1
|
Li W, Lan T, Ding Q, Ren Z, Tang Z, Tang Q, Peng X, Xu Y, Sun Z. Effect of Low Protein Diets Supplemented with Sodium Butyrate, Medium-Chain Fatty Acids, or n-3 Polyunsaturated Fatty Acids on the Growth Performance, Immune Function, and Microbiome of Weaned Piglets. Int J Mol Sci 2023; 24:17592. [PMID: 38139420 PMCID: PMC10743886 DOI: 10.3390/ijms242417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (W.L.)
| |
Collapse
|
2
|
Yuan L, Zhu C, Gu F, Zhu M, Yao J, Zhu C, Li S, Wang K, Hu P, Zhang Y, Cai D, Liu HY. Lactobacillus johnsonii N5 from heat stress-resistant pigs improves gut mucosal immunity and barrier in dextran sodium sulfate-induced colitis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:210-224. [PMID: 38033603 PMCID: PMC10685162 DOI: 10.1016/j.aninu.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 12/02/2023]
Abstract
Developing effective strategies to prevent diarrhea and associated-gut disorders in mammals has gained great significance. Owing to the many health benefits provided by the commensal microbiota of the intestinal tract, such as against environmental perturbation, we explored the host phenotype-associated microbes and their probiotic potential. Based on the observations that the chronic heat stress-exposed weaned piglets present as heat stress-susceptible (HS-SUS) or heat stress-resistant (HS-RES) individuals, we confirmed the phenotypic difference between the two on growth performance (P < 0.05), diarrhea index (P < 0.001), intestinal heat shock protein 70 (HSP70) regulation (P < 0.01), and inflammatory responses (P < 0.01). By comparing the gut microbiome using 16S rRNA gene sequencing and KEGG functional analysis, we found that Lactobacillus johnsonii exhibited significantly higher relative abundance in the HS-RES piglets than in the HS-SUS ones (P < 0.05). Further experiments using a mouse model for chemical-induced inflammation and intestinal injury demonstrated that oral administration of a representative L. johnsonii N5 (isolated from the HS-RES piglets) ameliorated the clinical and histological signs of colitis while suppressing intestinal pro-inflammatory cytokines TNF-α and IL-6 production (P < 0.05). We found that N5 treatment enhanced tight junction proteins ZO-1 and occludin and cytoprotective HSP70 levels under physiological condition and restored their mucosal expressions in colitis (P < 0.05). In support of the high production of the anti-inflammatory cytokine IL-10, N5 promoted the intestinal Peyer's patches MHCII+ and CD103+ dendritic cell populations (P < 0.05), increased the regulatory T (Treg) cell numbers (P < 0.05), and decreased the Th17 population and its IL-17a production under physiological condition and during colitis (P < 0.01). Our results shed light on understanding the interaction between commensal Lactobacillus and the host health, and provide L. johnsonii N5 as an alternative to antibiotics for preventing diarrhea and intestinal diseases.
