters, who harbored biallelic variants in TBCK and met diagnostic criteria for IHPRF3. We provided evidence that TBCK may play an important role in the early secretory pathway in neuroprogenitor cells (iNPC) differentiated from induced pluripotent stem cells (iPSC). Lack of functional TBCK protein in iNPC is associated with impaired endoplasmic reticulum-to-Golgi vesicle transport and autophagosome biogenesis, as well as altered cell cycle progression and severe impairment in the capacity of migration. Alteration in these processes, which are crucial for neurogenesis, neuronal migration, and cytoarchitecture organization, may represent an important causative mechanism of both neurodevelopmental and neurodegenerative phenotypes observed in IHPRF3. Whether reduced mechanistic target of rapamycin (mTOR) signaling is secondary to impaired TBCK function over other secretory transport regulators still needs further investigation.
Collapse
Affiliation(s)
- Danielle de Paula Moreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Angela May Suzuki
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Elisa Varella-Branco
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gerson Shigeru Kobayashi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana Fogo
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Rafaela Regina Cardoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Naila Cristina Vilaça Lourenço
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Karina Griesi-Oliveira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Elaine Cristina Zachi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Débora Romeo Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto da Criança do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karina de Souza Weinmann
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Andrade de Lima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrea Laurato Sertié
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Maria Rita Passos-Bueno,
| |
Collapse
|
3
|
A selective cytotoxic adenovirus vector for concentration of pluripotent stem cells in human pluripotent stem cell-derived neural progenitor cells. Sci Rep 2021; 11:11407. [PMID: 34075124 PMCID: PMC8169681 DOI: 10.1038/s41598-021-90928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
Highly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.
Collapse
|
4
|
Maili L, Letra A, Silva R, Buchanan EP, Mulliken JB, Greives MR, Teichgraeber JF, Blackwell SJ, Ummer R, Weber R, Chiquet B, Blanton SH, Hecht JT. PBX-WNT-P63-IRF6 pathway in nonsyndromic cleft lip and palate. Birth Defects Res 2019; 112:234-244. [PMID: 31825181 DOI: 10.1002/bdr2.1630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Nonsyndromic cleft lip and palate (NSCLP) is one of the most common craniofacial anomalies in humans, affecting more than 135,000 newborns worldwide. NSCLP has a multifactorial etiology with more than 50 genes postulated to play an etiologic role. The genetic pathway comprised of Pbx-Wnt-p63-Irf6 genes was shown to control facial morphogenesis in mice and proposed as a regulatory pathway for NSCLP. Based on these findings, we investigated whether variation in PBX1, PBX2, and TP63, and their proposed interactions were associated with NSCLP. Fourteen single nucleotide variants (SNVs) in/nearby PBX1, PBX2, and TP63 were genotyped in 780 NSCLP families of nonHispanic white (NHW) and Hispanic ethnicities. Family-based association tests were performed for individual SNVs stratified by ethnicity and family history of NSCLP. Gene-gene interactions were also tested. A significant association was found for PBX2 rs3131300 and NSCLP in combined Hispanic families (p = .003) while nominal association was found for TP63 rs9332461 in multiplex Hispanic families (p = .005). Significant haplotype associations were observed for PBX2 in NHW (p = .0002) and Hispanic families (p = .003), and for TP63 in multiplex Hispanic families (.003). An independent case-control group was used to validate findings, and significant associations were found with PBX1 rs6426870 (p = .007) and TP63 rs9332461 (p = .03). Gene-gene interactions were detected between PBX1/PBX2/TP63 with IRF6 in NHW families, and between PBX1 with WNT9B in both NHW and Hispanic families (p < .0018). This study provides the first evidence for a role of PBX1 and PBX2, additional evidence for the role of TP63, and support for the proposed PBX-WNT-TP63-IRF6 regulatory pathway in the etiology of NSCLP.
