1
|
Apparent degradation forms of rhG-CSF under forced conditions: Insights for better quality-control of bioproducts. Anal Biochem 2019; 586:113440. [PMID: 31533024 DOI: 10.1016/j.ab.2019.113440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/24/2022]
Abstract
Stability and quality control of therapeutic protein formulations is a substantial part of drug development process. The objective of this study is to obtain information about stability of a recombinant human granulocyte colony stimulating factor (rhG-CSF) against various stress factors. This will play a crucial role in the finished product formulation development. In this study, rhG-CSF was exposed to various chemical and physical stress conditions at different levels in order to identify degradation pathways and the nature of impurities generated. Experiments were performed by a combination of orthogonal analytical techniques (reversed phase chromatography (RP-HPLC), size exclusion chromatography (SEC-HPLC), polyacrylamide gel electrophoresis (SDS-PAGE) and isoelectric focusing (IEF)) to set and characterize the different degraded samples. The SEC-HPLC results suggest that the major degradation factors generating aggregated forms of the protein are basically thermal stress, freeze-thaw cycles and vortexing. Meanwhile, deamidated rhG-CSF was induced by basic pH as shown by IEF electrophoregram. As well, oxidized forms were generated increasingly with the time of exposure to hydrogen peroxide as outlined by RP-HPLC analysis. Based on these results, it was possible to define the storage and handling conditions of rhG-CSF finished product during its shelf life.
Collapse
|
2
|
Roberts AG, Johnston EV, Shieh JH, Sondey JP, Hendrickson RC, Moore MAS, Danishefsky SJ. Fully Synthetic Granulocyte Colony-Stimulating Factor Enabled by Isonitrile-Mediated Coupling of Large, Side-Chain-Unprotected Peptides. J Am Chem Soc 2015; 137:13167-75. [PMID: 26401918 PMCID: PMC4617663 DOI: 10.1021/jacs.5b08754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation-desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone.
Collapse
Affiliation(s)
- Andrew G. Roberts
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Eric V. Johnston
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Jae-Hung Shieh
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Joseph P. Sondey
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Ronald C. Hendrickson
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Malcolm A. S. Moore
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Samuel J. Danishefsky
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
Assessment of the Effects of Glycosylation on the Pattern and Kinetics of Degradation of Lenograstim in Comparison to Filgrastim Using a Stability-Indicating Orthogonal Testing Protocol. Chromatographia 2015. [DOI: 10.1007/s10337-015-2910-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Long-acting Recombinant Human Granulocyte Colony Stimulating Factor (rhG-CSF) with a Trimer-Structured Polyethylene Glycol. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.6.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Pavišić R, Dodig I, Horvatić A, Mijić L, Sedić M, Linarić MR, Sovulj IG, Preočanin T, Krajačić MB, Cindrić M. Differences between reversible (self-association) and irreversible aggregation of rHuG-CSF in carbohydrate and polyol formulations. Eur J Pharm Biopharm 2010; 76:357-65. [DOI: 10.1016/j.ejpb.2010.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 09/06/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
|
6
|
Kükrer B, Filipe V, van Duijn E, Kasper PT, Vreeken RJ, Heck AJR, Jiskoot W. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm Res 2010; 27:2197-204. [PMID: 20680668 PMCID: PMC2939344 DOI: 10.1007/s11095-010-0224-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/19/2010] [Indexed: 11/26/2022]
Abstract
Purpose The aim of this study was to develop a method to characterize intact soluble monoclonal IgG1 antibody (IgG) oligomers by mass spectrometry. Methods IgG aggregates (dimers, trimers, tetramers and high-molecular-weight oligomers) were created by subjecting an IgG formulation to several pH jumps. Protein oligomer fractions were isolated by high performance size exclusion chromatography (HP-SEC), dialyzed against ammonium acetate pH 6.0 (a mass spectrometry-compatible volatile buffer), and analyzed by native electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS). Results Monomeric and aggregated IgG fractions in the stressed IgG formulation were successfully isolated by HP-SEC. ESI-TOF MS analysis enabled us to determine the molecular weight of the monomeric IgG as well as the aggregates, including dimers, trimers and tetramers. HP-SEC separation and sample preparation proved to be necessary for good quality signal in ESI-TOF MS. Both the HP-SEC protocol and the ESI-TOF mass spectrometric technique were shown to leave the IgG oligomers largely intact. Conclusions ESI-TOF MS is a useful tool complementary to HP-SEC to identify and characterize small oligomeric protein aggregates.
Collapse
Affiliation(s)
- Başak Kükrer
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Vasco Filipe
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics Group and Netherlands Proteomics Center, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Piotr T. Kasper
- Netherlands Metabolomics Center, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Division of Analytical Biosciences Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Rob J. Vreeken
- Netherlands Metabolomics Center, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Division of Analytical Biosciences Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group and Netherlands Proteomics Center, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Hughes H, Morgan C, Brunyak E, Barranco K, Cohen E, Edmunds T, Lee K. A multi-tiered analytical approach for the analysis and quantitation of high-molecular-weight aggregates in a recombinant therapeutic glycoprotein. AAPS JOURNAL 2009; 11:335-41. [PMID: 19430910 DOI: 10.1208/s12248-009-9108-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/17/2009] [Indexed: 11/30/2022]
Abstract
In this study, we have investigated sedimentation velocity ultracentrifugation (AUC-SV), size exclusion chromatography (SEC), and circular dichroism (CD) methods for the detection and quantitation of protein aggregates using recombinant acid alpha-glucosidase (rhGAA) as a model. The results of this study showed that the formation and molecular weight distribution of rhGAA aggregated species were dependent upon the formulation conditions as well as the storage or stress conditions used to induce aggregation. The utility of CD as a probe for non-native, aggregated species was affirmed, as this method was sensitive to rhGAA aggregation levels of < or = 4%. An extensive evaluation of AUC-SV variability was performed using nine levels of spiked rhGAA aggregate that were analyzed on six occasions. Based on our data, the precision of the AUC-SV results increased with increasing levels of aggregate, with a mean RSD of 37.2%. The limit of quantitation (LOQ) for the AUC-SV method, which was based on a Precision criterion of RSD < 20%, was determined to be > or = 3% aggregated rhGAA. The Precision and LOQ of the SEC method, determined using the same rhGAA sample set, was found to be 3.8% and > or = 0.2%, respectively. In general, there was good agreement between the levels of aggregated rhGAA determined using the AUC-SV and SEC methods, with a slight positive bias noted for the AUC-SV results. These studies emphasize the value of applying multiple, well-characterized analytical tools in the evaluation of therapeutic protein aggregation.
Collapse
Affiliation(s)
- Heather Hughes
- Biologics Research and Development, Genzyme Corporation, 1 Mountain Road, Framingham, Massachusetts 01701-9322, USA
| | | | | | | | | | | | | |
Collapse
|