1
|
He X, Zhang S, Bai Q, Pan M, Jiang Y, Liu W, Li W, Gong Y, Li X. Air pollution exposure and prevalence of non-alcoholic fatty liver disease and related cirrhosis: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117469. [PMID: 39657383 DOI: 10.1016/j.ecoenv.2024.117469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND AND OBJECTIVE A systematic review and meta-analysis were used to investigate the relationship between air pollution exposure and the prevalence of non-alcoholic fatty liver disease (NAFLD) and its related cirrhosis. Through this study, we hope to clarify the potential public health risks of air pollution as an environmental exposure factor. METHODS Through a comprehensive and systematic search of the EMBASE, PubMed, Web of Science, and Cochrane library databases, studies published up to March 30, 2024, that met the eligibility criteria were identified. The meta-analysis aimed to determine the association between air pollution exposure and NAFLD risk. Subgroup analyses were conducted based on regional economic development after adjusting for confounding factors. The combined odds ratio (OR) was calculated, publication bias was assessed using funnel plots, and consideration was given to heterogeneity among study-specific relative risks. RESULTS This review included 14 observational studies (including 7 cohort studies and 7 cross-sectional studies) involving 43,475,41 participants. The pooled analysis showed that PM2.5, NOx, PM10, PM2.5-10, passive smoking, PM1, and air pollution from solid fuels were positively associated with the incidence and prevalence of NAFLD and its related cirrhosis. The risk ratios for PM2.5, NOx, PM10, PM2.5-10, passive smoking, and air pollution from solid fuels for NAFLD and its related cirrhosis were 1.33 (95 % CI: 1.25, 1.42), 1.19 (95 % CI: 1.14, 1.23), 1.27 (95 % CI: 1.05, 1.55), 1.05 (95 % CI: 1.00, 1.11), 1.53 (95 % CI: 1.12, 2.09), 1.50 (95 % CI: 0.86, 2.63), and 1.18 (95 % CI: 0.85, 1.63), respectively. In contrast, the risk ratio for O3 was 0.75 (95 % CI: 0.69, 0.83), suggesting that O3 may lower the incidence and prevalence of NAFLD and its related cirrhosis. We also conducted subgroup analyses based on the level of national development to examine the impact of PM2.5 on NAFLD and its related cirrhosis. The results showed that the risk of NAFLD and its related cirrhosis associated with PM2.5 in developing countries was 1.41 (95 % CI: 1.29, 1.53), which was higher than 1.20 (95 % CI: 1.12, 1.29) in developed countries. CONCLUSION The study findings show that PM2.5, NOx, PM10, PM2.5-10, passive smoking, PM1, and air pollution from solid fuels can increase an individual's risk of developing NAFLD and its related cirrhosis; while O3 can reduce the risk. In developing countries, the risk level of NAFLD and its related cirrhosis due to PM2.5 is higher than that in developed countries.
Collapse
Affiliation(s)
- Xingyi He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Shipeng Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Qinglin Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Moshen Pan
- School of Economics, Shanghai University of Finance and Economics, Shanghai 200433, PR China
| | - Yanjie Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No.157 Daming Road, Nanjing 210022, PR China
| | - Weiwei Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wei Li
- Department of Intensive Care Medicine, Sichuan Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu 610041, PR China
| | - Yuanyuan Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
El Sharif N, Hnaihen L. Household fuel use, smoking and prevalence of self-reported allergic rhinitis in university students in Palestine: a cross-sectional study. FRONTIERS IN ALLERGY 2024; 5:1492213. [PMID: 39634675 PMCID: PMC11614814 DOI: 10.3389/falgy.2024.1492213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose In Palestine, few studies investigated the prevalence of allergies and the factors associated with their occurrence. An online survey was conducted on health complex University students in Jerusalem to determine the prevalence of allergy rhinitis (AR) and its relationship with indoor environmental exposures. Methods This study employed a modified online Google form of the Global Asthma Network's Adult Questionnaire. The data were reported as frequency and percentage. The chi-square test of independence was performed to investigate the association between AR diagnosis and other factors. Multivariable models were used to identify the independent risk factors for AR after adjusting for potential confounders. Results Data was collected from a total of 819 participants. The mean age of the participants was 20 ± 2 years and 78.1% (n = 640) were females. The AR diagnostic rate was 10.3%. In addition, having asthma and eczema were found to be substantially associated with AR. Additionally, a family history of AR and other allergens were major predictors of AR. The findings revealed that utilizing animal dung for heating increased the likelihood of AR fourfold (AOR = 4.870, p-value = 0.004), whereas e-cigarette vaping increased the possibility of AR by 2.5 times. However, using natural gas for cooking was not significantly associated with AR, and participant age was only slightly associated with AR diagnosis. Conclusions Our study found that the AR prevalence rate is low when compared to the same population in other countries. Genetics, biomass fuel consumption, and e-smoking are all significant risk factors for AR in Palestine. An awareness campaign must be developed to educate university students and the general public about the risks of smoking, indoor air pollution, respiratory disorders, and AR. Longitudinal research is required to discover whether these associations are only transient.