Collapse
Affiliation(s)
- Lorena Maili
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Renato Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Department of Endodontics, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Edward P Buchanan
- Department of Plastic Surgery, Texas Children's Hospital, Houston, Texas
| | | | - Matthew R Greives
- Department of Pediatric Surgery, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | - John F Teichgraeber
- Department of Pediatric Surgery, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas
| | | | - Rohit Ummer
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Ryan Weber
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Brett Chiquet
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas.,Department of Pediatric Dentistry, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| | - Susan H Blanton
- Dr. John T. MacDonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School at Houston, Houston, Texas.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, Texas
| |
Collapse
|
5
|
Wnt1 Promotes EAAT2 Expression and Mediates the Protective Effects of Astrocytes on Dopaminergic Cells in Parkinson's Disease. Neural Plast 2019; 2019:1247276. [PMID: 31582965 PMCID: PMC6754970 DOI: 10.1155/2019/1247276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/01/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background Wnt/β-catenin signaling has been reported to exert cytoprotective effects in a cellular model of Parkinson's disease (PD). Glutamate excitotoxicity has been suggested to contribute to the pathogenesis of PD, and excitatory amino acid transporters (EAATs) play a predominant role in clearing excessive glutamate. EAAT2 is mainly expressed in astrocytes, which are an important source of Wnt signaling in the brain. Methods Wnt1-overexpressing U251 astrocytes were indirectly cocultured with dopaminergic SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA). Cell toxicity was determined by cell viability and flow cytometric detection. Glutamate level in the culture medium was determined by enzyme-linked immunosorbent assay (ELISA). Western blot analysis was used to detect the expression of Wnt1, β-catenin, and EAAT2. Immunofluorescence was used to display the expression and translocation of NF-κB p65. Results 6-OHDA treatment significantly decreased cell viability in both U251 cells and SH-SY5Y cells, inhibited the expression of Wnt1, β-catenin, and EAAT2 in U251 cells, and increased the glutamate level in the culture medium. Coculture with Wnt1-overexpressing U251 cells attenuated 6-OHDA-induced apoptosis in SH-SY5Y cells. Overexpression of Wnt1 decreased the glutamate level in the culture media, upregulated β-catenin, EAAT2, and NF-κB levels, and promoted the translocation of NF-κB from the cytoplasm to the nucleus in U251 cells. Conclusion Wnt1 promoted EAAT2 expression and mediated the cytoprotective effects of astrocytes on dopaminergic cells. NF-κB might be involved in the regulation of EAAT2 by Wnt1.
Collapse
|
6
|
Harrill JA. Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. Methods Mol Biol 2018; 1683:305-338. [PMID: 29082500 DOI: 10.1007/978-1-4939-7357-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Toxicology and Environmental Health, LLC, 5120 Northshore Drive, Little Rock, AR, 72118, USA.
| |
Collapse
|
7
|
Rharass T, Lantow M, Gbankoto A, Weiss DG, Panáková D, Lucas S. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner. J Biomed Sci 2017; 24:78. [PMID: 29037191 PMCID: PMC5641995 DOI: 10.1186/s12929-017-0385-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background Improving the neuronal yield from in vitro cultivated neural progenitor cells (NPCs) is an essential challenge in transplantation therapy in neurological disorders. In this regard, Ascorbic acid (AA) is widely used to expand neurogenesis from NPCs in cultures although the mechanisms of its action remain unclear. Neurogenesis from NPCs is regulated by the redox-sensitive WNT/β-catenin signaling pathway. We therefore aimed to investigate how AA interacts with this pathway and potentiates neurogenesis. Methods Effects of 200 μM AA were compared with the pro-neurogenic reagent and WNT/β-catenin signaling agonist lithium chloride (LiCl), and molecules with antioxidant activities i.e. N-acetyl-L-cysteine (NAC) and ruthenium red (RuR), in differentiating neural progenitor ReNcell VM cells. Cells were supplemented with reagents for two periods of treatment: a full period encompassing the whole differentiation process versus an early short period that is restricted to the cell fate commitment stage. Intracellular redox balance and reactive oxygen species (ROS) metabolism were examined by flow cytometry using redox and ROS sensors. Confocal microscopy was performed to assess cell viability, neuronal yield, and levels of two proteins: Nucleoredoxin (NXN) and the WNT/β-catenin signaling component Dishevelled 2 (DVL2). TUBB3 and MYC gene responses were evaluated by quantitative real-time PCR. DVL2-NXN complex dissociation was measured by fluorescence resonance energy transfer (FRET). Results In contrast to NAC which predictably exhibited an antioxidant effect, AA treatment enhanced ROS metabolism with no cytotoxic induction. Both drugs altered ROS levels only at the early stage of the differentiation as no changes were held beyond the neuronal fate commitment stage. FRET studies showed that AA treatment accelerated the redox-dependent release of the initial pool of DVL2 from its sequestration by NXN, while RuR treatment hampered the dissociation of the two proteins. Accordingly, AA increased WNT/β-catenin signaling output i.e. MYC mRNA level, whereas RuR attenuated it. Moreover, AA improved neurogenesis as much as LiCl as both TUBB3-positive cell yield and TUBB3 mRNA level increased, while NAC or RuR attenuated neurogenesis. Markedly, the neurogenesis outputs between the short and the full treatment with either NAC or AA were found unchanged, supporting our model that neuronal yield is altered by events taking place at the early phase of differentiation. Conclusions Our findings demonstrate that AA treatment elevates ROS metabolism in a non-lethal manner prior to the NPCs commitment to their neuronal fate. Such effect stimulates the redox-sensitive DVL2 activation and WNT/β-catenin signaling response that would enhance the ensuing neuronal cell differentiation. Electronic supplementary material The online version of this article (10.1186/s12929-017-0385-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tareck Rharass
- Physiopathology of Inflammatory Bone Diseases, University of the Littoral Opal Coast, F-62327, Boulogne sur Mer, France. .,Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, D-13125, Berlin, Germany. .,Physiopathology of Inflammatory Bone Diseases, University of the Littoral Opal Coast, Boulevard Bassin Napoléon - Quai Masset, B.P. 120, F-62327, Boulogne sur Mer, Cédex, France.
