1
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
2
|
Bansal R, Suryan A. A Comprehensive Review on Steroidal Bioconjugates as Promising Leads in Drug Discovery. ACS BIO & MED CHEM AU 2022; 2:340-369. [PMID: 37102169 PMCID: PMC10125316 DOI: 10.1021/acsbiomedchemau.1c00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ever increasing unmet medical requirements of the human race and the continuous fight for survival against variety of diseases give birth to novel molecules through research. As diseases evolve, different strategies are employed to counter the new challenges and to discover safer, more effective, and target-specific therapeutic agents. Among several novel approaches, bioconjugation, in which two chemical moieties are joined together to achieve noticeable results, has emerged as a simple and convenient technique for a medicinal chemist to obtain potent molecules. The steroid system has been extensively used as a privileged scaffold gifted with significantly diversified medicinal properties in the drug discovery and development process. Steroidal molecules are preferred for their rigidness and good ability to penetrate biological membranes. Slight alteration in the basic ring structure results in the formation of steroidal derivatives with a wide range of therapeutic activities. Steroids are not only active as such, conjugating them with various biologically active moieties results in increased lipophilicity, stability, and target specificity with decreased adverse effects. Thus, the steroid nucleus prominently behaves as a biological carrier for small molecules. The steroid bioconjugates offer several advantages such as synergistic activity with fewer side effects due to reduced dose and selective therapy. The steroidal bioconjugates have been widely explored for their usefulness against various disorders and have shown significant utility as anticancer, anti-inflammatory, anticoagulant, antimicrobial, insecticidal/pesticidal, antioxidant, and antiviral agents along with several other miscellaneous activities. This work provides a comprehensive review on the therapeutic progression of steroidal bioconjugates as medicinally active molecules. The review covers potential biological applications of steroidal bioconjugates and would benefit the wider scientific community in their drug discovery endeavors.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
3
|
Huynh TYL, Oscilowska I, Szoka L, Piktel E, Baszanowska W, Bielawska K, Bucki R, Miltyk W, Palka J. Metformin Induces PRODH/POX-Dependent Apoptosis in Breast Cancer Cells. Front Mol Biosci 2022; 9:869413. [PMID: 35733940 PMCID: PMC9207455 DOI: 10.3389/fmolb.2022.869413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although the antineoplastic activity of metformin (MET) is well established, the underlying mechanism of the activity is not understood. Since MET activates AMP kinase (AMPK) and proline dehydrogenase/proline oxidase (PRODH/POX) is stimulated by AMPK ligands (implicated in the regulation of cancer cell survival/apoptosis), the effect of MET on PRODH/POX-dependent apoptosis in wild-type MCF-7 cells (MCF-7WT) and POX knockdown MCF-7 cells (MCF-7crPOX cells) was studied. PRODH/POX catalyzes proline degradation generating ROS-induced apoptosis or autophagy. Availability of proline for PRODH/POX functions is regulated by the activity of prolidase (enzyme releasing proline from imidodipeptides), collagen biosynthesis (process consuming proline), and metabolism of proline, ornithine, and glutamic acid. We have found that MET is cytotoxic for MCF-7 cells (IC50∼17 mM), and to the lower extent for MCF-7crPOX cells (IC50∼28 mM). In MCF-7WT cells, the effect was accompanied by the inhibition of DNA biosynthesis, collagen biosynthesis, stimulation of ROS formation, AMPKα phosphorylation, and expression of prolidase, p53, caspase 8, caspase 9, and cleaved PARP. In MET-treated MCF-7crPOX cells, the processes were less affected than in MCF-7WT cells and the expression of caspase 9 was decreased, while cleaved caspase 8 and cleaved PARP were not detected. The effects were accompanied by an increase in the prolidase activity and proline concentration. The mechanism for MET-induced apoptosis involves the up-regulation of prolidase activity and a decrease in collagen biosynthesis contributing to an increase in the concentration of substrate (proline) for PRODH/POX-dependent ROS formation and activation of caspases −9 and −8. The data suggest that PRODH/POX participates in the MET-induced intrinsic and extrinsic apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Thi Yen Ly Huynh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Ilona Oscilowska
- Department of Pharmaceutical and Biopharmaceutical Analysis, Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Lukasz Szoka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Bielawska
