1
|
Prashant SP, Bhawana M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14400. [PMID: 38945697 DOI: 10.1111/ppl.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.
Collapse
Affiliation(s)
- Shera Pandit Prashant
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| | - Mishra Bhawana
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| |
Collapse
|
2
|
Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, Ramesh M. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:447-458. [PMID: 37197003 PMCID: PMC10026785 DOI: 10.1007/s11240-023-02485-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023]
Abstract
Plant secondary metabolites are bioactive scaffolds that are crucial for plant survival in the environment and to maintain a defense mechanism from predators. These compounds are generally present in plants at a minimal level and interestingly, they are found to have a wide variety of therapeutic values for humans. Several medicinal plants are used for pharmaceutical purposes due to their affordability, fewer adverse effects, and vital role in traditional remedies. Owing to this reason, these plants are exploited at a high range worldwide and therefore many medicinal plants are on the threatened list. There is a need of the hour to tackle this major problem, one effective approach called elicitation can be used to enhance the level of existing and novel plant bioactive compounds using different types of elicitors namely biotic and abiotic. This process can be generally achieved by in vitro and in vivo experiments. The current comprehensive review provides an overview of biotic and abiotic elicitation strategies used in medicinal plants, as well as their effects on secondary metabolites enhancement. Further, this review mainly deals with the enhancement of biomass and biosynthesis of different bioactive compounds by methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors of wide medicinal plants in in vitro by using different cultures. The present review was suggested as a significant groundwork for peers working with medicinal plants by applying elicitation strategies along with advanced biotechnological approaches.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Kannan Karthick
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Sung Hwan Choi
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| |
Collapse
|
3
|
Tehranian AS, Askari H, Rezadoost H. The effect of alginate as an elicitor on transcription of steviol glycosides biosynthesis pathway related key genes and sweeteners content in in vitro cultured Stevia rebaudiana. Mol Biol Rep 2023; 50:2283-2291. [PMID: 36576674 DOI: 10.1007/s11033-022-07906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stevia rebaudiana is a medicinal herb that accumulates non-caloric sweeteners called steviol glycosides (SGs) which are approximately 300 times sweeter than sucrose. This study used alginate (ALG) as an elicitor to increase steviol glycosides accumulation and elucidate gene transcription in the steviol glycosides biosynthesis pathway. METHODS AND RESULTS To minimize the grassy taste associated with stevia sweeteners, plantlets were grown in complete darkness. ALG was applied to stevia plants grown in suspension culture with a Murashige and Skoog (MS) medium to determine its effect on SGs' content and the transcription profile of SG-related genes using the HPLC and RT-qPCR methods, respectively. Treatment with alginate did not significantly affect plantlet growth parameters such as shoot number, dry and fresh weight. Rebaudioside A (Reb A) content increased approximately sixfold in the presence of 1g L-1 alginate and KS, KAH, and UGT74G1 genes showed significant up-regulation. When the concentration was increased to 2g L-1, the transcription of KO and UGT76G1, responsible for the conversion of stevioside to Reb A, was increased about twofold. CONCLUSIONS The current study proposes that adding alginate to the MS suspension medium can increase Reb A levels by altering the SG biosynthesize pathway's transcription profile. The present experiment provides new insights into the biochemical and transcriptional response mechanisms of suspension-cultured stevia plants to alginate.