| | - Margareta Lantow
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, University of Rostock, D-18059, Rostock, Germany
| | - Adam Gbankoto
- Department of Animal Physiology, Faculty of Sciences and Technics, University of Abomey-Calavi, 01, BP, 526, Cotonou, Benin
| | - Dieter G Weiss
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, University of Rostock, D-18059, Rostock, Germany
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, D-13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, D-13125, Berlin, Germany
| | - Stéphanie Lucas
- Physiopathology of Inflammatory Bone Diseases, University of the Littoral Opal Coast, F-62327, Boulogne sur Mer, France
| |
Collapse
|
8
|
Narendra Talabattula VA, Morgan P, Frech MJ, Uhrmacher AM, Herchenröder O, Pützer BM, Rolfs A, Luo J. Non-canonical pathway induced by Wnt3a regulates β-catenin via Pyk2 in differentiating human neural progenitor cells. Biochem Biophys Res Commun 2017; 491:40-46. [DOI: 10.1016/j.bbrc.2017.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
9
|
Markus-Koch A, Schmitt O, Seemann S, Lukas J, Koczan D, Ernst M, Fuellen G, Wree A, Rolfs A, Luo J. ADAM23 promotes neuronal differentiation of human neural progenitor cells. Cell Mol Biol Lett 2017; 22:16. [PMID: 28828010 PMCID: PMC5562998 DOI: 10.1186/s11658-017-0045-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background ADAM23 is widely expressed in the embryonic central nervous system and plays an important role in tissue formation. Results In this study, we showed that ADAM23 contributes to cell survival and is involved in neuronal differentiation during the differentiation of human neural progenitor cells (hNPCs). Upregulation of ADAM23 in hNPCs was found to increase the number of neurons and the length of neurite, while its downregulation decreases them and triggers cell apoptosis. RNA microarray analysis revealed mechanistic insights into genes and pathways that may become involved in multiple cellular processes upon up- or downregulation of ADAM23. Conclusions Our results suggest that ADAM23 regulates neuronal differentiation by triggering specific signaling pathways during hNPC differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0045-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annett Markus-Koch
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Susanne Seemann
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, Schillingallee 70, 18055 Rostock, Germany
| | - Mathias Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, 18055 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
10
|
Lin MC, Chen SY, Tsai HM, He PL, Lin YC, Herschman H, Li HJ. PGE 2 /EP 4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles. Stem Cells 2016; 35:425-444. [PMID: 27506158 DOI: 10.1002/stem.2476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
Prostaglandin E2 (PGE2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE2 /prostaglandin E receptor 4 (EP4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP4 ) antagonism. EP4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE2 /EP4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ho-Min Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Lin He
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Chun Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Harvey Herschman
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
11
|
Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction. PLoS One 2016; 11:e0152931. [PMID: 27045591 PMCID: PMC4821554 DOI: 10.1371/journal.pone.0152931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/20/2016] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic (DA) neurons in the substantial nigra pars compacta. Increasing evidence showed that Wnt/β-catenin pathway and the orphan nuclear receptor Nurr1 play crucial roles in the survival and functional maintenance of DA neurons in the midbrain and GSK-3β antagonists LiCl and SB216763 were used to activate Wnt/β-catenin pathway experimentally. However, the detail mechanism underlying the neuroprotection against apoptosis on DA neuron is still unclear and the interaction between Wnt/β-catenin and Nurr1 remains undisclosed. In this study, using cell biological assay we investigated the function of Wnt/β-catenin and its crosstalk with Nurr1 on the course of PC12 cell degeneration in vitro. Our data showed that PC12 cell viability was inhibited by rotenone, but attenuated by GSK-3β antagonists LiCl or SB216763. The activity of Wnt/β-catenin pathway was deregulated on exposure of rotenone in a concentration-dependent manner. After the interference of β-catenin with siRNA, LiCl or SB216763 failed to protect PC12 cells from apoptosis by the rotenone toxicity. Our data confirmed that Wnt/β-catenin signaling activated by LiCl or SB216763 enhanced Nurr1 expression to 2.75 ± 0.55 and 4.06 ± 0.41 folds respectively compared with control detected by real-time PCR and the interaction of β-catenin with Nurr1 was identified by co-immunoprecipitate analysis. In conclusion, the data suggested that Wnt/β-catenin and Nurr1 are crucial factors in the survival of DA neurons, and the activation of Wnt/β-catenin pathway exerts protective effects on DA neurons partly by mean of a co-active pattern with Nurr1. This finding may shed a light on the potential treatment of Parkinson disease.