- Department of Pharmaceutical and Biopharmaceutical Analysis, Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical and Biopharmaceutical Analysis, Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Palka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Jerzy Palka,
| |
Collapse
|
4
|
Lewoniewska S, Oscilowska I, Huynh TYL, Prokop I, Baszanowska W, Bielawska K, Palka J. Troglitazone-Induced PRODH/POX-Dependent Apoptosis Occurs in the Absence of Estradiol or ERβ in ER-Negative Breast Cancer Cells. J Clin Med 2021; 10:jcm10204641. [PMID: 34682765 PMCID: PMC8538344 DOI: 10.3390/jcm10204641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary PRODH/POX (proline dehydrogenase/proline oxidase) is a mitochondrial enzyme that catalyzes proline degradation generating reactive oxygen species (ROS). Estrogens limit proline availability for PRODH/POX by stimulating collagen biosynthesis. It has been considered that estrogens determine efficiency of troglitazone (TGZ)-induced PRODH/POX-dependent apoptosis in breast cancer cells. The studies were performed in wild-type and PRODH/POX-silenced estrogen-dependent MCF-7 cells and estrogen-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, ROS production was measured by fluorescence assay, protein expression was determined by Western blot and proline concentration by LC/MS analysis. We found that: i/TGZ-induced apoptosis in MDA-MB-231 occurs only in the absence of estradiol or ERβ, ii/the process is mediated by PRODH/POX, iii/and is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis (proline utilizing process). The data suggest that combined TGZ and anti-estrogen treatment could be considered in experimental therapy of ER negative breast cancers. Abstract The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, ROS production was measured by fluorescence assay. Protein expression was determined by Western blot and proline concentration by LC/MS analysis. PRODH/POX degrades proline yielding reactive oxygen species (ROS). Estrogens stimulate collagen biosynthesis utilizing free proline and limiting its availability for PRODH/POX-dependent apoptosis. TGZ cytotoxicity was highly pronounced in wild-type MDA-MB-231 cells cultured in medium without estradiol or in the cells cultured in medium with estradiol but deprived of ERβ (by ICI-dependent degradation), while in PRODH/POX-silenced cells the process was not affected. The TGZ cytotoxicity was accompanied by increase in PRODH/POX expression, ROS production, expression of cleaved caspase-3, caspase-9 and PARP, inhibition of collagen biosynthesis, prolidase activity and decrease in intracellular proline concentration. The phenomena were not observed in PRODH/POX-silenced cells. The data suggest that TGZ-induced apoptosis in MDA-MB-231 cells cultured in medium without estradiol or deprived of ERβ is mediated by PRODH/POX and the process is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis. It suggests that combined TGZ and antiestrogen treatment could be considered in experimental therapy of estrogen receptor negative breast cancers.
Collapse
Affiliation(s)
- Sylwia Lewoniewska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Ilona Oscilowska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Thi Yen Ly Huynh
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Izabela Prokop
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Katarzyna Bielawska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
- Correspondence: ; Tel.: +48-85-748-5706
| |
Collapse
|
5
|
Lowder LL, Powell M, Miller SE, Kishton RJ, Kelly CB, Cribb CB, Mastro-Kishton K, Chelvanambi M, Do PT, Govindapur RR, Wardell SE, McDonnell DP, Bartolotti LJ, Akkaraju GR, Frampton AR, Varadarajan S. Mechanistic Investigation of Site-specific DNA Methylating Agents Targeting Breast Cancer Cells. J Med Chem 2021; 64:12651-12669. [PMID: 34415160 DOI: 10.1021/acs.jmedchem.1c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously described the development of a DNA-alkylating compound that showed selective toxicity in breast cancer cells. This compound contained an estrogen receptor α (ERα)-binding ligand and a DNA-binding/methylating component that could selectively methylate the N3-position of adenines at adenine-thymine rich regions of DNA. Herein, we describe mechanistic investigations that demonstrate that this class of compounds facilitate the translocation of the ERα-compound complex to the nucleus and induce the expression of ERα target genes. We confirm that the compounds show selective toxicity in ERα-expressing cells, induce ERα localization in the nucleus, and verify the essential role of ERα in modulating the toxicity. Minor alterations in the compound structure significantly affects the DNA binding ability, which correlates to the DNA-methylating ability. These studies demonstrate the utility of DNA-alkylating compounds to accomplish targeted inhibition of the growth of specific cancer cells; an approach that may overcome shortcomings of currently used chemotherapy agents.
