1
|
Salama AM, Elmahy RA, Ibrahim HA, Amer AIM, Eltantawy AF, Elgendy DI. Effects of metformin on parasitological, pathological changes in the brain and liver and immunological aspects during visceral toxocariasis in mice. Parasitol Res 2023; 122:3213-3231. [PMID: 37874393 PMCID: PMC10667394 DOI: 10.1007/s00436-023-08011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
There are currently insufficient anthelmintic medications available for the treatment of toxocariasis. For instance, Albendazole (ABZ) is the preferred medication, but its effectiveness against tissue-dwelling parasites is limited. In addition, Metformin (MTF) is a widely used oral antidiabetic medication that is considered to be safe for treatment. This study aimed to investigate any potential effects of MTF, alone or in combination with ABZ, on mice infections caused by Toxocara canis (T. canis). The efficacy of the treatment was assessed in the acute and chronic phases of the infection by larval recovery and histopathological, immunohistochemical, and biochemical studies. The results showed that combined therapy significantly reduced larval counts in the liver, brain, and muscles and ameliorated hepatic and brain pathology. It reduced oxidative stress and TGF-β mRNA expression and increased FGF21 levels in the liver. It decreased TNF-α levels and MMP-9 expression in the brain. In addition, it increased serum levels of IL-12 and IFN-γ and decreased serum levels of IL-4 and IL-10. In the acute and chronic phases of the infection, the combined treatment was more effective than ABZ alone. In conclusion, this study highlights the potential role of MTF as an adjuvant in the treatment of experimental T. canis infection when administered with ABZ.
Collapse
Affiliation(s)
- Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
2
|
Zhang D, Xu S, Wang Y, Zhu G. The Potentials of Melatonin in the Prevention and Treatment of Bacterial Meningitis Disease. Molecules 2021; 26:1419. [PMID: 33808027 PMCID: PMC7961363 DOI: 10.3390/molecules26051419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023] Open
Abstract
Bacterial meningitis (BM) is an acute infectious central nervous system (CNS) disease worldwide, occurring with 50% of the survivors left with a long-term serious sequela. Acute bacterial meningitis is more prevalent in resource-poor than resource-rich areas. The pathogenesis of BM involves complex mechanisms that are related to bacterial survival and multiplication in the bloodstream, increased permeability of blood-brain barrier (BBB), oxidative stress, and excessive inflammatory response in CNS. Considering drug-resistant bacteria increases the difficulty of meningitis treatment and the vaccine also has been limited to several serotypes, and the morbidity rate of BM still is very high. With recent development in neurology, there is promising progress for drug supplements of effectively preventing and treating BM. Several in vivo and in vitro studies have elaborated on understanding the significant mechanism of melatonin on BM. Melatonin is mainly secreted in the pineal gland and can cross the BBB. Melatonin and its metabolite have been reported as effective antioxidants and anti-inflammation, which are potentially useful as prevention and treatment therapy of BM. In bacterial meningitis, melatonin can play multiple protection effects in BM through various mechanisms, including immune response, antibacterial ability, the protection of BBB integrity, free radical scavenging, anti-inflammation, signaling pathways, and gut microbiome. This manuscript summarizes the major neuroprotective mechanisms of melatonin and explores the potential prevention and treatment approaches aimed at reducing morbidity and alleviating nerve injury of BM.
Collapse
Affiliation(s)
- Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yiting Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
3
|
Anbarasen L, Lim J, Rajandram R, Mun KS, Sia SF. Expression of osteopontin, matrix metalloproteinase-2 and -9 proteins in vascular instability in brain arteriovenous malformation. PeerJ 2019; 7:e7058. [PMID: 31275742 PMCID: PMC6596408 DOI: 10.7717/peerj.7058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background Matrix metalloproteinase (MMP)-2 and -9 are Osteopontin (OPN) dependent molecules implicated in the destabilization of blood vessels. OPN and MMPs have been studied in brain arteriovenous malformation (BAVM) patients’ tissues and blood samples before intervention. In this study, we compared the serum level of these markers before and after treatment, as well as assessed their protein expressions in BAVM tissues to evaluate their roles in this disease. Methodology Serum samples from six BAVM patients and three control subjects were analyzed using enzyme-linked immunoabsorbent assay (ELISA) for OPN. A total of 10 BAVM patients and five control subjects were analyzed using Multiplex ELISA for MMPs. A total of 16 BAVM tissue samples and two normal brain tissue samples were analyzed using immunohistochemistry. Result MMP-2 and -9 were significantly higher in the serum of BAVM patients before and after treatment than in control patients. There were no significant differences of OPN and MMP-9 serum level in BAVM patients before and after treatment. MMP-2 showed a significant elevation after the treatment. Expression of OPN, MMP-2 and -9 proteins were seen in endothelial cells, perivascular cells and brain parenchyma of BAVM tissues. Conclusion Findings revealed that the level of MMP-2 and -9 in the serum correlated well with the expression in BAVM tissues in several cases. Knockdown studies will be required to determine the relationships and mechanisms of action of these markers in the near future. In addition, studies will be required to investigate the expression of these markers’ potential applications as primary medical therapy targets for BAVM patients.