Collapse
|
12
|
Yang JW, Ma W, Luo T, Wang DY, Lu JJ, Li XT, Wang TT, Cheng JR, Ru J, Gao Y, Liu J, Liang Z, Yang ZY, Dai P, He YS, Guo XB, Guo JH, Li LY. BDNF promotes human neural stem cell growth via GSK-3β-mediated crosstalk with the wnt/β-catenin signaling pathway. Growth Factors 2016; 34:19-32. [PMID: 27144323 DOI: 10.3109/08977194.2016.1157791] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in neural stem cell (NSC) growth. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord NSCs (hESC-NSCs) in vitro. We found an increase in hESC-NSC growth by BDNF overexpression. Furthermore, expression of Wnt1, Frizzled1 and Dsh was upregulated, whereas GSK-3β expression was downregulated. In contrast, hESC-NSC growth was decreased by BDNF RNA interference. BDNF, Wnt1 and β-catenin components were all downregulated, whereas GSK-3β was upregulated. Next, we treated hESC-NSCs with 6-bromoindirubin-3'-oxime (BIO), a small molecule inhibitor of GSK-3β. BIO reduced the effects of BDNF upregulation/downregulation on the cell number, soma size and differentiation, and suppressed the effect of BDNF modulation on the Wnt signaling pathway. Our findings suggest that BDNF promotes hESC-NSC growth in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β.
Collapse
Affiliation(s)
- Jin-Wei Yang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Wei Ma
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Tao Luo
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Dong-Yan Wang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jian-Jun Lu
- c Department of Anatomy and Biomedical Sciences , Monash University , Melbourne , Australia
| | - Xing-Tong Li
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Tong-Tong Wang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jing-Ru Cheng
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Jin Ru
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Yan Gao
- d Department of Pathology , Children's Hospital of Kunming City , Yunnan Kunming , China , and
| | - Jia Liu
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Zhang Liang
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Zhi-Yong Yang
- e Department of Neurosurgery , First Affiliated Hospital of Kunming Medical University , Yunnan Kunming , China
| | - Ping Dai
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Yong-Sheng He
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Xiao-Bing Guo
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| | - Jian-Hui Guo
- b Second Department of General Surgery, First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Li-Yan Li
- a Institue of Neuroscience, Kunming Medical University , Yunnan Kunming , China
| |
Collapse
|
13
|
Jaeger A, Fröhlich M, Klum S, Lantow M, Viergutz T, Weiss DG, Kriehuber R. Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural ReNcell VM Progenitor Cells In Vitro. Cell Mol Neurobiol 2015; 35:1203-16. [PMID: 26022602 DOI: 10.1007/s10571-015-0213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022]
Abstract
Apoptosis is an essential physiological process accompanying the development of the central nervous system and human neurogenesis. However, the time scale and the underlying molecular mechanisms are yet poorly understood. Due to this fact, we investigated the functionality and general inducibility of apoptosis in the human neural ReNcell VM progenitor cell line during differentiation and also after exposure to staurosporine (STS) and ultraviolet B (UVB) irradiation. Transmission light microscopy, flow cytometry, and Western-/Immunoblot analysis were performed to compare proliferating and differentiating, in addition to STS- and UVB-treated cells. In particular, from 24 to 72 h post-initiation of differentiation, G0/G1 cell cycle arrest, increased loss of apoptotic cells, activation of pro-apoptotic BAX, Caspase-3, and cleavage of its substrate PARP were observed during cell differentiation and, to a higher extent, after treatment with STS and UVB. We conclude that redundant or defective cells are eliminated by apoptosis, while otherwise fully differentiated cells were less responsive to apoptosis induction by STS than proliferating cells, likely as a result of reduced APAF-1 expression, and increased levels of BCL-2. These data provide the evidence that apoptotic mechanisms in the neural ReNcell VM progenitor cell line are not only functional, but also inducible by external stimuli like growth factor withdrawal or treatment with STS and UVB, which marks this cell line as a suitable model to investigate apoptosis signaling pathways in respect to the differentiation processes of human neural progenitor cells in vitro.
