1
|
Zhang Q, Jiao J, Wang X, Zhang L. The role of fibroblast in chronic rhinosinusitis with nasal polyps: a key player in the inflammatory process. Expert Rev Clin Immunol 2024:1-11. [PMID: 39378160 DOI: 10.1080/1744666x.2024.2414774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Fibroblasts are the primary supporting cells in connective tissue and have long been thought to contribute to chronic rhinosinusitis with nasal polyps (CRSwNP) by producing extracellular matrix (ECM), leading to fibrosis and tissue remodeling. However, recent studies have highlighted the critical role of nasal polyp-derived fibroblasts (NPDFs) in triggering and intensifying the inflammatory response in CRSwNP. AREAS COVERED This review undertook a comprehensive literature search across the PubMed database, Web of Science since 2000, offering an in-depth summary of the pivotal role of NPDFs in tissue remodeling and inflammatory responses in CRSwNP. Additionally, single-cell RNA sequencing data provides a deeper exploration of the heterogeneity and functional mechanisms of fibroblasts in CRSwNP. Consequently, these insights point to fibroblasts as promising therapeutic targets for effectively treating CRSwNP. EXPERT OPINION Current data underscore the essential role of fibroblasts in the pathogenesis of CRSwNP. Fully elucidating the specific mechanisms by which fibroblasts contribute to the disease process is crucial for developing targeted therapies. Furthermore, advancements in single-cell RNA sequencing pave the way for selectively targeting and depleting pathological fibroblast subpopulations. Despite these advancements, the clinical development of fibroblast-targeted therapies in CRSwNP remains challenging.
Collapse
Affiliation(s)
- Qinqin Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Jian Jiao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Zhu M, Zhao Q, Zhang W, Xu H, Zhang B, Zhang S, Duan Y, Liao C, Yang X, Chen Y. Hydroxypropyl-β-cyclodextrin inhibits the development of triple negative breast cancer by enhancing antitumor immunity. Int Immunopharmacol 2023; 125:111168. [PMID: 37939513 DOI: 10.1016/j.intimp.2023.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-β-cyclodextrin (HP-β-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-β-CD on TNBC are not fully understood. To examine the influence of HP-β-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-β-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-β-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-β-CD-inhibited TNBC growth. Mechanistically, HP-β-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-β-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-β-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-β-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-β signaling pathway. In summary, our study suggests that HP-β-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-β-CD may hold promise as a potential antitumor drug.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qian Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenwen Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, School of Medicine, Shenzhen, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
3
|
Palacios-García J, Porras-González C, Moreno-Luna R, Maza-Solano J, Polo-Padillo J, Muñoz-Bravo JL, Sánchez-Gómez S. Role of Fibroblasts in Chronic Inflammatory Signalling in Chronic Rhinosinusitis with Nasal Polyps-A Systematic Review. J Clin Med 2023; 12:3280. [PMID: 37176721 PMCID: PMC10179235 DOI: 10.3390/jcm12093280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease of the nose and paranasal sinuses characterized by the presence of nasal polyps. The symptoms produced by the presence of nasal polyps such as nasal obstruction, nasal discharge, facial pain, headache, and loss of smell cause a worsening in the quality of life of patients. The source of the nasal polyps remains unclear, although it seems to be due to a chronic inflammation process in the sinonasal mucosa. Fibroblasts, the main cells in connective tissue, are intimately involved in the inflammation processes of various diseases; to this end, we carried out a systematic review to evaluate their inflammatory role in nasal polyps. Thus, we evaluated the main cytokines produced by nasal polyp-derived fibroblasts (NPDF) to assess their involvement in the production of nasal polyps and their involvement in different inflammatory pathways. The results of the review highlight the inflammatory role of NPDF through the secretion of various cytokines involved in the T1, T2, and T3 inflammatory pathways, as well as the ability of NPDF to be stimulated by a multitude of substances. With these findings, the fibroblast is positioned as a new potential therapeutic target in the treatment of CRSwNP.
