1
|
Edison LK, Kudva IT, Kariyawasam S. Host-Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024; 12:2009. [PMID: 39458318 PMCID: PMC11509540 DOI: 10.3390/microorganisms12102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes. We integrated findings from published transcriptomics, proteomics, and genomics studies to provide a thorough understanding of how STEC adheres to and colonizes the bovine gastrointestinal tract. The insights from this review offer potential avenues for the development of novel preventative and therapeutic strategies aimed at controlling STEC colonization in cattle, thereby reducing the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Bumunang EW, McAllister TA, Polo RO, Ateba CN, Stanford K, Schlechte J, Walker M, MacLean K, Niu YD. Genomic Profiling of Non-O157 Shiga Toxigenic Escherichia coli-Infecting Bacteriophages from South Africa. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:221-230. [PMID: 36793886 PMCID: PMC9917312 DOI: 10.1089/phage.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Non-O157 Shiga toxigenic Escherichia coli (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking. Materials and Methods In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed. Results Comparative genomics and proteomics revealed that the phages were closely related to other E. coli-infecting Tunaviruses, Seuratviruses, Carltongylesviruses, Tequatroviruses, and Mosigviruses from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins. Conclusions Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Jared Schlechte
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Matthew Walker
- Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Canada
| | - Kellie MacLean
- Cumming School of Medicine, Faculty of Science, University of Calgary, Calgary, Canada
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Prevalence and Molecular Characterisation of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli, from Cattle Farm to Aquatic Environments. Pathogens 2022; 11:pathogens11060674. [PMID: 35745529 PMCID: PMC9230396 DOI: 10.3390/pathogens11060674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/23/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing bacteria are a major problem for public health worldwide because of limited treatment options. Currently, only limited information is available on ESBL-producing Shiga toxin-producing Escherichia coli (STEC) in cattle farms and the surrounding aquatic environment. This study sought to track and characterise ESBL-producing STEC disseminating from a cattle farm into the water environment. Animal husbandry soil (HS), animal manure (AM), animal drinking water (ADW), and nearby river water (NRW) samples were collected from the cattle farm. Presumptive ESBL-producing STEC were isolated and identified using chromogenic media and mass spectrophotometry methods (MALDI-TOF-MS), respectively. The isolates were subjected to molecular analysis, and all confirmed ESBL-producing STEC isolates were serotyped for their O serogroups and assessed for antibiotic resistance genes (ARGs) and for the presence of selected virulence factors (VFs). A phylogenetic tree based on the multilocus sequences was constructed to determine the relatedness among isolates of ESBL-producing STEC. The highest prevalence of ESBL-producing STEC of 83.33% was observed in HS, followed by ADW with 75%, NRW with 68.75%, and the lowest was observed in AM with 64.58%. Out of 40 randomly selected isolates, 88% (n = 35) belonged to the serogroup O45 and 13% (n = 5) to the serogroup O145. The multilocus sequence typing (MLST) analysis revealed four different sequence types (STs), namely ST10, ST23, ST165, and ST117, and the predominant ST was found to be ST10. All 40 isolates carried sul1 (100%), while blaOXA, blaCTX-M, sul2, blaTEM, and qnrS genes were found in 98%, 93%, 90%, 83%, and 23% of the 40 isolates, respectively. For VFs, only stx2 was detected in ESBL-producing STEC isolates. The results of the present study indicated that a cattle environment is a potential reservoir of ESBL-producing STEC, which may disseminate into the aquatic environment through agricultural runoff, thus polluting water sources. Therefore, continual surveillance of ESBL-producing STEC non-O157 would be beneficial for controlling and preventing STEC-related illnesses originating from livestock environments.
Collapse
|
4
|
Risk factors of Shiga toxin-producing Escherichia coli in livestock raised on diversified small-scale farms in California. Epidemiol Infect 2022; 150:e125. [PMID: 35641482 PMCID: PMC9274804 DOI: 10.1017/s0950268822001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The increasing number of diversified small-scale farms (DSSF) that raise outdoor-based livestock in the USA reflects growing consumer demand for sustainably produced food. Diversified farms are small scale and raise a combination of multiple livestock species and numerous produce varieties. This 2015–2016 cross-sectional study aimed to describe the unique characteristics of DSSF in California, estimate the prevalence of Shiga toxin-producing Escherichia coli (STEC) in livestock and evaluate the association between risk factors and the presence of STEC in livestock, using generalised linear mixed models. STEC prevalence was 13.62% (76/558). Significant variables in the mixed-effect logistic regression model included daily maximum temperature (OR 0.95; CI95% 0.91–0.98), livestock sample source (cattle (OR 4.61; CI95% 1.64–12.96) and sheep (OR 5.29; CI95% 1.80–15.51)), multiple species sharing the same barn (OR 6.23; CI95% 1.84–21.15) and livestock having contact with wild areas (OR 3.63; CI95% 1.37–9.62). Identification of STEC serogroups of public health concern (e.g. O157:H7, O26, O103) in this study indicated the need for mitigation strategies to ensure food safety by evaluating risk factors and management practices that contribute to the spread and prevalence of foodborne pathogens in a pre-harvest environment on DSSF.