Collapse
Affiliation(s)
- Alireza S Tehranian
- Department of Cellular and Molecular Biology Faculty of Sciences and Biotechnology, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Hossein Askari
- Department of Cellular and Molecular Biology Faculty of Sciences and Biotechnology, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Hassan Rezadoost
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Alcalde MA, Perez-Matas E, Escrich A, Cusido RM, Palazon J, Bonfill M. Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022. Molecules 2022; 27:molecules27165253. [PMID: 36014492 PMCID: PMC9416168 DOI: 10.3390/molecules27165253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
One of the aims of plant in vitro culture is to produce secondary plant metabolites using plant cells and organ cultures, such as cell suspensions, adventitious, and hairy roots (among others). In cases where the biosynthesis of a compound in the plant is restricted to a specific organ, unorganized systems, such as plant cell cultures, are sometimes unsuitable for biosynthesis. Then, its production is based on the establishment of organ cultures such as roots or aerial shoots. To increase the production in these biotechnological systems, elicitors have been used for years as a useful tool since they activate secondary biosynthetic pathways that control the flow of carbon to obtain different plant compounds. One important biotechnological system for the production of plant secondary metabolites or phytochemicals is root culture. Plant roots have a very active metabolism and can biosynthesize a large number of secondary compounds in an exclusive way. Some of these compounds, such as tropane alkaloids, ajmalicine, ginsenosides, etc., can also be biosynthesized in undifferentiated systems, such as cell cultures. In some cases, cell differentiation and organ formation is necessary to produce the bioactive compounds. This review analyses the biotic elicitors most frequently used in adventitious and hairy root cultures from 2010 to 2022, focusing on the plant species, the target secondary metabolite, the elicitor and its concentration, and the yield/productivity of the target compounds obtained. With this overview, it may be easier to work with elicitors in in vitro root cultures and help understand why some are more effective than others.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Edgar Perez-Matas
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Rosa M. Cusido
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Javier Palazon
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Mercedes Bonfill
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4020267; Fax: +34-93-4029043
| |
Collapse
|
5
|
Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14148329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Is there any relationship between plant nutrition and human health? The overall response to this question is very positive, and a strong relationship between the nutrition of plants and humans has been reported in the literature. The nutritional status of edible plants consumed by humans can have a negative or positive impact on human health. This review was designed to assess the importance of plant bioactive compounds for human health under the umbrella of sustainable agriculture. With respect to the first research question, it was found that plant bioactives (e.g., alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due to their therapeutic benefits, and their potentiality depends on several factors, including botanical, environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered plants. Bioactive production of plants depends on many factors, especially climate change (heat stress, drought, UV radiation, ozone, and elevated CO2), environmental pollution, and problematic soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in reviewing the literature, a positive or negative association was found depending on the kinds of stress or bioactives and their attributes. The observed correlation between plant bioactives and stress (or growth factors) might explain the importance of these bioactives for human health. Their accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The results of this study are in keeping with previous observational studies, which confirmed that the human nutrition might start from edible plants and their bioactive contents, which are consumed by humans. This review is the first report that analyzes this previously observed relationship using pictorial presentation.
Collapse
|
6
|
Al-Nuaimi Z, Al-Baniwes AJ. Evaluation the Protective Effect of Withania somnifera Extract on the Level of Sex Hormone in Morphine Addicted Female Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphine is one of the most types of phenanthrene alkaloid opioid used to soothe the acute and chronic pain via narcotic and analgesic medical employment. Increasingly constantly used of opioid in the public and medication practical important knowledge improve that. Morphine show pernicious has effects on numerous tissue for instance ovary, liver and lung morphine side effects instruct for existence of oxidative role due to generation of reactive oxygen species in the affected tissue. Last decades researchers proved that natural substance provides protective role against toxic effect. Thus, withania somnifera consider as antioxidant substance provide protective versus the toxic substance as morphine. The present study wase aimed to evaluate the protective role of withania somnifera extract on the level of sex hormone in morphine addicted female rats. In conclusion, the present study confirmed a truth evidence of a protective roles of withania somnifera against the morphine addiction in female rats.