Collapse
Affiliation(s)
- José Palacios-García
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - Cristina Porras-González
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Doctor Fedriani 3, 41009 Seville, Spain
| | - Ramón Moreno-Luna
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Maza-Solano
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Polo-Padillo
- Department of Preventive Medicine and Public Health, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - José Luis Muñoz-Bravo
- Clinical Analysis Service, General University Hospital of Elche, Foundation for the Promotion of Health and Biomedical Research in the Valencia Region (FISABIO), Av. De Catalunya 21, 46020 Valencia, Spain
| | - Serafín Sánchez-Gómez
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Cataldo Russomando A, Steinberg D, Gati I, Vogt Sionov R, Eliashar R, Friedman M, Gross M. Sinonasal Stent Coated with Sustained-Release Varnish of Mometasone Furoate Inhibits Pro-Inflammatory Cytokine Release from Macrophages: An In Vitro Study. Pharmaceutics 2023; 15:pharmaceutics15031015. [PMID: 36986875 PMCID: PMC10051169 DOI: 10.3390/pharmaceutics15031015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the study was to develop a sustained-release varnish (SRV) containing mometasone furoate (MMF) for sinonasal stents (SNS) to reduce mucosa inflammation in the sinonasal cavity. The SNS' segments coated with SRV-MMF or an SRV-placebo were incubated daily in a fresh DMEM at 37 °C for 20 days. The immunosuppressive activity of the collected DMEM supernatants was tested on the ability of mouse RAW 264.7 macrophages to secrete the cytokines' tumor necrosis factor α (TNFα) and interleukin (IL)-10 and IL-6 in response to lipopolysaccharide (LPS). The cytokine levels were determined by respective Enzyme-Linked Immunosorbent Assays (ELISAs). We found that the daily amount of MMF released from the coated SNS was sufficient to significantly inhibit LPS-induced IL-6 and IL-10 secretion from the macrophages up to days 14 and 17, respectively. SRV-MMF had, however, only a mild inhibitory effect on LPS-induced TNFα secretion as compared to the SRV-placebo-coated SNS. In conclusion, the coating of SNS with SRV-MMF provides a sustained delivery of MMF for at least 2 weeks, maintaining a level sufficient for inhibiting pro-inflammatory cytokine release. This technological platform is, therefore, expected to provide anti-inflammatory benefits during the postoperative healing period and may play a significant role in the future treatment of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Alessandra Cataldo Russomando
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Doron Steinberg
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Irith Gati
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ron Eliashar
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael Friedman
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Carsuzaa F, Béquignon É, Dufour X, de Bonnecaze G, Lecron JC, Favot L. Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2021; 23:ijms23010417. [PMID: 35008843 PMCID: PMC8745309 DOI: 10.3390/ijms23010417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cytokines are well known to play a central role in chronic rhinosinusitis with nasal polyps (CRSwNP), particularly in maintenance of the inflammatory response and the recruitment of eosinophils. The pathophysiological concepts concerning the involvement of inflammatory cytokines in CRSwNP have gradually evolved. Although the Th2 cytokines environment associated with an eosinophilic infiltration has retained a central role in the genesis of polyps, the role of other cytokine subpopulations has also and more recently been detailed, leading to a specific and complex signature in CRSwNP. The purpose of this review is to summarize the current state of knowledge about the cytokine signature in CRSwNP, the role of cytokines in the pathogenesis of this disease and in the intercellular dialog between epithelial cells, fibroblasts and inflammatory cells. Knowledge of this precise cytokine signature in CRSwNP is fundamental in the perspective of potential targeting biotherapies.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Maxillo-Faciale, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
- Correspondence: ; Tel.: +33-(0)5-49-44-43-28
| | - Émilie Béquignon
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010 Créteil, France;
- INSERM U955, Équipe 13, Centre Henri Mondor de Recherche Biomédicale, 94000 Créteil, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Maxillo-Faciale, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Guillaume de Bonnecaze
- Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Centre Hospitalier Universitaire de Toulouse, 31400 Toulouse, France;
| | - Jean-Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, 86000 Poitiers, France; (X.D.); (J.-C.L.); (L.F.)