Collapse
Affiliation(s)
- Leah L Lowder
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Matthew Powell
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Sean E Miller
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Rigel J Kishton
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Charles B Kelly
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Connor B Cribb
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Kelly Mastro-Kishton
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Manoj Chelvanambi
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Phat T Do
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Rajeshwar Reddy Govindapur
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Libero J Bartolotti
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Giridhar R Akkaraju
- Department of Biology, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Arthur R Frampton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Sridhar Varadarajan
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| |
Collapse
|
6
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
7
|
Saha P, Fortin S, Leblanc V, Parent S, Asselin É, Bérubé G. Design, synthesis, cytocidal activity and estrogen receptor α affinity of doxorubicin conjugates at 16α-position of estrogen for site-specific treatment of estrogen receptor positive breast cancer. Steroids 2012; 77:1113-22. [PMID: 22801351 DOI: 10.1016/j.steroids.2012.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/15/2012] [Accepted: 06/28/2012] [Indexed: 11/23/2022]
Abstract
Doxorubicin (DOX) is an important medicine for the treatment of breast cancer, which is the most frequently diagnosed and the most lethal cancer in women worldwide. However, the clinical use of DOX is impeded by serious toxic effects such as cardiomyopathy and congestive heart failure. Covalently linking DOX to estrogen to selectively deliver the drug to estrogen receptor-positive (ER(+)) cancer tissues is one of the strategies under investigation for improving the efficacy and decreasing the cardiac toxicity of DOX. However, conjugation of drug performed until now was at 3- or 17-position of estrogen, which is not ideal since the hydroxyl groups at this position are important for receptor binding affinity. In this study, we designed, prepared and evaluated in vitro the first estrogen-doxorubicin conjugates at 16α-position of estradiol termed E-DOXs (8a-d). DOX was conjugated using a 3-9 carbon atoms alkylamide linking arm. E-DOXs were prepared from estrone using a seven-step procedure to afford the desired conjugates in low to moderate yields. The antiproliferative activities of the E-DOX 8a conjugate through a 3-carbon spacer chain on ER(+) MCF7 and HT-29 are in the micromolar range while inactive on M21 and the ER(-) MDA-MB-231 cells (>50 μM). Compound 8a exhibits a selectivity ratio (ER(+)/ER(-) cell lines) of >3.5. Compounds 8b-8d bearing alkylamide linking arms ranging from 5 to 9 carbon atoms were inactive at the concentrations tested (>50 μM). Interestingly, compounds 8a-8c exhibited affinity for the estrogen receptor α (ERα) in the nanomolar range (72-100 nM) whereas compound 8d exhibited no affinity at concentrations up to 215 nM. These results indicate that a short alkylamide spacer is required to maintain both antiproliferative activity toward ER(+) MCF7 and affinity for the ERα of the E-DOX conjugates. Compound 8a is potentially a promising conjugate to target ER(+) breast cancer and might be useful also for the design of more potent E-DOX conjugates.
Collapse
Affiliation(s)
- Pijus Saha
- Groupe de Recherche en Oncologie et Endocrinologie Moléculaires, Département de Chimie-Biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, Canada G9A 5H7.
| | | | | | | | | | | |
Collapse
|