Collapse
Affiliation(s)
- Alexandra Jaeger
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Michael Fröhlich
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Susanne Klum
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Margareta Lantow
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Torsten Viergutz
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dieter G Weiss
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Ralf Kriehuber
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.
- Department of Safety and Radiation Protection, Radiation Biology Unit (S-US), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
14
|
Cvjetkovic N, Maili L, Weymouth KS, Hashmi SS, Mulliken JB, Topczewski J, Letra A, Yuan Q, Blanton SH, Swindell EC, Hecht JT. Regulatory variant in FZD6 gene contributes to nonsyndromic cleft lip and palate in an African-American family. Mol Genet Genomic Med 2015; 3:440-51. [PMID: 26436110 PMCID: PMC4585452 DOI: 10.1002/mgg3.155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/30/2022] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect affecting 135,000 newborns worldwide each year. While a multifactorial etiology has been suggested as the cause, despite decades of research, the genetic underpinnings of NSCLP remain largely unexplained. In our previous genome-wide linkage study of a large NSCLP African-American family, we identified a candidate locus at 8q21.3-24.12 (LOD = 2.98). This region contained four genes, Frizzled-6 (FZD6), Matrilin-2 (MATN2), Odd-skipped related 2 (OSR2) and Solute Carrier Family 25, Member 32 (SLC25A32). FZD6 was located under the maximum linkage peak. In this study, we sequenced the coding and noncoding regions of these genes in two affected family members, and identified a rare variant in intron 1 of FZD6 (rs138557689; c.-153 + 432A>C). The variant C allele segregated with NSCLP in this family, through affected and unaffected individuals, and was found in one other NSCLP African-American family. Functional assays showed that this allele creates an allele-specific protein-binding site and decreases promoter activity. We also observed that loss and gain of fzd6 in zebrafish contributes to craniofacial anomalies. FZD6 regulates the WNT signaling pathway, which is involved in craniofacial development, including midfacial formation and upper labial fusion. We hypothesize, therefore, that alteration in FZD6 expression contributes to NSCLP in this family by perturbing the WNT signaling pathway.
Collapse
Affiliation(s)
- Nevena Cvjetkovic
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
| | - Lorena Maili
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | - Katelyn S Weymouth
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
| | - S Shahrukh Hashmi
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | | | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago Research CenterChicago, Illinois
| | - Ariadne Letra
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
- University of Texas School of Dentistry at HoustonHouston, Texas
| | - Qiuping Yuan
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | - Susan H Blanton
- Dr. John T. Macdonald Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiami, Florida
| | - Eric C Swindell
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Medical School at HoustonHouston, Texas
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, Texas
- University of Texas School of Dentistry at HoustonHouston, Texas
| |
Collapse
|
15
|
Wei L, Ding L, Mo MS, Lei M, Zhang L, Chen K, Xu P. Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Transl Neurodegener 2015; 4:11. [PMID: 26085927 PMCID: PMC4470059 DOI: 10.1186/s40035-015-0033-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/09/2015] [Indexed: 01/07/2023] Open
Abstract
Background Wnt/β-catenin signal has been reported to exert cytoprotective effects in cellular models of several diseases, including Parkinson’s disease (PD). This study aimed to investigate the neuroprotective effects of actived Wnt/β-catenin signal by Wnt3a on SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA). Methods Wnt3a-conditioned medium (Wnt3a-CM) was used to intervene dopaminegic SH-SY5Y cells treated with 6-OHDA. Cell toxicity was determined by cell viability and lactate dehydrogenase leakage (LDH) assay. The mitochondria function was measured by the mitochondrial membrane potential, while oxidative stress was monitored with intracellular reactive oxygen species (ROS). Western blot analysis was used to detect the expression of GSK3β, β-catenin as well as Akt. Results Our results showed that 100 μM 6-OHDA treated for 24 h significantly decreased cell viability and mitochondrial transmembrane potential, reduced the level of β-catenin and p-Akt, increased LDH leakage, ROS production and the ratio of p-GSK3β (Tyr216) to p-GSK3β (Ser9). However, Wnt3a-conditioned medium reversing SH-SY5Y cells against 6-OHDA-induced neurotoxicity by reversing these changes. Conclusions Activating of Wnt/β-catenin pathway by Wnt3a-CM attenuated 6-OHDA-induced neurotoxicity significantly, which related to the inhibition of oxidative stress and maintenance of normal mitochondrial function.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China ; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Li Ding
- Department of pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Ming-Shu Mo
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Ming Lei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Kang Chen
- Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China ; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| |
Collapse
|
16
|
Abstract
Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.