Collapse
|
3
|
Sun W, Ding C, Jiang Z, Zheng X, Jiang J, Xu H. The Impact of Ambient Air Pollution on Allergic Rhinitis Symptoms: A Prospective Follow-Up Study. TOXICS 2024; 12:663. [PMID: 39330591 PMCID: PMC11436010 DOI: 10.3390/toxics12090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Air pollution has become a serious public health problem and there is evidence that air pollution affects the incidence of allergic rhinitis. To further investigate the effect of ambient air pollutants on the severity of allergic rhinitis symptoms, a prospective follow-up study in patients with allergic rhinitis was conducted. A total of 167 allergic rhinitis patients with a mean age of 35.4 years, who were visiting the hospital, were enrolled. The daily symptom severity of allergic rhinitis and the concentrations of six air pollutants, including PM2.5, PM10, SO2, CO, O3 and NO2, were collected through follow-up investigations. The impact of ambient air pollutants on symptom severity was assessed via multi-pollutant models. Among several typical ambient air pollutants, we observed correlations of allergic rhinitis symptoms with PM2.5, PM10, CO, SO2 and NO2, whereas O3 showed no such correlation. Specifically, PM2.5 and PM10 were significantly associated with sneezing and nasal blockage. NO2 was significantly correlated with symptoms of rhinorrhea, itchy nose and itchy eyes. CO was significantly linked to sneezing and nasal blockage symptoms. These air pollutants not only had a direct impact on allergic rhinitis symptoms but also exhibited a lagging effect. This study indicates that short-term exposure to air pollutants is associated with exacerbation of nasal symptoms in patients with allergic rhinitis, leading to a decline in their quality of life.
Collapse
Affiliation(s)
- Wen Sun
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Chan Ding
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Zhuoying Jiang
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Xinliang Zheng
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Jinlan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| |
Collapse
|
4
|
Rosario CS, Urrutia-Pereira M, Murrieta-Aguttes M, D’Amato G, Chong-Silva DC, Godoi RHM, Rosario Filho NA. Air pollution and rhinitis. FRONTIERS IN ALLERGY 2024; 5:1387525. [PMID: 38863567 PMCID: PMC11166029 DOI: 10.3389/falgy.2024.1387525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Rhinitis arises from either allergic or non-allergic inflammation of the nasal mucosa, characterized by the infiltration of inflammatory cells into the tissue and nasal secretions, along with structural alterations in the nasal mucosa. The pathways through which air pollution affects rhinitis may diverge from those affecting asthma. This article aims to review the effects of diverse air pollutants on the nose, the correlation of climate change and pollution, and how they aggravate the symptoms of patients with rhinitis.
Collapse
Affiliation(s)
| | | | | | - Gennaro D’Amato
- Division of Respiratory and Allergic Diseases, Department of Chest Diseases, High Speciality Hospital “A. Cardarelli”, Naples, Italy
- Medical School of Specialization in Respiratory Diseases, Federico II University of Naples, Naples, Italy
| | | | | | | |
Collapse
|
5
|
Seastedt H, Nadeau K. Factors by which global warming worsens allergic disease. Ann Allergy Asthma Immunol 2023; 131:694-702. [PMID: 37689112 PMCID: PMC10873081 DOI: 10.1016/j.anai.2023.08.610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
Increased use of fossil fuels has led to global warming with concomitant increases in the severity and frequency of extreme weather events such as wildfires and sand and dust storms. These changes have led to increases in air pollutants such as particulate matter and greenhouse gases. Global warming is also associated with increases in pollen season length and pollen concentration. Particulate matter, greenhouse gases, and pollen synergistically increase the incidence and severity of allergic diseases. Other indirect factors such as droughts, flooding, thunderstorms, heat waves, water pollution, human migration, deforestation, loss of green space, and decreasing biodiversity (including microbial diversity) also affect the incidence and severity of allergic disease. Global warming and extreme weather events are expected to increase in the coming decades, and further increases in allergic diseases are expected, exacerbating the already high health care burden associated with these diseases. There is an urgent need to mitigate and adapt to the effects of climate change to improve human health. Human health and planetary health are connected and the concept of One Health, which is an integrated, unifying approach to balance and optimize the health of people, animals, and the environment needs to be emphasized. Clinicians are trusted members of the community, and they need to take a strong leadership role in educating patients on climate change and its adverse effects on human health. They also need to advocate for policy changes that decrease the use of fossil fuels and increase biodiversity and green space to enable a healthier and more sustainable future.