| |
Collapse
|
6
|
Wang C, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol 2020; 16:293-310. [PMID: 31986923 DOI: 10.1080/1744666x.2020.1723417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Expression of E-prostanoid receptors in nasal polyp tissues of smoking and nonsmoking patients with chronic rhinosinusitis. PLoS One 2018; 13:e0200989. [PMID: 30040868 PMCID: PMC6057645 DOI: 10.1371/journal.pone.0200989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/08/2018] [Indexed: 11/19/2022] Open
Abstract
Background Different inflammatory reactions have been observed in the polyp tissues of nonsmokers and smokers with chronic rhinosinusitis (CRS). E-prostanoid (EP) receptors play a role in the inflammatory processes. Cigarette smoke (CS) exposure regulates EP-receptor expression levels promoting inflammatory mediator release from various inflammatory cells. In this study, we characterize the EP-receptor expression profiles in the polyps of nonsmoking and smoking CRS patients to explore the possible role of CS in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). Methods Polyp biopsies were obtained from 28 non-smoking and 21 smoking CRSwNP patients. Histopathological characteristics were observed under a light microscope. The prostaglandin E2 (PGE2), TNF-α, and IL-8 contents in polyp tissues were detected using enzyme-linked immunosorbent assay. Immunostaining was used to locate EP receptors in polyps. Messenger RNA and protein expression of EP receptors were examined using quantitative real-time polymerase chain reaction and Western blot, respectively. Results More severe inflammatory reactions occurred in polyp tissues of smoking CRSwNP patients. The PGE2, TNF-α, and IL-8 in tissue homogenate levels were significantly higher in smoking CRSwNP patients than those in nonsmoking CRSwNP patients. Moreover, the distribution of each EP receptor subtype was similar in both groups. Compared with the EP-receptor expression in nonsmokers, messenger RNA and protein of EP2 and EP4 receptor were significantly down-expressed in smoking patients, but EP1 and EP3 receptors did not show significant differences. Conclusion CS exposure downregulates the expression levels of EP2 and EP4 receptors and stimulates the production of PGE2 and the proinflammatory cytokine IL-8 and TNF-α in polyp tissues of CRS patients. The down-expressed EP2 and EP4 receptors might be associated with severe inflammatory reactions in smoking CRSwNP patients.
Collapse
|
8
|
İsmi O, Özcan C, Polat G, Kul S, Görür K, Pütürgeli T. TNF-α and IL-1 β Cytokine Gene Polymorphism in Patients with Nasal Polyposis. Turk Arch Otorhinolaryngol 2017; 55:51-56. [PMID: 29392055 DOI: 10.5152/tao.2017.2389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/23/2017] [Indexed: 11/22/2022] Open
Abstract
Objective Nasal Polyp (NP) is a benign mass of the paranasal sinuses that protrudes into the nasal cavity. The exact underlying pathogenesis is not known. In this study we aimed to determine the genetic susceptibility of NP formation in relation to TNF-α-308 and IL-1β-511 promoter region gene polymorphisms. Methods A total of 71 patients with NP with asthma (n=21) or without asthma (n=50) were taken as the study group, and 91 healthy volunteers were taken as the control group. Blood was gathered into EDTA-containing tubes, and patient DNA was extracted. The polymorphisms of the IL-β and TNF-α cytokine genes were analyzed using real time polymerase chain reaction. Results The GG genotype in the TNF-α-308 region and the CC genotype in the IL-1β-511 region were found to be risk factors for NP formation (OR: 9.2, p=0.007 and OR: 33.3, p=0.001, respectively). Regarding allelic frequencies, the G allele at the TNF-α-308 promoter region was a risk factor for NP formation (OR: 6.06, p<0.001). Conclusion TNF-α GG genotype in the -308 promoter region and the IL-1β CC genotype in the -511 region are genetic risk factors for NP formation.