Collapse
|
7
|
Hussain MJ, Abbas Y, Nazli N, Fatima S, Drouet S, Hano C, Abbasi BH. Root Cultures, a Boon for the Production of Valuable Compounds: A Comparative Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030439. [PMID: 35161423 PMCID: PMC8838425 DOI: 10.3390/plants11030439] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 05/23/2023]
Abstract
Medicinal plants are an inevitable source of pharmaceutical drugs and most of the world population depends on these plants for health benefits. The increasing global demand for bioactive compounds from medicinal plants has posed a great threat to their existence due to overexploitation. Adventitious root and hairy root culture systems are an alternative approach to the conventional method for mass production of valuable compounds from medicinal plants owing to their rapid growth, biosynthetic and genetic stability. The main purpose of this review is to investigate the recent scientific research published worldwide on the application of adventitious and hairy root cultures to produce valuable compounds from medicinal plants. Furthermore, a comparison of adventitious root vs. hairy root cultures to produce valuable compounds has also been discussed. Various aspects such as medium composition, carbon source, pH, amount of macronutrients, optimization strategy, scale-up cultures, and use of biotic abiotic and nano-elicitors at various concentrations are the topic of discussion in this review. Several studies on adventitious and hairy root cultures of Polygonum multiflorum¸ Withania somnifera¸ Echinacea purpurea and Ajuga bracteosa have been discussed in detail which highlights the importance of elicitation strategies and bioreactor system, presenting commercial applications.
Collapse
Affiliation(s)
- Masooma Jawad Hussain
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.H.); (Y.A.); (N.N.); (S.F.)
| | - Yawar Abbas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.H.); (Y.A.); (N.N.); (S.F.)
| | - Naushaba Nazli
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.H.); (Y.A.); (N.N.); (S.F.)
| | - Sara Fatima
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.H.); (Y.A.); (N.N.); (S.F.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France; (S.D.); (C.H.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France; (S.D.); (C.H.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.H.); (Y.A.); (N.N.); (S.F.)
| |
Collapse
|
8
|
Das D, Bandyopadhyay M. Manipulation of DXP pathway for andrographolide production in callus cultures of Andrographis paniculata. PLANTA 2021; 254:23. [PMID: 34223986 DOI: 10.1007/s00425-021-03674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Greening of in vitro callus cultures and andrographolide over-accumulation was achieved by manipulating light exposure and media composition, when the biosynthetic cascade was channeled through the DXP pathway. Andrographolide, the primary biologically active compound of Andrographis paniculata, is produced through coordinated action of two pathways, the classical cytosolic mevalonate pathway and the alternative plastidial non-mevalonate pathway (Deoxy-xylulose Phosphate pathway). In vitro callus cultures of A. paniculata are useful sources of production, as well as, manipulation of andrographolide, and the present study was designed to explore the strategy of pathway inhibition for its overproduction. When the cytosolic mevalonate pathway blocker, lovastatin, was applied to callus cultures of A. paniculata, andrographolide production was enhanced in comparison to untreated control. In contrast, treatment of the callus tissue with the DXP-pathway blocker, fosmidomycin, led to depletion in andrographolide production. The present study also showed that silver nitrate, a potent elicitor of andrographolide production in in vitro callus culture, when added in combination with the pathway inhibitors resulted in alterations in andrographolide production. The highest andrographolide production was obtained in callus treated with a combination of silver nitrate and lovastatin, indicating a predominant role of the plastidial DXP pathway in andrographolide biosynthesis. A positive co-relation with chlorophyll content and andrographolide production in in vitro callus cultures (untreated and treated) observed also supported the above assumption. It could be inferred from this study that greening of callus tissue through organellar organization was a potent strategy for enhancing andrographolide accumulation in callus tissues of A. paniculata.