Collapse
Affiliation(s)
- Long Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Miaonan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiacheng Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kun Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Song W, Wu Z, Li W, Li Y. Multiple amino acid supplementations to reduce dietary protein for pigs during early and late finisher periods under commercial conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3205-3209. [PMID: 36620870 DOI: 10.1002/jsfa.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND With the easy availability and competitive prices of crystalline amino acids (AAs), the reduction of dietary crude protein (CP) for pigs during early and late finisher periods is possible under commercial conditions. Two experiments were conducted to assess the growth efficiency of early and late-finishing pigs fed with protein-restricted diets supplemented with Lys, Met, Thr, Trp, Val, Ile and His. In Experiment 1, 840 early finishing pigs were allocated to four dietary treatments with CP levels designed at 150, 142, 134, and 126 g kg-1 diet. In Experiment 2, 768 late-finishing pigs were allotted to four dietary treatments providing CP levels at 140, 130, 120, and 110 g kg-1 diet. RESULTS In Experiment 1, the data showed that CP levels could be decreased from 150 to 126 g kg-1 without adversely affecting performance of early finishing pigs as no significant difference was observed for final bodyweight, average daily gain (ADG), feed to gain ratio (F:G), or average daily feed intake (ADFI). In Experiment 2, late-finishing pigs consuming 120 g kg-1 CP tended to have the highest ADG and lowest F:G whereas those fed the 110 g kg-1 CP diet showed the opposite trend. Based on quadratic analysis, the optimum CP levels to maximize ADG and minimize F:G were 126 and 127 g kg-1 , respectively. CONCLUSION These findings showed that dietary CP levels could be decreased to 126 g kg-1 for early finishing pigs while improved performance was noted in late-finishing pigs consuming 120 g kg-1 CP. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxin Song
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zijuan Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wenli Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Eugenio FA, van Milgen J, Duperray J, Sergheraert R, Le Floc’h N. Apparent jejunal amino acid digestibility, gut morphology, and the expression of intestinal amino acid transporters in pigs fed protein or free amino acids. J Anim Sci 2023; 101:skac417. [PMID: 36583730 PMCID: PMC9904176 DOI: 10.1093/jas/skac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022] Open
Abstract
Dietary amino acids (AA) supplied as protein or in free form are not only digested and absorbed at different rates but can also induce differences in the intestinal physiology of pigs. We compared the apparent jejunal AA digestibility, intestinal morphology, and gene expression of AA transporters of pigs fed diets providing different forms of AA. Thirty growing pigs (33.7 ± 4.1 kg) were fed one of three experimental diets that provided AA either as protein from feather meal (INT), as free AA and small peptides obtained by extensive acid hydrolysis of feathers (HYD), or as a mix of individual purified AA with the same AA profile as HYD (FAA). Pigs were fed the same quantity of feed, energy, and AA. After 14 d, pigs were slaughtered 3 h after feeding a meal with indigestible markers. Digesta and tissue were collected from different sections of the small intestine. Jejunal digesta was used to measure apparent jejunal digestibility of AA. Samples of the duodenum, jejunum, and ileum were used to measure intestinal morphology and the gene expression of intestinal AA transporters. The measured apparent jejunal digestibility of AA of INT was lower compared to HYD and FAA (P < 0.05). The apparent jejunal digestibility of Cys, Gly, His, Met, and Pro was lower for FAA compared to HYD (P < 0.05). This may be due to the small peptides in HYD, which are absorbed faster than individual AA. The villi area in the ileum of HYD fed pigs was the highest (P < 0.05) among the treatments, which may be associated with the reabsorption of endogenous proteins, which occurs mostly in the ileum. In the duodenum, HYD and FAA had lower expression of PepT1 (P < 0.01) probably due to the rapid transit time of digesta compared to INT fed pigs. Pigs fed HYD expressed more ASCT2 (P = 0.02) and CAT-1 (P = 0.04) in the jejunum compared to the pigs fed the other diets. The expression of these transporters along the intestine depended on the relative abundance of readily absorbable dietary AA. Results showed that dietary AA form can have an influence on the morphology and on the expression of different AA transporters along the different sections of the small intestine.