Collapse
Affiliation(s)
- Onur İsmi
- Department of Otorhinolaryngology, Mersin University School of Medicine, Mersin, Turkey
| | - Cengiz Özcan
- Department of Otorhinolaryngology, Mersin University School of Medicine, Mersin, Turkey
| | - Gürbüz Polat
- Department of Biochemistry, Mersin University School of Medicine, Mersin, Turkey
| | - Seval Kul
- Department of Biostatistics, Mersin University School of Medicine, Mersin, Turkey
| | - Kemal Görür
- Department of Otorhinolaryngology, Mersin University School of Medicine, Mersin, Turkey
| | - Tuğçe Pütürgeli
- Department of Otorhinolaryngology, Mersin University School of Medicine, Mersin, Turkey
| |
Collapse
|
9
|
Baxter-Potter LN, Henricks AM, Berger AL, Bieniasz KV, Lugo JM, McLaughlin RJ. Alcohol vapor exposure differentially impacts mesocorticolimbic cytokine expression in a sex-, region-, and duration-specific manner. Neuroscience 2017; 346:238-246. [DOI: 10.1016/j.neuroscience.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/12/2023]
|
10
|
Mogha A, Harty BL, Carlin D, Joseph J, Sanchez NE, Suter U, Piao X, Cavalli V, Monk KR. Gpr126/Adgrg6 Has Schwann Cell Autonomous and Nonautonomous Functions in Peripheral Nerve Injury and Repair. J Neurosci 2016; 36:12351-12367. [PMID: 27927955 PMCID: PMC5148226 DOI: 10.1523/jneurosci.3854-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, Zurich, ETH Zurich, CH-8093 Zurich, Switzerland, and
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Valeria Cavalli
- Department of Neuroscience, and
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kelly R Monk
- Department of Developmental Biology,
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
11
|
Linke R, Pries R, Könnecke M, Bruchhage KL, Böscke R, Gebhard M, Wollenberg B. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz) 2014; 62:217-29. [PMID: 24609540 DOI: 10.1007/s00005-014-0281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 12/11/2013] [Indexed: 11/27/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common disease that has a considerable impact on the quality of life. Alterations in signalling pathways may contribute to the ongoing inflammation and proliferation in CRSwNP. The MEK1/2-ERK1/2 pathway transmits signals from many extracellular molecules to regulate cellular processes. We examined tissue samples from nasal polyps and the inferior turbinate of patients with CRSwNP and the inferior turbinate from subjects with healthy mucosa. The expressions of MEK1/2, ERK1/2, and their active phosphorylated forms pMEK1/2 and pERK1/2 were analysed using DNA microarray, quantitative real-time PCR, protein array, Western hybridisation, and immunohistochemistry. We detected increased MEK1/2 protein expression in nasal polyps compared to the inferior turbinates of patients with CRSwNP or healthy mucosa. We also found a higher amount of MEK1/2 in the inferior turbinates of patients with CRSwNP compared to those with healthy mucosa. Most importantly, we observed a significant increase in the phosphorylation of MEK1/2 and ERK1/2 in nasal polyps compared to both types of controls. We observed activation of the MEK1/2-ERK1/2 pathway in nasal polyps. Interestingly, we did not see the same activation pattern in different tiers of the MEK1/2-ERK1/2 signalling cascade. One explanation for this result is that the components enhance the complex MEK-ERK cascade in a distinct manner, enabling a wide variety of functions. The MEK1/2-ERK1/2 pathway appears to play a pivotal role in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Robert Linke
- Department of Otorhinolaryngology and Facial Plastic Surgery, UK-SH, HNO-Klinik, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany,
| | | | | | | | | | | | | |
Collapse
|
12
|
Alt JA, Smith TL. Chronic rhinosinusitis and sleep: a contemporary review. Int Forum Allergy Rhinol 2013; 3:941-9. [PMID: 24039230 DOI: 10.1002/alr.21217] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/25/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Patients with chronic rhinosinusitis (CRS) exhibit centrally mediated behavioral changes commonly referred to as "sickness behavior." Sleep alteration is a component of sickness behavior which is estimated to affect up to 70 million patients annually. Patients with CRS have poor sleep quality, and little is known about the underlying etiology and pathophysiology. This narrative review aims to further organize and present the current knowledge associating sleep and CRS. METHODS A literature search was conducted of the OVID MEDLINE database using key search words including: "chronic rhinosinusitis," "sleep," "sleep disorders," and "sleep dysfunction." Additional keywords "nasal obstruction," "nasal polyp," and "fatigue" were identified and used to further delineate relevant articles. RESULTS The articles that specifically addressed sleep and CRS were dissected and presented as follows: (1) chronic rhinosinusitis and sleep; (2) chronic rhinosinusitis and fatigue; (3) chronic rhinosinusitis, nasal obstruction, and sleep; and (4) pathophysiology of sleep in chronic rhinosinusitis (cytokines in both sleep and chronic rhinosinusitis and their association to the neuroimmune biology of chronic rhinosinusitis). CONCLUSION Patients with CRS have sleep dysfunction that is associated with their disease severity and overall quality of life. The etiology of sleep dysfunction in CRS is most likely multifactorial. Increasing evidence suggests sleep dysfunction in patients with CRS is partly due to the inflammatory disease process, and sleep physiology in patients with CRS may be actively regulated by the inflammatory component of the disease.
