1
|
Srathongsian L, Kaewprajak A, Naikaew A, Seriwattanachai C, Phuphathanaphong N, Inna A, Chotchuangchutchaval T, Passatorntaschakorn W, Kumnorkaew P, Sahasithiwat S, Wongratanaphisan D, Ruankham P, Supruangnet R, Nakajima H, Pakawatpanurut P, Kanjanaboos P. Cs and Br tuning to achieve ultralow-hysteresis and high-performance indoor triple cation perovskite solar cell with low-cost carbon-based electrode. iScience 2024; 27:109306. [PMID: 38495820 PMCID: PMC10940937 DOI: 10.1016/j.isci.2024.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
With high efficacy for electron-photon conversion under low light, perovskite materials show great potential for indoor solar cell applications to power small electronics for internet of things (IoTs). To match the spectrum of an indoor LED light source, triple cation perovskite composition was varied to adjust band gap values via Cs and Br tuning. However, increased band gaps lead to morphology, phase instability, and defect issues. 10% Cs and 30% Br strike the right balance, leading to low-cost carbon-based devices with the highest power conversion efficiency (PCE) of 31.94% and good stability under low light cycles. With further improvement in device stack and size, functional solar cells with the ultralow hysteresis index (HI) of 0.1 and the highest PCE of 30.09% with an active area of 1 cm2 can be achieved. A module from connecting two such cells in series can simultaneously power humidity and temperature sensors under 1000 lux.
Collapse
Affiliation(s)
- Ladda Srathongsian
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Anusit Kaewprajak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Atittaya Naikaew
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chaowaphat Seriwattanachai
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Napan Phuphathanaphong
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Anuchytt Inna
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thana Chotchuangchutchaval
- Center of Sustainable Energy and Engineering Materials (SEEM), College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Woraprom Passatorntaschakorn
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pisist Kumnorkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Duangmanee Wongratanaphisan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pipat Ruankham
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Hideki Nakajima
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Pasit Pakawatpanurut
- Department of Chemistry and Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH CIC), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH CIC), Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Effect of Optical–Electrical–Thermal Coupling on the Performance of High-Concentration Multijunction Solar Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the process of high-concentration photovoltaic (HCPV) power generation, multijunction cells work in the conditions of high radiation and high current. Non-uniformity of focusing, the mismatch between the focusing spectrum caused by the dispersion effect and the spectrum of multijunction solar cell design and the increase in cell temperature are the key factors affecting the photoelectric performance of the multijunction solar cell. The coupling effect of three factors on the performance of multijunction solar cell intensifies its negative impact. Based on the previous research, the light intensity and spectral characteristics under Fresnel lens focusing are calculated through the optical model, and the optical–electrical–thermal coupling model under non-uniform illumination is established. The results show that obvious changes exist in the concentration spectrum distribution, energy and non-uniformity along different optical axis positions. These changes lead to serious current mismatch and transverse current in the multijunction solar cell placed near the focal plane which decreases the output power. The lost energy makes the cell temperature highest near the focal plane. In the condition of passive heat dissipation with 500 times geometric concentration ratio, the output power of the solar cell near the focal plane decreases by 35% and the temperature increases by 15%. Therefore, optimizing the placement position of the multijunction cell in the optical axis direction can alleviate the negative effects of optical–electrical–thermal coupling caused by focusing non-uniformity, spectral mismatch and rising cell temperature, and improve the output performance of the cell. This conclusion is verified by the experimental result.
Collapse
|
3
|
Koh TM, Wang H, Ng YF, Bruno A, Mhaisalkar S, Mathews N. Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104661. [PMID: 34699646 DOI: 10.1002/adma.202104661] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The rapid emergence of organic-inorganic lead halide perovskites for low-cost and high-efficiency photovoltaics promises to impact new photovoltaic concepts. Their high power conversion efficiencies, ability to coat perovskite layers on glass via various scalable deposition techniques, excellent optoelectronic properties, and synthetic versatility for modulating transparency and color allow perovskite solar cells (PSCs) to be an ideal solution for building-integrated photovoltaics (BIPVs), which transforms windows or façades into electric power generators. In this review, the unique features and properties of PSCs for BIPV application are accessed. Device engineering and optical management strategies of active layers, interlayers, and electrodes for semitransparent, bifacial, and colorful PSCs are also discussed. The performance of PSCs under conditions that are relevant for BIPV such as different operational temperature, light intensity, and light incident angle are also reviewed. Recent outdoor stability testing of PSCs in different countries and other demonstration of scalability and deployment of PSCs are also spotlighted. Finally, the current challenges and future opportunities for realizing perovskite-based BIPV are discussed.