Collapse
Affiliation(s)
- Debalina Das
- Plant Molecular Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
9
|
Hedayati A, Hosseini B, Palazon J, Maleki R. Improved tropane alkaloid production and changes in gene expression in hairy root cultures of two Hyoscyamus species elicited by silicon dioxide nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:416-428. [PMID: 32814278 DOI: 10.1016/j.plaphy.2020.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/22/2023]
Abstract
Species of Hyoscyamus are rich sources of medicinally important tropane alkaloids, which have anticholinergic, antispasmodic and sedative effects and are competitive inhibitors of acetylcholine. The application of nanotechnology and nanomaterials for elicitation is rapidly expanding and recent research indicates that silicon dioxide nanoparticles (SiO2 NPs) can be used as an efficient elicitor to increase the production of hyoscyamine and scopolamine in Hyoscyamus species. Thus, in this work, the effect of SiO2 NPs (0, 25, 50, 100 and 200 mg L-1) with two treatment times (24 and 48 h) on the growth rate, total phenol and flavonoid content (TPC, TFC), antioxidant enzyme activity, tropane alkaloid yield and pmt (putrescine N-methyltransferase) and h6h (hyoscyamine 6<beta>-hydroxylase) gene expression levels in hairy roots of two Hyoscyamus species (H. reticulatus and H. pusillus) was investigated. The highest TPC and TFC accumulation was obtained in H. reticulatus elicited by SiO2 NPs (100 and 200 mg L-1), respectively, at 24 h of treatment. High-performance liquid chromatography (HPLC) revealed the highest amount of hyoscyamine (140.15 μg g-1 FW) and scopolamine (67.71 μg g-1 FW) accumulated in H. reticulatus transformed roots treated with 100 mg L-1 SiO2 NPs at 24 h, with a respective increase of 1212% and 272% compared to non-treated roots. In H. pusillus, the highest hyoscyamine (7.42 μg g-1 FW) and scopolamine (15.56 μg g-1 FW) production (about 82% and 241% higher, respectively, compared to the lowest amounts) was achieved with 25 and 100 mg L-1 SiO2 NPs, respectively, at 48 h of treatment. Semi-quantitative RT-PCR analysis determined the highest expression level of pmt and h6h genes in H. reticulatus transformed roots supplemented with 100 mg L-1 SiO2 NPs.
Collapse
Affiliation(s)
- Ahad Hedayati
- Department of Horticulture, Faculty of Agriculture, Urmia University, Iran
| | - Bahman Hosseini
- Department of Horticulture, Faculty of Agriculture, Urmia University, Iran.
| | - Javier Palazon
- Department of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan, XXIII, S/n, 08028, Barcelona, Spain
| | - Ramin Maleki
- Iranian Academic Center for Education, Culture and Research (ACECR), Urmia, Iran
| |
Collapse
|
10
|
Effects of Gellan Oligosaccharide and NaCl Stress on Growth, Photosynthetic Pigments, Mineral Composition, Antioxidant Capacity and Antimicrobial Activity in Red Perilla. Molecules 2019; 24:molecules24213925. [PMID: 31671710 PMCID: PMC6864638 DOI: 10.3390/molecules24213925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/04/2022] Open
Abstract
The growing market demand for plant raw materials with improved biological value promotes the extensive search for new elicitors and biostimulants. Gellan gum derivatives may enhance plant growth and development, but have never been used under stress conditions. Perilla (Perilla frutescens, Lamiaceae) is a source of valuable bioproducts for the pharmaceutical, cosmetic, and food industries. However, there is not much information on the use of biostimulators in perilla cultivation. In this work we investigated the effects of oligo-gellan and salt (100 mM NaCl) on the yield and quality of red perilla (P. frutescens var. crispa f. purpurea) leaves. Plants grown under stress showed inhibited growth, smaller biomass, their leaves contained less nitrogen, phosphorus, potassium, total polyphenol and total anthocyanins, and accumulated considerably more sodium than control plants. Treatment with oligo-gellan under non-saline conditions stimulated plant growth and the fresh weight content of the above-ground parts, enhanced the accumulation of nitrogen, potassium, magnesium and total polyphenols, and increased antioxidant activity as assessed by DPPH and ABTS assays. Oligo-gellan applied under saline conditions clearly alleviated the stress effects by limiting the loss of biomass, macronutrients, and total polyphenols. Additionally, plants pretreated with oligo-gellan and then exposed to 100 mM NaCl accumulated less sodium, produced greater amounts of photosynthetic pigments, and had greater antioxidant activity than NaCl-stressed plants. Irrespective of the experimental treatment, 50% extract effectively inhibited growth of Escherichia coli and Staphylococcus aureus. Both microorganisms were the least affected by 25% extract obtained from plants untreated with either NaCl or oligo-gellan. In conclusion, oligo-gellan promoted plant growth and enhanced the quality of red perilla leaves and efficiently alleviated the negative effects of salt stress.
Collapse
|