Collapse
Affiliation(s)
- Jeremiah A Alt
- Division of Rhinology and Sinus Surgery, Oregon Sinus Center, Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, OR
| | | |
Collapse
|
13
|
Characterization of the cytokine expression profiles of the aorta and liver of young tumor necrosis factor alpha mutant mice. Mol Cell Biochem 2012; 366:59-67. [PMID: 22407569 DOI: 10.1007/s11010-012-1283-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/02/2012] [Indexed: 02/07/2023]
Abstract
Both the aorta and the liver are major organs that play important roles in lipid metabolism, and they are subject to systemic as well as local inflammatory responses in metabolic syndrome. Our previous study indicated that TNFα deficiency influences atherogenesis by reducing inflammation of the aorta. To better understand this phenomenon, the mRNA and protein expression profiles of a panel of cytokines in the aorta and liver of young TNFα-null (TNFα(-/-)) mice were analyzed and compared with age- and gender-matched wild-type (WT) control mice. In the aorta, IL-2 and GM-CSF were up-regulated versus WT mice, while IL-1β, IL-4, IL-6, IL-10, MCP-1, IFN-γ, and the adhesion molecules ICAM-1 and VCAM-1 were down-regulated. In the liver, however, the expressions of NF-κB, IL-1, IL-2, IL-6, IL-10, ICAM-1, and VCAM-1 were significantly up-regulated in TNFα(-/-) mice, while IFN-γ and IL-4 were down-regulated. Out of the 62 cytokines analyzed, 22 in the aorta and 27 in the liver were altered by 2-fivefolds at the protein level in TNFα(-/-) mice. Our data demonstrated that the loss of TNFα function led to various changes in the levels of cytokine expression in these organs at both the transcriptional and translational levels. These results indicated that the changes in cytokine expression patterns in the aorta and the liver may further influence the progression of systemic or local lipid metabolism dysregulation and pathogenesis in animals with TNFα dysfunction representing inflammation-related diseases, such as atherosclerosis and metabolic syndrome.
Collapse
|
14
|
Platt MP, Soler Z, Metson R, Stankovic KM. Pathways analysis of molecular markers in chronic sinusitis with polyps. Otolaryngol Head Neck Surg 2011; 144:802-8. [PMID: 21493366 DOI: 10.1177/0194599810395091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To perform a comprehensive molecular pathways analysis of genes identified through genome-wide expression profiling and the published literature for chronic sinusitis with polyps. STUDY DESIGN Molecular pathways analysis. SETTING Academic medical center. METHODS A molecular pathways analysis of gene biomarkers discovered through hypothesis-driven and high-throughput molecular studies was performed. Genes identified with a PubMed literature search were analyzed with Ingenuity Pathways Analysis software to identify central molecules implicated in the pathogenesis of chronic sinusitis with polyps. The central pathways were then compared with those identified through genome-wide expression profiling of ethmoid polyps. RESULTS A total of 97 molecules were investigated with Ingenuity Pathways Analysis based on 55 studies that evaluated differences in gene expression (39), genetic variation (12), or proteomics (4). The analysis revealed 9 statistically significant molecular networks containing central nodes that included transcription factors, protein kinases, cytokines, and growth factors/receptors. The highest scoring networks implicated nuclear factor kappa-B, tumor necrosis factor, and mitogen-activated protein kinases. The majority of pathways in the literature review analysis overlapped with those identified through a single genome-wide expression study. CONCLUSIONS Chronic sinusitis with polyps is a complex disease with suspected contribution of multiple genetic and environmental factors. The search for causative genes has led to the discovery of numerous candidates. Pathways analysis applied to these candidate genes identified common central molecules that are likely to be key mediators of the disease process. Novel therapies targeting these molecules may be applicable for the treatment of chronic sinusitis with polyps.