Collapse
Affiliation(s)
- Francis Amann Eugenio
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| | | | | | | | - Nathalie Le Floc’h
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| |
Collapse
|
5
|
Ahmadi-Sefat AA, Taherpour K, Ghasemi HA, Akbari Gharaei M, Shirzadi H, Rostami F. Effects of an emulsifier blend supplementation on growth performance, nutrient digestibility, intestinal morphology, and muscle fatty acid profile of broiler chickens fed with different levels of energy and protein. Poult Sci 2022; 101:102145. [PMID: 36155885 PMCID: PMC9519631 DOI: 10.1016/j.psj.2022.102145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
The effects of emulsifier blend (EB) supplementation of diets with various levels of metabolizable energy (ME) and crude protein (CP) on broiler performance, digestibility, gut morphology, and muscle fatty acid profile were investigated over a 42-d period. Diets were arranged factorially (2 × 2 × 3) and consisted of 2 levels of ME (normal [commercially recommended levels] and low [100 kcal/kg reduction in dietary ME]), 2 levels of CP and limiting amino acids (normal [commercially recommended levels] and low [95% of the normal CP level]), and 3 levels of EB supplementation (0, 1, and 2 g/kg of diet). A total of 1,200 one-day-old male broiler chickens (Ross 308) were randomly assigned to 12 treatment groups (5 pens/treatment with 20 birds/pen). Supplemental EB linearly improved (P < 0.05) final body weight, overall average daily gain, and feed conversion ratio, but the magnitude of the responses was greater in low-ME and low-CP treatments, resulting in significant ME × CP × EB interactions. Similarly, the inclusion of EB in the diet, particularly at 2 g/kg, increased the ileal digestibility of crude protein and crude fat, as well as the AMEn value (P < 0.05), but the response was greater at lower ME concentration, indicating significant ME × EB interactions. Additionally, there were CP × EB interactions (P < 0.05) for duodenal villus height and villus height/crypt depth ratio, indicating that the effect of EB on these responses was more marked at lower dietary CP levels. An increase in dietary EB levels was accompanied by a linear increase in the concentration of total saturated fatty acids and a linear decrease (P < 0.05) in the concentrations of total polyunsaturated fatty acids in both breast and thigh meat. In conclusion, the positive effects of EB supplementation, particularly at a dietary inclusion level of 2 g/kg, were clearly evident in broiler chickens fed with low nutrient diets (−100 Kcal/kg ME and/or −5% CP and limiting amino acids) in terms of growth performance, nutrient digestibility, and gut morphology.
Collapse
Affiliation(s)
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | | | - Hassan Shirzadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Farhad Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
6
|
Xia J, Fan H, Yang J, Song T, Pang L, Deng H, Ren Z, Deng J. Research progress on diarrhoea and its mechanism in weaned piglets fed a high-protein diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1277-1287. [PMID: 34719816 DOI: 10.1111/jpn.13654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022]
Abstract
In order to pursue faster growth and development of weaned piglets, increased dietary protein (CP) levels were favoured by the pig industry and the feed industry. The digestive organs of piglets were not fully developed at weaning, and the digestive absorption capacity of protein was limited. High-protein diets can cause allergic reactions in piglets, destroy intestinal structural integrity, reduce immunity, and cause intestinal flora imbalance. Undigested proteins were prone to produce toxic substances, such as ammonia and biogenic amines, after fermentation in the hindgut, which negatively affects the health of the intestine and eventually causes reduced growth performance and diarrhoea in piglets. This review revealed the mechanism of diarrhoea caused by high-protein diets in weaned piglets and provided ideas for preventing diarrhoea in weaned piglets.