Collapse
Affiliation(s)
- Lalita Anbarasen
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jasmine Lim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kein Seong Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Sheau Fung Sia
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma. Sci Rep 2016; 6:27012. [PMID: 27255663 PMCID: PMC4891740 DOI: 10.1038/srep27012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma.
Collapse
|
5
|
Qin W, Lu W, Li H, Yuan X, Li B, Zhang Q, Xiu R. Melatonin inhibits IL1β-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-κB activation. J Endocrinol 2012; 214:145-53. [PMID: 22619232 DOI: 10.1530/joe-12-0147] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) have been involved in inflammatory and degradative processes in pathologic conditions. The purpose of this study was to investigate the protective effect of melatonin in human umbilical vein endothelial cell (HUVEC) monolayer permeability and the regulation of MMP9 induced by interleukin 1β (IL1β (IL1B)) in HUVECs. Protection studies were carried out with melatonin, a well-known antioxidant and antiinflammatory molecule. MMP9 expression was increased with IL1β induction in HUVECs. Melatonin showed a barrier-protective role by downregulation of MMP9 and upregulation of tissue inhibitor of metalloproteinase-1 expression in HUVECs. Meanwhile, melatonin also decreased sodium fluorescein permeability and counteracted the downregulation of vascular endothelial cadherin and occludin expression in HUVECs. During inflammatory stimulus, nuclear factor-κB (NF-κB) plays a significant role in regulating MMP genes expression, thus the function of NF-κB in HUVECs' barrier disruption was investigated. IL1β induced nuclear translocation of NF-κB in HUVECs and regulated MMP9 expression. However, NF-κB translocation into the nucleus was inhibited significantly by melatonin. Our results show that melatonin decreases the permeability of monolayer endothelial cell induced by IL1β. At the same time, melatonin decreased the expression and activity of MMP9 by a NF-κB-dependent pathway in HUVECs induced by IL1β.
Collapse
Affiliation(s)
- Weiwei Qin
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Tong W, Zhang L. Fetal hypoxia and programming of matrix metalloproteinases. Drug Discov Today 2011; 17:124-34. [PMID: 21946060 DOI: 10.1016/j.drudis.2011.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/15/2011] [Accepted: 09/14/2011] [Indexed: 12/17/2022]
Abstract
Fetal hypoxia adversely affects the brain and heart development, yet the mechanisms responsible remain elusive. Recent studies indicate an important role of the extracellular matrix in fetal development and tissue remodeling. The matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs) have been implicated in a variety of physiological and pathological processes in the cardiovascular and central nervous systems. This review summarizes current knowledge of the mechanisms by which fetal hypoxia induces the imbalance of MMPs, TIMPs and collagen expression patterns, resulting in growth restriction and aberrant tissue remodeling in the developing heart and brain. Collectively, this information could lead to the development of preventive diagnoses and therapeutic strategies in the fetal programming of cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Wenni Tong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | |
Collapse
|
7
|
İlhan F, Ulusoy Y, Halıgür M. Matrix metalloproteinase expression in sheep with listerial meningoencephalitis. Res Vet Sci 2011; 92:269-72. [PMID: 21345473 DOI: 10.1016/j.rvsc.2011.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of several central nervous system (CNS) diseases. In this study, we investigated the presence of Listeria monocytogenes antigens and detected the expression of MMP-9 and MMP-7 in the brains of 22 sheep with clinical signs and histopathological findings characteristic of listerial meningoencephalitis. Archived sections from the brainstem, cerebrum, and cerebellum were stained for immunohistochemistry. L. monocytogenes antigens were located mainly in the cytoplasm of neutrophils and some macrophages and/or extracellularly within microabscesses of the brainstem. MMP-9 was mainly immunolocalised in the endothelial cells, microglial cells, and neurons especially in inflammatory areas. MMP-7 immunoreactivity was detected in perivascular cuffs, microglial cells, and only a few neurons. Overall, immunohistochemistry in formalin-fixed, paraffin-embedded tissues is a useful tool for the diagnosis of encephalitic listeriosis caused by L. monocytogenes, and MMP-9 and MMP-7 may contribute to the pathogenesis of listerial meningoencephalitis.