Collapse
Affiliation(s)
- Michael P Platt
- Department of Otolaryngology-Head and Neck Surgery, Boston University, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
15
|
Nonaka M, Fukumoto A, Ogihara N, Sakanushi A, Pawankar R, Yagi T. Synergistic induction of thymic stromal lymphopoietin by tumor necrosis factor alpha and Th2 cytokine in nasal polyp fibroblasts. Am J Rhinol Allergy 2010; 24:e14-8. [PMID: 20109311 DOI: 10.2500/ajra.2010.24.3436] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is elevated in airway inflammatory diseases such as asthma and triggers dendritic cell-mediated activation of Th2 inflammatory responses. Although allergic chronic sinusitis is a Th2 inflammatory disease of the upper airway, the mechanism underlying the predominance of Th2 responses still has to be clarified. We investigated the expression of TSLP in cytokine-treated nasal polyp fibroblasts. METHODS Fibroblast lines were established from nasal polyp tissues. Their expression of TSLP mRNA was evaluated by real-time reverse-transcription polymerase chain reaction. The amount of TSLP in the supernatants was measured by enzyme-linked immunosorbent assay. RESULTS Nasal polyp fibroblasts have the capacity to produce TSLP in response to stimulation by tumor necrosis factor (TNF) alpha. Combined stimulation with TNF-alpha + a Th2 cytokine (IL-4 or IL-13) was synergistic for TSLP production by the nasal polyp fibroblasts. This response was time and dose dependent. The TNF-alpha + Th2 cytokine (IL-4 or IL-13)-induced TSLP production was strongly inhibited by interferon gamma but not by IL-10. CONCLUSION These results suggest that nasal polyp fibroblasts play a role in the development and regulation of Th2-type inflammation in the upper airway by producing TSLP.
Collapse
Affiliation(s)
- Manabu Nonaka
- Department of Otorhinolaryngology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Batikhan H, Gokcan MK, Beder E, Akar N, Ozturk A, Gerceker M. Association of the tumor necrosis factor-alpha -308 G/A polymorphism with nasal polyposis. Eur Arch Otorhinolaryngol 2009; 267:903-8. [PMID: 20012441 DOI: 10.1007/s00405-009-1167-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 10/28/2009] [Indexed: 01/25/2023]
Abstract
Nasal polyposis (NP) is a chronic inflammatory disease in which several molecular and cellular interactions play important roles. Tumor necrosis factor-alpha (TNF-alpha) is a major pro-inflammatory cytokine with a key role in immune inflammatory responses in NP. Altered levels of TNF-alpha, which may occur due to polymorphisms in the TNF-alpha promoter region, may also be associated with NP susceptibility. Given these facts, we investigated the possible association of the TNF-alpha -308 G/A single nucleotide polymorphism (SNP) with NP. In this study, 97 consecutive adult patients with NP and 95 age- and gender-matched controls were recruited. For identification of SNP, restriction fragment length polymorphism analysis after polymerase chain reaction was carried out. The NP group had a significantly higher rate of polymorphism compared to controls (p = 0.015). Logistic regression analysis revealed that the presence of the TNF-alpha -308 G/A SNP is an independent risk factor for NP development (OR, 3.68; CI, 1.27-10.7; p = 0.016). The presence of a mutation failed to influence disease severity on the basis of resistance to medical and/or surgical treatment. This study suggests a possible linkage of a SNP in the TNF-alpha promoter with NP. These results need to be confirmed with multicentre studies for more precise interpretation and corroborative studies for investigating the influence of polymorphism on transcriptional activity.