Collapse
Affiliation(s)
- Jiangying Xia
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoyue Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ju Yang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianhao Song
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianfeng Pang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huidan Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihua Ren
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junliang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Gebeyew K, Yang C, He Z, Tan Z. Low-protein diets supplemented with methionine and lysine alter the gut microbiota composition and improve the immune status of growing lambs. Appl Microbiol Biotechnol 2021; 105:8393-8410. [PMID: 34617138 DOI: 10.1007/s00253-021-11620-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Feeding low-protein (LP) diets with essential amino acids could be an effective strategy for ruminants from economic, health and environmental perspectives. This study was conducted to investigate the effects of rumen-protected methionine and lysine (RML) in the LP diet on growth performance, innate immunity, and gut health of growing lambs. After 15 days of adaption, sixty-three male Hulunbuir lambs aged approximately 4 months were allotted to three dietary groups and each group had three pens with seven lambs for 60 days. The dietary treatments were as follows: a normal protein diet (14.5% CP, positive control; NP), LP diet (12.5% CP, negative control; LP), and LP diet with RML (12.5% CP, LP + RML). Lambs fed with LP + RML diet showed improved villus architecture and gut barrier function than those fed with the other two diets. The mRNA expressions of interleukin-1β, tumor necrosis factor-α, interferon-γ, toll-like receptor-4, and myeloid differentiation primary response 88 were downregulated in most regions of the intestinal segments by feeding the LP + RML diet. Compared with the NP diet, feeding lambs with the LP diet increased the abundance of Candidatus_Saccharimonas in all regions of the intestinal tract and reversed by feeding the LP + RML diet. Lambs in the LP + RML diet group had lower abundance of Erysipelotrichaceae_UCG-009 and Clostridium_sensu_stricto_1 than those in the LP diet group. The results showed that supplementing RML in the LP diet exhibited beneficial effects on host immune function, intestinal mucosal integrity, and microbiota composition. KEY POINTS: • Adding methionine and lysine in a low-protein diet improve the intestinal mucosal growth and integrity. • Feeding a low-protein diet with methionine and lysine enhance the innate immune status. • Adding methionine and lysine in a low-protein diet alter the intestinal microbiota composition.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
8
|
Chassé É, Dickner-Ouellet L, Guay F, Pomar C, Létourneau-Montminy MP. Impact of diet type and xylanase supplementation on the ileal digestibility of nutrients, and growth performance in growing-finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the experiment, six pigs fitted with a T-cannula at the distal ileum were fed six diets in a 6 × 6 Latin square design. Treatments were corn-soybean meal diet (CS), diet containing wheat by-products (WBP), and diet containing corn distillers dried grains with solubles and canola meal (DDCM) without or with xylanase (X) supplementation (CS-X, WBP-X, and DDCM-X). The WBP and DDCM diets had higher apparent ileal digestibility (AID) of lipids and acid detergent fiber (ADF) (P < 0.05) than CS diets. A xylanase × diet interaction was observed for the AID of neutral detergent fiber (NDF) (P < 0.05) showing larger impact of xylanase in WBP than in the other diets. Using similar dietary treatments except for CS-X, growth and body composition of the sixty males (83.0 kg) at the end of the 28-day growing phase showed that pig fed the CS diet had greater average daily feed intake (ADFI) (P = 0.004) and average daily gain (ADG) (P = 0.014) for period 0–14 d but not from 15–28 d. Overall performance (0–28 d) showed higher ADFI (9.5%; P = 0.015) in CS but no difference was observed for ADG and gain to feed ratio (G:F). These results showed that diets containing a high proportion of by-products can give equivalent performance to a CS diet and that adding xylanase for this short period had limited effects.
Collapse
Affiliation(s)
- Élisabeth Chassé
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, QC G1V 0A6, Canada
| | - Laurie Dickner-Ouellet
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, QC G1V 0A6, Canada
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College St., Sherbrooke, QC J1M 0C8, Canada
| | - Frédéric Guay