Collapse
|
17
|
Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol 2015; 11:e1004106. [PMID: 25793621 PMCID: PMC4368204 DOI: 10.1371/journal.pcbi.1004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023] Open
Abstract
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator. Human neural progenitor cells offer the promising perspective of using in-vitro grown neural cell populations for replacement therapies in the context of neurodegenerative diseases, such as Parkinson’s or Huntington’s disease. However, to control hNPC differentiation within the scope of stem cell engineering, a thorough understanding of cell fate determination and its endogenous regulation is required. Here we investigate the spatio-temporal regulation of WNT/β-catenin signaling in the process of cell fate commitment in hNPCs, which has been reported to play a crucial role for the differentiation process of hNPCs. Based on a combined in-vitro and in-silico approach we demonstrate an elaborate interplay between endogenous ROS and lipid raft dependent WNT/beta-catenin signaling controlling the nuclear beta-catenin levels throughout the initial phase of neural differentiation. The stochastic multi-level computational model we derive from our experimental measurements adds to the family of existing WNT models, addressing major biochemical and spatial aspects of WNT/beta-catenin signaling that have not been considered in existing models so far. Cross validation studies manifest its predictive capability for other cells and cell lines rendering the model a suitable basis for further studies also in the context of embryonic development, developmental disorders and cancers.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heiko Lemcke
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, Rostock, Germany
| | - Roland Ewald
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| | - Tareck Rharass
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
| | - Adelinde M. Uhrmacher
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi RE, Kim DY. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 2014; 515:274-8. [PMID: 25307057 DOI: 10.1038/nature13800] [Citation(s) in RCA: 849] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/26/2014] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-β plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-β peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-β-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-β species and phosphorylated tau but did not demonstrate amyloid-β plaques or neurofibrillary tangles. Here we report that FAD mutations in β-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-β, including amyloid-β plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-β generation with β- or γ-secretase inhibitors not only decreased amyloid-β pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-β-mediated tau phosphorylation. We have successfully recapitulated amyloid-β and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.
Collapse
Affiliation(s)
- Se Hoon Choi
- 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2]
| | - Young Hye Kim
- 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Division of Mass Spectrometry Research, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, South Korea [3]
| | - Matthias Hebisch
- 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
| | - Christopher Sliwinski
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Seungkyu Lee
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Hechao Chen
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Basavaraj Hooli
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Caroline Asselin
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Julien Muffat
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Justin B Klee
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Brian J Wainger
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
19
|
Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss DG, Panáková D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentiation. J Biol Chem 2014; 289:27937-51. [PMID: 25124032 PMCID: PMC4183826 DOI: 10.1074/jbc.m114.573519] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that reactive oxygen species (ROS) can stimulate the Wnt/β-catenin pathway in a number of cellular processes. However, potential sources of endogenous ROS have not been thoroughly explored. Here, we show that growth factor depletion in human neural progenitor cells induces ROS production in mitochondria. Elevated ROS levels augment activation of Wnt/β-catenin signaling that regulates neural differentiation. We find that growth factor depletion stimulates the release of Ca(2+) from the endoplasmic reticulum stores. Ca(2+) subsequently accumulates in the mitochondria and triggers ROS production. The inhibition of mitochondrial Ca(2+) uptake with simultaneous growth factor depletion prevents the rise in ROS metabolism. Moreover, low ROS levels block the dissociation of the Wnt effector Dishevelled from nucleoredoxin. Attenuation of the response amplitudes of pathway effectors delays the onset of the Wnt/β-catenin pathway activation and results in markedly impaired neuronal differentiation. Our findings reveal Ca(2+)-mediated ROS metabolic cues that fine-tune the efficiency of cell differentiation by modulating the extent of the Wnt/β-catenin signaling output.