Collapse
Affiliation(s)
- Fatma İlhan
- Department of Pathology, Faculty of Veterinary Medicine, Yüzüncü Yıl University, 65080 Kampus, Van, Turkey.
| | | | | |
Collapse
|
8
|
Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. ACTA ACUST UNITED AC 2010; 64:328-63. [PMID: 20685221 DOI: 10.1016/j.brainresrev.2010.05.003] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic and complex interface between blood and the central nervous system that strictly controls the exchanges between the blood and brain compartments, therefore playing a key role in brain homeostasis and providing protection against many toxic compounds and pathogens. In this review, the unique properties of brain microvascular endothelial cells and intercellular junctions are examined. The specific interactions between endothelial cells and basement membrane as well as neighboring perivascular pericytes, glial cells and neurons, which altogether constitute the neurovascular unit and play an essential role in both health and function of the central nervous system, are also explored. Some relevant pathways across the endothelium, as well as mechanisms involved in the regulation of BBB permeability, and the emerging role of the BBB as a signaling interface are addressed as well. Furthermore, we summarize some of the experimental approaches that can be used to monitor BBB properties and function in a variety of conditions and have allowed recent advances in BBB knowledge. Elucidation of the molecular anatomy and dynamics of the BBB is an essential step for the development of new strategies directed to maintain or restore BBB integrity and barrier function and ultimately preserve the delicate interstitial brain environment.
Collapse
Affiliation(s)
- Filipa Lourenço Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|
9
|
Tong W, Chen W, Ostrowski RP, Ma Q, Souvenir R, Zhang L, Zhang JH, Tang J. Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats. Dev Neurobiol 2010; 70:182-94. [PMID: 20017119 DOI: 10.1002/dneu.20770] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals.
Collapse
Affiliation(s)
- Wenni Tong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Shokry M, Omran OM, Hassan HI, Elsedfy GO, Hussein MRA. Expression of matrix metalloproteinases 2 and 9 in human trophoblasts of normal and preeclamptic placentas: preliminary findings. Exp Mol Pathol 2009; 87:219-25. [PMID: 19716817 DOI: 10.1016/j.yexmp.2009.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 06/24/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Here we test the hypothesis that "the expression of matrix metalloproteinase 2 and 9 proteins is altered in preeclamptic placentas compared to placentas of normal pregnancy." PATIENTS AND METHODS This case-control study includes preeclamptic placentas (40 women with preeclampsia) from a singleton pregnancy and placentas of normal pregnancies (control group, 40 women with uncomplicated pregnancy). The expression patterns of metalloproteinases 2 and 9 were examined using immunohistochemical staining methods. RESULTS Compared to uncomplicated pregnancy, the incidence of intrauterine growth restriction was high and the mean birth weight was markedly low in patients with preeclampsia. Both metalloproteinase 2 and 9 proteins were frequently and strongly expressed in the majority of placentas of uncomplicated pregnancies (control group). Metalloproteinase 9 expression was absent in the majority of the preeclamptic placentas. In the remaining cases of preeclamptic placentas, the expression of metalloproteinase 9 was weak. In contrast, a strong metalloproteinase 2 protein expression was seen in the majority of the preeclamptic placentas. CONCLUSIONS These preliminary data demonstrate the expression of metalloproteinase 2 and 9 proteins in the placentas of uncomplicated pregnancies. The absence/reduced expression of metalloproteinase 9 in the preeclamptic placentas may be related to insufficient invasion of trophoblast, leading to superficial and unsuccessful placentation.
Collapse
Affiliation(s)
- Mahmoud Shokry
- Department of Obstetrics and Gynecology, Faculty of Medicine, Assiut University Hospitals, Assiut, Egypt.
| | | | | | | | | |
Collapse
|