Collapse
Affiliation(s)
- Hunkar Batikhan
- Otolaryngology Department, Elazig State Hospital, Elazig, Turkey
| | | | | | | | | | | |
Collapse
|
17
|
Lee YL, Hong CY, Kok SH, Hou KL, Lin YT, Chen MH, Wang CC, Lin SK. An Extract of Green Tea, Epigallocatechin-3-Gallate, Reduces Periapical Lesions by Inhibiting Cysteine-rich 61 Expression in Osteoblasts. J Endod 2009; 35:206-11. [DOI: 10.1016/j.joen.2008.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 01/03/2023]
|
18
|
Thapa M, Carr DJJ. Chemokines and Chemokine Receptors Critical to Host Resistance following Genital Herpes Simplex Virus Type 2 (HSV-2) Infection. ACTA ACUST UNITED AC 2008; 1:33-41. [PMID: 19043604 DOI: 10.2174/1874226200801010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HSV-2 is a highly successful human pathogen with a remarkable ability to elude immune detection or counter the innate and adaptive immune response through the production of viral-encoded proteins. In response to infection, resident cells secrete soluble factors including chemokines that mobilize and guide leukocytes including T and NK cells, neutrophils, and monocytes to sites of infection. While there is built-in redundancy within the system, chemokines signal through specific membrane-bound receptors that act as antennae detailing a chemical pathway that will provide a means to locate and eliminate the viral insult. Within the central nervous system (CNS), the temporal and spatial expression of chemokines relative to leukocyte mobilization in response to HSV-2 infection has not been elucidated. This paper will review some of the chemokine/chemokine receptor candidates that appear critical to the host in viral resistance and clearance from the CNS and peripheral tissue using murine models of genital HSV-2 infection.
Collapse
Affiliation(s)
- M Thapa
- Department of Microbiology, Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma-73104, USA
| | | |
Collapse
|
19
|
Current World Literature. Curr Opin Otolaryngol Head Neck Surg 2008; 16:292-5. [DOI: 10.1097/moo.0b013e3283041256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
The role of cytokines in chronic rhinosinusitis with nasal polyps. Curr Opin Otolaryngol Head Neck Surg 2008; 16:270-4. [DOI: 10.1097/moo.0b013e3282fb2885] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Grayfer L, Walsh JG, Belosevic M. Characterization and functional analysis of goldfish (Carassius auratus L.) tumor necrosis factor-alpha. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 32:532-543. [PMID: 17988738 DOI: 10.1016/j.dci.2007.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/25/2007] [Accepted: 09/04/2007] [Indexed: 05/25/2023]
Abstract
We identified and characterized two isoforms of tumor necrosis factor-alpha (TNFalpha) from the goldfish, TNFalpha-1 and TNFalpha-2. At the protein level, goldfish TNFalpha-1 and TNFalpha-2 were most homologous to carp TNFalpha-1 and TNFalpha-2, respectively. Phylogenetically, the two goldfish isoforms grouped most closely with the carp TNFalpha isoforms and TNF species of other cyprinids. Real-time PCR analysis revealed constitutive expression of goldfish TNFalpha-1 and TNFalpha-2 in all tissues with TNFalpha-2 mRNA levels higher than TNFalpha-1 in all tissues examined. A modest up-regulation in expressions of goldfish TNFalpha-1 and TNFalpha-2 in kidney-derived monocytes and significant increase in expression of both isoforms in mature macrophages were observed in response to activation with macrophage-activating factors. TNFalpha-2 was subsequently expressed using a prokaryotic expression system and the recombinant molecule (rTNFalpha-2) was functionally characterized. The rTNFalpha-2 induced a dose-dependent chemotactic response and enhanced phagocytosis of primary goldfish macrophages. Furthermore, rTNFalpha-2 primed the respiratory burst in monocytes and induced nitric oxide production of primary goldfish macrophages. Our results indicate that goldfish TNFalpha is a central regulatory and effector cytokine of inflammatory and antimicrobial responses of the goldfish.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | |
Collapse
|