Collapse
Affiliation(s)
- Tareck Rharass
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Heiko Lemcke
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Margareta Lantow
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and
| | - Sergei A Kuznetsov
- Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Dieter G Weiss
- Cell Biology and Biosystems Technology, Institute of Biological Sciences, and Live Cell Imaging Center, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany
| | - Daniela Panáková
- From Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch and
| |
Collapse
|
20
|
Mußmann C, Hübner R, Trilck M, Rolfs A, Frech MJ. HES5 is a key mediator of Wnt-3a-induced neuronal differentiation. Stem Cells Dev 2014; 23:1328-39. [PMID: 24548083 DOI: 10.1089/scd.2013.0557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human neural stem/progenitor cell (hNPC)-derived neuronal progeny has been suggested as a promising cell source in a variety of neurodegenerative diseases. Understanding the underlying mechanisms that regulate neuronal differentiation is essential for efficient cell-based therapies. Wnt and Notch signaling has been shown to be crucial in this process. However, their interactions in the process of neuronal differentiation remain elusive. By using human fetal (ReNcell VM) and iPS-derived hNPCs we demonstrate that Wnt-3a immediately induced a transient HES1 upregulation and a sustained HES5 repression that was accompanied by upregulation of the proneural gene MASH1. Conversely, overexpression of HES5 resulted in reduced MASH1 expression. Remarkably, HES5 overexpression efficiently blocked Wnt-3a as well as γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)-induced neuronal differentiation that was accompanied by a strong MASH1 downregulation thus directly linking HES5 repression/MASH1 induction to the proneurogenic effect of Wnt-3a. Stabilized β-catenin or treatment with the specific glycogen synthase kinase 3 beta (GSK3β) inhibitor SB-216763 failed to or only partially mimicked these effects, suggesting a GSK3β- and β-catenin-independent mechanism. Further, inhibition of Wnt-3a-LDL-receptor-related protein 5/6 (LRP5/6) interactions using Dickkopf-1 (Dkk-1) failed to inhibit the modulatory effect of Wnt-3a on HES1/5 and neuronal differentiation. Taken together, these data identify HES5 as a key mediator of the Wnt-3a proneurogenic effect occurring independently of the classical Wnt/β-catenin signaling cascade thus further deciphering crosstalk mechanisms of Wnt and Notch signaling pathways regulating cell fate of hNPCs.
Collapse
Affiliation(s)
- Carolin Mußmann
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University of Rostock , Rostock, Germany
| | | | | | | | | |
Collapse
|
21
|
Lemcke H, Kuznetsov SA. Involvement of connexin43 in the EGF/EGFR signalling during self-renewal and differentiation of neural progenitor cells. Cell Signal 2013; 25:2676-84. [DOI: 10.1016/j.cellsig.2013.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
|
22
|
Lemcke H, Nittel ML, Weiss DG, Kuznetsov SA. Neuronal differentiation requires a biphasic modulation of gap junctional intercellular communication caused by dynamic changes of connexin43 expression. Eur J Neurosci 2013; 38:2218-28. [PMID: 23607708 DOI: 10.1111/ejn.12219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
It was suggested that gap junctional intercellular communication (GJIC) and connexin (Cx) proteins play a crucial role in cell proliferation and differentiation. However, the mechanisms of cell coupling in regulating cell fate during embryonic development are poorly understood. To study the role of GJIC in proliferation and differentiation, we used a human neural progenitor cell line derived from the ventral mesencephalon. Fluorescence recovery after photobleaching (FRAP) showed that dye coupling was extensive in proliferating cells but diminished after the induction of differentiation, as indicated by a 2.5-fold increase of the half-time of fluorescence recovery. Notably, recovery half-time decreased strongly (five-fold) in the later stage of differentiation. Western blot analysis revealed a similar time-dependent expression profile of Cx43, acting as the main gap junction-forming protein. Interestingly, large amounts of cytoplasmic Cx43 were retained mainly in the Golgi network during proliferation but decreased when differentiation was induced. Furthermore, down-regulation of Cx43 by small interfering RNA reduced functional cell coupling, which in turn resulted in a 50% decrease of both the proliferation rate and neuronal differentiation. Our findings suggest a dual function of Cx43 and GJIC in the neural development of ReNcell VM197 human progenitor cells. GJIC accompanied by high Cx43 expression is necessary (1) to maintain cells in a proliferative state and (2) to complete neuronal differentiation, including the establishment of a neural network. However, uncoupling of cells is crucial in the early stage of differentiation during cell fate commitment.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Animal Physiology, Cell Biology and Biosystems Technology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059, Rostock, Germany
| | | | | | | |
Collapse
|
23
|
Liedmann A, Frech S, Morgan PJ, Rolfs A, Frech MJ. Differentiation of human neural progenitor cells in functionalized hydrogel matrices. Biores Open Access 2013; 1:16-24. [PMID: 23515105 PMCID: PMC3560381 DOI: 10.1089/biores.2012.0209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydrogel-based three-dimensional (3D) scaffolds are widely used in the field of regenerative medicine, translational medicine, and tissue engineering. Recently, we reported the effect of scaffold formation on the differentiation and survival of human neural progenitor cells (hNPCs) using PuraMatrix™ (RADA-16) scaffolds. Here, we were interested in the impact of PuraMatrix modified by the addition of short peptide sequences, based on a bone marrow homing factor and laminin. The culture and differentiation of the hNPCs in the modified matrices resulted in an approximately fivefold increase in neuronal cells. The examination of apoptotic and necrotic cells, as well as the level of the anti-apoptotic protein Bcl-2, indicates benefits for cells hosted in the modified formulations. In addition, we found a trend to lower proportions of apoptotic or necrotic neuronal cells in the modified matrices. Interestingly, the neural progenitor cell pool was increased in all the tested matrices in comparison to the standard 2D culture system, while no difference was found between the modified matrices. We conclude that a combination of elevated neuronal differentiation and a protective effect of the modified matrices underlies the increased proportion of neuronal cells.