- Département des sciences animales, Université Laval, 2425 rue de l’Agriculture, Québec, QC G1V 0A6, Canada
| | - Candido Pomar
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College St., Sherbrooke, QC J1M 0C8, Canada
| | | |
Collapse
|
9
|
Zamani M, Zaghari M, Ghaziani F. Comparison of absorption kinetics and utilisation of DL-methionine (DL-Met), Met-Met product (AQUAVI® Met-Met), and protein-bound methionine (PB-Met) by female broiler chickens. Br Poult Sci 2021; 62:539-551. [PMID: 33533263 DOI: 10.1080/00071668.2021.1884653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. Two experiments were conducted to determine the effects of different methionine (Met) sources regarding their absorption kinetics and utilisation in female single-meal-fed broiler chickens.2. A total of 340, one day old female Ross 308 broiler chickens were fed commercial starter and grower diets for 38 d. Birds were then allocated to treatment diets in two experiments as a completely randomised design with four replicates of five chicks per each until 60 d of age. In experiment 1, a 2 × 5 factorial design was used to investigate the effect of two sources (DL-Met and AQUAVI®Met-Met) and five equimolar levels (0.4, 0.8, 1.2, 1.6, and 2 g/kg) in the diet. In experiment 2, different proportions of protein-bound methionine (PB-Met) to DL-Met (0.4:1.6, 0.8:1.2, 1.2:0.8: 1.6:0.4, and 2:0 g/kg) were incorporated into a basal diet deficient in Met. During the experiment, chickens received 90 g of pelleted feed for a time period of 17 ± 2.5 min, once daily.3. The results indicated that chickens fed diets supplemented with DL-Met and Met-Met showed a rapid rise in plasma Met 1 h after feeding, with a sudden drop at 2 h after feeding. In contrast, chickens fed PB-Met substituted diets showed a gradual plasma peak at 1 and 2 h postprandial (P < 0.01). Plasma homocysteine (HCY) content increased to 34.38 and 40.43 μmol/l with DL-Met2.0 and Met-Met2.0 diets, while it decreased to 25.68 μmol/l with PB-Met2.0(P ≤ 0.01). Chickens that received the PB-Met2.0 diet had higher (P ≤ 0.01) protein utilisation (0.54 g/g) and lower excreta nitrogen content (4.04 g/100 g excreta), which demonstrated the benefits of feeding a protein-bound Met source. The efficiency of Met utilisation was 0.69 g/g in chickens fed PB-Met2.0 diet, but only 0.36 and 0.41 g/g in those fed DL-Met2.0 and Met-Met2.0 (P ≤ 0.01).4. The observed utilisation coefficient of DL-Met and Met-Met for single-meal meat-type chickens was lower than expected. The synchronisation of intestinal Met absorption maintained the efficiency of utilisation, which was related to the sources of added Met, with protein-bound Met showing the best utilisation and least excretion.
Collapse
Affiliation(s)
- M Zamani
- Poultry Nutrition, Department of Animal Science, University of Tehran, Karaj, Iran
| | - M Zaghari
- Poultry Nutrition, Department of Animal Science, University of Tehran, Karaj, Iran
| | - F Ghaziani
- Chemistry, Department of Animal Science, University of Tehran, Karaj, Iran
| |
Collapse
|
10
|
Zhang YN, Wang S, Deng YZ, Huang XB, Li KC, Chen W, Ruan D, Xia WG, Wang SL, Zheng CT. The application of reduced dietary crude protein levels supplemented with additional amino acids in laying ducks. Poult Sci 2021; 100:100983. [PMID: 33610902 PMCID: PMC7905471 DOI: 10.1016/j.psj.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/27/2022] Open
Abstract
This study was aimed at studying use of reduced dietary crude protein (CP) level supplemented with additional amino acids in laying ducks. A total of 720 Jingjiang ducks (50 wk) were randomly assigned to 5 treatments and fed 5 basal diets with CP levels at 17.5, 16.5, 15.5, 14.5, or 13.5%, with additional amino acids added to each diet for 12 wk. Each treatment had 6 replicates of 24 ducks each. Dietary CP levels affected (P < 0.05) egg production and mass of laying ducks, and there was a linear and quadratic decrease with decreasing CP levels (P < 0.05). Dietary CP levels did not affect egg weight and feed conversion ratio (FCR), but egg weight decreased linearly (P < 0.05); FCR increased linearly and quadratically (P < 0.05) with decreasing CP levels. There were no significant differences in egg quality among the different CP levels (P > 0.05). Ovarian weight, total and mean weight of preovulatory follicles, and total weight of small yellow follicles (SYF) were decreased by dietary CP levels (linear, P < 0.01 and quadratic, P < 0.05). The oviductal weight decreased linearly (P < 0.05), and the number of SYF decreased linearly and quadratically with decreasing CP levels (P < 0.05). The serum estradiol content decreased linearly with dietary CP levels (P < 0.05). The serum contents of luteinizing hormone, prolactin, and