Collapse
Affiliation(s)
- Hana Seastedt
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Kari Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
6
|
Li X, Wu H, Xing W, Xia W, Jia P, Yuan K, Guo F, Ran J, Wang X, Ren Y, Dong L, Sun S, Xu D, Li J. Short-term association of fine particulate matter and its constituents with oxidative stress, symptoms and quality of life in patients with allergic rhinitis: A panel study. ENVIRONMENT INTERNATIONAL 2023; 182:108319. [PMID: 37980881 DOI: 10.1016/j.envint.2023.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Short-term exposure to fine particulate matter (PM2.5) and its specific constituents might exacerbate allergic rhinitis (AR) conditions. However, the evidence is still inconclusive. METHOD We conducted a panel study of 49 patients diagnosed with AR > 1 year prior to the study in Taiyuan, China, to investigate associations of individual exposure to PM2.5 and its constituents with oxidative parameters, symptoms, and quality of life among AR patients. All participants underwent repeated assessments of health and PM exposure at 4 time points in both the heating and nonheating seasons from June 2017 to January 2018. AR patients' oxidative parameters were assessed using nasal lavage, and their subjective symptoms and quality of life were determined through in-person interviews using a structured questionnaire. Short-term personal exposure to PM2.5 and its constituents was estimated using the time-microenvironment-activity pattern and data from the nearest air sampler, respectively. We applied mixed-effects regression models to estimate the short-term effects of PM2.5 and its constituents. RESULTS The results showed that exposure to PM2.5 and its constituents, including BaP, PAHs, SO42-, NH4+, V, Cr, Cu, As, Se, Cd, and Pb, was significantly associated with increased oxidative stress, as indicated by an increase in the malondialdehyde (MDA) index. Exposure to PM2.5 and its components (V, Mn, Fe, Zn, As, and Se) was associated with decreased antioxidant activity, as indicated by a decrease in the superoxide dismutase (SOD) index. Additionally, increased visual analog scale (VAS) and rhinoconjunctivitis quality of life questionnaire (RQLQ) scores indicated that exposure to PM2.5 and its constituents exacerbated inflammatory symptoms and affected quality of life in AR patients. CONCLUSION Exposure to PM2.5 and specific constituents, could exacerbate AR patients' inflammatory symptoms and adversely affect their quality of life in the heavily industrialized city of Taiyuan, China. These findings may have potential biological and policy implications.
Collapse
Affiliation(s)
- Xin Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Haisheng Wu
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenrong Xia
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Pingping Jia
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kun Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Fang Guo
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wang
- Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Yanxin Ren
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
7
|
Tran HM, Tsai FJ, Lee YL, Chang JH, Chang LT, Chang TY, Chung KF, Kuo HP, Lee KY, Chuang KJ, Chuang HC. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:166340. [PMID: 37591374 DOI: 10.1016/j.scitotenv.2023.166340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The impacts of climate change and air pollution on respiratory diseases present significant global health challenges. This review aims to investigate the effects of the interactions between these challenges focusing on respiratory diseases. Climate change is predicted to increase the frequency and intensity of extreme weather events amplifying air pollution levels and exacerbating respiratory diseases. Air pollution levels are projected to rise due to ongoing economic growth and population expansion in many areas worldwide, resulting in a greater burden of respiratory diseases. This is especially true among vulnerable populations like children, older adults, and those with pre-existing respiratory disorders. These challenges induce inflammation, create oxidative stress, and impair the immune system function of the lungs. Consequently, public health measures are required to mitigate the effects of climate change and air pollution on respiratory health. The review proposes that reducing greenhouse gas emissions contribute to slowing down climate change and lessening the severity of extreme weather events. Enhancing air quality through regulatory and technological innovations also helps reduce the morbidity of respiratory diseases. Moreover, policies and interventions aimed at improving healthcare access and social support can assist in decreasing the vulnerability of populations to the adverse health effects of air pollution and climate change. In conclusion, there is an urgent need for continuous research, establishment of policies, and public health efforts to tackle the complex and multi-dimensional challenges of climate change, air pollution, and respiratory health. Practical and comprehensive interventions can protect respiratory health and enhance public health outcomes for all.
Collapse
Affiliation(s)
- Huan Minh Tran
- Ph.D. Program in Global Health and Health Security, College of Public Health, Taipei Medical University, Taipei, Taiwan; Faculty of Public Health, Da Nang University of Medical Technology and Pharmacy, Viet Nam
| | - Feng-Jen Tsai
- Ph.D. Program in Global Health and Health Security, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; National Heart and Lung Institute, Imperial College London, London, UK; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Bellanti JA, Settipane RA. Asthma biomarkers and COVID-19 continue to dominate current medical issues. Allergy Asthma Proc 2022; 43:363-367. [PMID: 36065102 PMCID: PMC9465642 DOI: 10.2500/aap.2022.43.220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|