Collapse
Affiliation(s)
- Teck Ming Koh
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Hao Wang
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Yan Fong Ng
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Annalisa Bruno
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Subodh Mhaisalkar
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nripan Mathews
- Energy Research Institute at Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier Block Level 5, 50 Nanyang Drive, Singapore, 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Glowienka D, Galagan Y. Light Intensity Analysis of Photovoltaic Parameters for Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105920. [PMID: 34676926 PMCID: PMC11469270 DOI: 10.1002/adma.202105920] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The number of publications on perovskite solar cells (PSCs) continues to grow exponentially. Although the efficiency of PSCs has exceeded 25.5%, not every research laboratory can reproduce this result or even pass the border of 20%. Unfortunately, it is not always clear which dominating mechanism is responsible for the performance drop. Here, a simple method of light intensity analysis of the JV parameters is developed, allowing an understanding of what the mechanisms are that appear in the solar cell and limit device performance. The developed method is supported by the drift-diffusion model and is aimed at helping in the explanation of parasitic losses from the interface or bulk recombination, series resistance, or shunt resistance in the perovskite solar cell. This method can help not only point toward the dominating of bulk or interface recombination in the devices but also determine which interface is more defective. A detailed and stepwise guidance for such a type of light intensity analysis of JV parameters is provided. The proposed method and the conclusions of this study are supported by a series of case studies, showing the effectiveness of the proposed method on real examples.
Collapse
Affiliation(s)
- Damian Glowienka
- Department of Materials Science and EngineeringNational Taiwan UniversityNo.1, Roosevelt Road, Section 4Taipei106Taiwan
- Faculty of Applied Physics and MathematicsGdańsk University of TechnologyNarutowicza 11/12Gdańsk80‐233Poland
| | - Yulia Galagan
- Department of Materials Science and EngineeringNational Taiwan UniversityNo.1, Roosevelt Road, Section 4Taipei106Taiwan
| |
Collapse
|
5
|
Chiang SE, Ke QB, Chandel A, Cheng HM, Yen YS, Shen JL, Chang SH. 19% Efficient P3CT-Na Based MAPbI 3 Solar Cells with a Simple Double-Filtering Process. Polymers (Basel) 2021; 13:polym13060886. [PMID: 33805727 PMCID: PMC7998587 DOI: 10.3390/polym13060886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
A high-efficiency inverted-type CH3NH3PbI3 (MAPbI3) solar cell was fabricated by using a ultrathin poly[3-(4-carboxybutyl)thiophene-2,5-diyl]-Na (P3CT-Na) film as the hole transport layer. The averaged power conversion efficiency (PCE) can be largely increased from 11.72 to 18.92% with a double-filtering process of the P3CT-Na solution mainly due to the increase in short-circuit current density (JSC) from 19.43 to 23.88 mA/cm2, which means that the molecular packing structure of P3CT-Na thin film can influence the formation of the MAPbI3 thin film and the contact quality at the MAPbI3/P3CT-Na interface. Zeta potentials, atomic-force microscopic images, absorbance spectra, photoluminescence spectra, X-ray diffraction patterns, and Raman scattering spectra are used to understand the improvement in the JSC. Besides, the light intensity-dependent and wavelength-dependent photovoltaic performance of the MAPbI3 solar cells shows that the P3CT-Na thin film is not only used as the hole transport layer but also plays an important role during the formation of a high-quality MAPbI3 thin film. It is noted that the PCE values of the best P3CT-Na based MAPbI3 solar cell are higher than 30% in the yellow-to-near infrared wavelength range under low light intensities. On the other hand, it is predicted that the double-filtering method can be readily used to increase the PCE of polymer based solar cells.
Collapse
Affiliation(s)
- Shou-En Chiang
- Department of Physics, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (S.-E.C.); (Q.-B.K.); (A.C.); (J.-L.S.)
| | - Qi-Bin Ke
- Department of Physics, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (S.-E.C.); (Q.-B.K.); (A.C.); (J.-L.S.)
| | - Anjali Chandel
- Department of Physics, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (S.-E.C.); (Q.-B.K.); (A.C.); (J.-L.S.)
| | - Hsin-Ming Cheng
- Department of Electronic Engineering and Organic Electronics Research Center, Ming Chi University of Technology, Taipei 24301, Taiwan
- Correspondence: (H.-M.C.); (S.H.C.)
| | - Yung-Sheng Yen
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan;
| | - Ji-Lin Shen
- Department of Physics, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (S.-E.C.); (Q.-B.K.); (A.C.); (J.-L.S.)