Collapse
Affiliation(s)
- Andrea Liedmann
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | | | | | | | | |
Collapse
|
24
|
Wnt Signaling in Neurogenesis during Aging and Physical Activity. Brain Sci 2012; 2:745-68. [PMID: 24961268 PMCID: PMC4061808 DOI: 10.3390/brainsci2040745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, much progress has been made regarding our understanding of neurogenesis in both young and old animals and where it occurs throughout the lifespan, although the growth of new neurons declines with increasing age. In addition, physical activity can reverse this age-dependent decline in neurogenesis. Highly correlated with this decline is the degree of inter and intracellular Wnt signaling, the molecular mechanisms of which have only recently started to be elucidated. So far, most of what we know about intracellular signaling during/following exercise centers around the CREB/CRE initiated transcriptional events. Relatively little is known, however, about how aging and physical activity affect the Wnt signaling pathway. Herein, we briefly review the salient features of neurogenesis in young and then in old adult animals. Then, we discuss Wnt signaling and review the very few in vitro and in vivo studies that have examined the Wnt signaling pathways in aging and physical activity.
Collapse
|
25
|
Wei L, Sun C, Lei M, Li G, Yi L, Luo F, Li Y, Ding L, Liu Z, Li S, Xu P. Activation of Wnt/β-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity. J Mol Neurosci 2012; 49:105-15. [PMID: 23065334 DOI: 10.1007/s12031-012-9900-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022]
Abstract
Wnt1, initially described as a modulator of embryonic development, has recently been discovered to exert cytoprotective effects in cellular models of several diseases, including Parkinson's disease (PD). We, therefore, examined the neuroprotective effects of exogenous Wnt1 on dopaminergic SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA). Here, we show that 10-500 μM 6-OHDA treatment decreased cell viability and increased lactate dehydrogenase (LDH) leakage. SH-SY5Y cells treated with 100 μM 6-OHDA for 24 h showed reduced Wnt/β-catenin activity, decreased mitochondrial transmembrane potential, elevated levels of reactive oxidative species (ROS) and phosphatidylserine (PS) extraversion, increased levels of Chop and Bip/GRP78 and reduced level of p-Akt (Ser473). In contrast, exogenous Wnt1 attenuated 6-OHDA-induced changes. These results suggest that activation of the Wnt/β-catenin pathway by exogenous Wnt1 protects against 6-OHDA-induced changes by restoring mitochondria and endoplasmic reticulum (ER) function.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Elucidating the sources of β-catenin dynamics in human neural progenitor cells. PLoS One 2012; 7:e42792. [PMID: 22952611 PMCID: PMC3431164 DOI: 10.1371/journal.pone.0042792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/11/2012] [Indexed: 01/03/2023] Open
Abstract
Human neural progenitor cells (hNPCs) form a new prospect for replacement therapies in the context of neurodegenerative diseases. The Wnt/β-catenin signaling pathway is known to be involved in the differentiation process of hNPCs. RVM cells form a common cell model of hNPCs for in vitro investigation. Previous observations in RVM cells raise the question of whether observed kinetics of the Wnt/β-catenin pathway in later differentiation phases are subject to self-induced signaling. However, a concern when investigating RVM cells is that experimental results are possibly biased by the asynchrony of cells w.r.t. the cell cycle. In this paper, we present, based on experimental data, a computational modeling study on the Wnt/β-catenin signaling pathway in RVM cell populations asynchronously distributed w.r.t. to their cell cycle phases. Therefore, we derive a stochastic model of the pathway in single cells from the reference model in literature and extend it by means of cell populations and cell cycle asynchrony. Based on this, we show that the impact of the cell cycle asynchrony on wet-lab results that average over cell populations is negligible. We then further extend our model and the thus-obtained simulation results provide additional evidence that self-induced Wnt signaling occurs in RVM cells. We further report on significant stochastic effects that directly result from model parameters provided in literature and contradict experimental observations.
Collapse
|