Collapse
|
5
|
Castro VS, Ortega Polo R, Figueiredo EEDS, Bumunange EW, McAllister T, King R, Conte-Junior CA, Stanford K. Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: Insights from whole genome sequence analyses. PLoS One 2021; 16:e0257168. [PMID: 34478476 PMCID: PMC8415614 DOI: 10.1371/journal.pone.0257168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have been linked to food-borne disease outbreaks. As PCR is routinely used to screen foods for STEC, it is important that factors leading to inconsistent detection of STEC by PCR are understood. This study used whole genome sequencing (WGS) to investigate causes of inconsistent PCR detection of stx1, stx2, and serogroup-specific genes. Fifty strains isolated from Alberta feedlot cattle from three different studies were selected with inconsistent or consistent detection of stx and serogroup by PCR. All isolates were initially classified as STEC by PCR. Sequencing was performed using Illumina MiSeq® with sample library by Nextera XT. Virtual PCRs were performed using Geneious and bacteriophage content was determined using PHASTER. Sequencing coverage ranged from 47 to 102x, averaging 74x, with sequences deposited in the NCBI database. Eleven strains were confirmed by WGS as STEC having complete stxA and stxB subunits. However, truncated stx fragments occurred in twenty-two other isolates, some having multiple stx fragments in the genome. Isolates with complete stx by WGS had consistent stx1 and stx2 detection by PCR, although one also having a stx2 fragment had inconsistent stx2 PCR. For all STEC and 18/39 non-STEC, serogroups determined by PCR agreed with those determined by WGS. An additional three WGS serotypes were inconclusive and two isolates were Citrobacter spp. Results demonstrate that stx fragments associated with stx-carrying bacteriophages in the E. coli genome may contribute to inconsistent detection of stx1 and stx2 by PCR. Fourteen isolates had integrated stx bacteriophage but lacked complete or fragmentary stx possibly due to partial bacteriophage excision after sub-cultivation or other unclear mechanisms. The majority of STEC isolates (7/11) did not have identifiable bacteriophage DNA in the contig(s) where stx was located, likely increasing the stability of stx in the bacterial genome and its detection by PCR.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Food and Nutrition, Federal University of Mato Grosso, Cuiaba, Brazil
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | | | | | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Robin King
- Alberta Agriculture and Forestry, Edmonton, Canada
| | | | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
6
|
Occurrence and antimicrobial resistance of E. coli non-O157 isolated from beef in Mato Grosso, Brazil. Trop Anim Health Prod 2019; 51:1117-1123. [DOI: 10.1007/s11250-018-01792-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022]
|
7
|
Sethulekshmi C, Latha C, Anu CJ. Occurrence and quantification of Shiga toxin-producing Escherichia coli from food matrices. Vet World 2018; 11:104-111. [PMID: 29657388 PMCID: PMC5891859 DOI: 10.14202/vetworld.2018.104-111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022] Open
Abstract
AIM The objective of the study was to detect Shiga toxin-producing Escherichia coli (STEC) and develop a quantitative polymerase chain reaction (qPCR) assay to quantify the bacterial DNA present in different food matrices. MATERIALS AND METHODS A total of 758 samples were collected during a period from January 2015 to December 2016 from Kozhikode, Thrissur, and Alappuzha districts of Kerala. The samples consisted of raw milk (135), pasteurized milk (100), beef (132), buffalo meat (130), chevon (104), beef kheema (115), and beef sausage (42). All the samples collected were subjected to isolation and identification of STEC by conventional culture technique. Confirmation of virulence genes was carried out using PCR. For the quantification of STEC in different food matrices, a qPCR was standardized against stx1 gene of STEC by the construction of standard curve using SYBR green chemistry. RESULTS The overall occurrence of STEC in raw milk (n=135), beef (n=132), buffalo meat (n=130), chevon (n=104), and beef kheema (n=115) samples collected from Kozhikode, Thrissur, and Alappuzha districts of Kerala was 19.26%, 41.6%, 16.92%, 28.85%, and 41.74%, respectively. PCR revealed the presence of stx 1 and stx 2 genes in 88.46 and 83.64 and 30.77 and 40.00% of STEC isolates from raw milk and beef samples, respectively, while 100% of the STEC isolates from buffalo beef and beef kheema samples carried stx 1 gene. Real-time qPCR assay was used to quantify the bacterial cells present in different food matrices. The standard curve was developed, and the slopes, intercept, and R2 of linear regression curves were -3.10, 34.24, and 0.99, respectively. CONCLUSION The considerably high occurrence of STEC in the study confirms the importance of foods of animal origin as a vehicle of infection to humans. In the present study, on comparing the overall occurrence of STEC, the highest percentage of occurrence was reported in beef kheema samples. The study shows the need for rigid food safety measures to combat the potential pathogenic effects of harmful bacteria throughout the production chain from production to consumption.
Collapse
Affiliation(s)
- C. Sethulekshmi
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India
| | - C. Latha
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India
| | - C. J. Anu
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India
| |
Collapse
|
8
|
Alexander T, Plaizier J. From the Editors: The importance of microbiota in ruminant production. Anim Front 2016. [DOI: 10.2527/af.2016-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- T.W. Alexander
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - J.C. Plaizier
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|