| | - Sheng Hsiung Chang
- R&D Center for Membrane Technology and Center for Nanotechnology, Department of Physics, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Correspondence: (H.-M.C.); (S.H.C.)
| |
Collapse
|
6
|
Salunke J, Guo X, Liu M, Lin Z, Candeias NR, Priimagi A, Chang J, Vivo P. N-Substituted Phenothiazines as Environmentally Friendly Hole-Transporting Materials for Low-Cost and Highly Stable Halide Perovskite Solar Cells. ACS OMEGA 2020; 5:23334-23342. [PMID: 32954184 PMCID: PMC7496006 DOI: 10.1021/acsomega.0c03184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Most of the high-performing halide perovskite solar cells (PSCs) leverage toxic chlorinated solvents (e.g., o-dichlorobenzene or chlorobenzene) for the hole-transporting material (HTM) processing and/or antisolvents in the perovskite film fabrication. To minimize the environmental and health-related hazards, it is highly desirable, yet at the same time demanding, to develop HTMs and perovskite deposition processes relying on nonhalogenated solvents. In this work, we designed two small molecules, AZO-III and AZO-IV, and synthesized them via simple and environmentally friendly Schiff base chemistry, by condensation of electron-donating triarylamine and phenothiazine moieties connected through an azomethine bridge. The molecules are implemented as HTMs in PSCs upon processing in a nonchlorinated (toluene) solvent, rendering their synthesis and film preparation eco-friendly. The enhancement in the power conversion efficiency (PCE) was achieved when switching from AZO-III (9.77%) to AZO-IV (11.62%), in which the thioethyl group is introduced in the 2-position of the phenothiazine ring. Additionally, unencapsulated PSCs based on AZO-III displayed excellent stabilities (75% of the initial PCEs is retained after 6 months of air exposure for AZO-III to be compared with a 48% decrease of the initial PCE for Spiro-OMeTAD-based devices). The outstanding stability and the extremely low production cost (AZO-III = 9.23 $/g and AZO-IV = 9.03 $/g), together with the environmentally friendly synthesis, purification, and processing, make these materials attractive candidates as HTMs for cost-effective, stable, and eco-friendly PSCs.
Collapse
Affiliation(s)
- Jagadish Salunke
- Faculty
of Engineering and Natural Sciences, Tampere
University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Xing Guo
- State
Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,
Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, 2 South Taibai Road, 710071 Xi’an, P. R. China
| | - Maning Liu
- Faculty
of Engineering and Natural Sciences, Tampere
University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Zhenhua Lin
- State
Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,
Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, 2 South Taibai Road, 710071 Xi’an, P. R. China
| | - Nuno R. Candeias
- Faculty
of Engineering and Natural Sciences, Tampere
University, P.O. Box 541, FI-33014 Tampere, Finland
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Arri Priimagi
- Faculty
of Engineering and Natural Sciences, Tampere
University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Jingjing Chang
- State
Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,
Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, 2 South Taibai Road, 710071 Xi’an, P. R. China
| | - Paola Vivo
- Faculty
of Engineering and Natural Sciences, Tampere
University, P.O. Box 541, FI-33014 Tampere, Finland
| |
Collapse
|
7
|
Influence of Electrical Traps on the Current Density Degradation of Inverted Perovskite Solar Cells. MATERIALS 2019; 12:ma12101644. [PMID: 31137552 PMCID: PMC6567867 DOI: 10.3390/ma12101644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
Abstract
Premature aging of perovskite solar cells (PSC) is one of the biggest challenges for its commercialization. Particularly, PSCs exhibit rapid degradation of photovoltaic parameters under ambient air exposure. To estimate the degradation mechanism of PSC under air exposure, we systematically analyzed the relationship between electrical traps of the PSC and its degradation. After 240 h of air exposure to the PSC, its power conversion efficiency degraded to 80% compared to its initial value. The loss mainly originated from reduced current density, which is affected by traps and carrier transport in the disordered semiconducting layer. Capacitance–voltage plots of the PSC showed that the ionic doping from the perovskite layer caused an increased number of trap sites at the buffer layer. Moreover, the extrapolation of temperature dependent open circuit voltage graphs indicated that the trap sites lead to poor carrier transport by increasing recombination losses in the aged device. Therefore, trap sites arose from the result of ion migration and caused an early degradation of PSC under air exposure.
Collapse
|
8
|
Jena AK, Kulkarni A, Miyasaka T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem Rev 2019; 119:3036-3103. [DOI: 10.1021/acs.chemrev.8b00539] [Citation(s) in RCA: 1368] [Impact Index Per Article: 273.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|