progesterone decreased (P < 0.05), linearly and quadratically (both P < 0.01) with decreasing CP levels. The serum contents of creatinine (CRE), triglycerides (TG), total cholesterol (TC), and alanine aminotransferase (ALT) activity were affected (P < 0.05) by different dietary CP levels. The total protein content increased linearly (P < 0.05), TC content increased quadratically (P < 0.05), and contents of albumin, CRE, TG, and phosphorus, and activities of aspartate aminotransferase and ALT increased linearly and quadratically (both P < 0.05) with decreasing CP levels. Overall, reduced dietary CP levels with addition of amino acids affected the laying performance, the development of reproductive organs and ovarian follicles, serum hormones, and biochemical indices of laying ducks. Dietary CP levels can be reduced to 14.5% with additional amino acid supplementation for 12 wk in laying ducks without negative effect on laying performance and egg quality.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - Y Z Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| |
Collapse
|
11
|
Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Sato H, Miura M, Fujieda T, Taciak M, Kikusato M, Sato K, Toyomizu M. Growth performance responses to increased tryptophan supplementation in growing barrows fed three different very low crude protein corn and soybean meal-based diets fortified with essential amino acids. Anim Sci J 2021; 92:e13605. [PMID: 34387392 DOI: 10.1111/asj.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Seventy-five individually fed barrows averaging 35 kg were used in a series of three experiments for 6-week growth assays (25 barrows each) to determine the effects of l-tryptophan (Trp) supplementation on growth performance and to establish the lower limits of dietary crude protein (CP) levels. Corn and soybean meal (SBM)-based diets containing 9% (Experiment 1), 10% (Experiment 2), and 11% CP (Experiment 3) fortified with deficient essential amino acids (AAs) except Trp were used as basal diets for each experiment. The experimental diets were supplemented with 0.00%, 0.02%, 0.04%, or 0.06% Trp. A 16% CP corn-SBM-based diet was set as a positive control in each experiment, and feed and water were provided ad libitum. Average daily gain and gain-to-feed ratio improved quadratically (P < 0.05) as supplemented Trp increased in the 9% and 10% CP group, although these positive effects were not observed in the 11% CP group. Because the maximum performance parameters in 9%, 10%, and 11% CP groups were not different from that of the 16% CP positive control group, the marginally reduced level of dietary CP without growth performance being affected appears to be around 9% at most. A potential reduction of nitrogen intake was clearly indicated.
Collapse
Affiliation(s)
- Hiroyuki Sato
- Animal Nutrition Group, Material Development Section, Material and Technology Solutions Laboratories, Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co. Inc., Kawasaki, Japan
| | - Makoto Miura
- Animal Nutrition Group, Material Development Section, Material and Technology Solutions Laboratories, Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co. Inc., Kawasaki, Japan
| | - Takeshi Fujieda
- Animal Nutrition Group, Material Development Section, Material and Technology Solutions Laboratories, Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co. Inc., Kawasaki, Japan
| | - Marcin Taciak
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Motoi Kikusato
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kan Sato
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Morales A, Gómez T, Villalobos YD, Bernal H, Htoo JK, González-Vega JC, Espinoza S, Yáñez J, Cervantes M. Dietary protein-bound or free amino acids differently affect intestinal morphology, gene expression of amino acid transporters, and serum amino acids of pigs exposed to heat stress. J Anim Sci 2020; 98:5739008. [PMID: 32064529 DOI: 10.1093/jas/skaa056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 01/10/2023] Open
Abstract
Pigs exposed to heat stress (HS) increase body temperature in which can damage the intestinal epithelia and affect the absorption and availability of amino acids (AA). Protein digestion and metabolism further increase body temperature. An experiment was conducted with six pairs of pigs (of 47.3 ± 1.3 kg initial body weight) exposed to natural HS to assess the effect of substituting dietary protein-bound AA by free AA on morphology and gene expression of intestinal epithelial and serum concentration (SC) of free AA. Treatments were: high protein, 21.9% crude protein (CP) diet (HShp) and low protein, 13.5% CP diet supplemented with crystalline Lys, Thr, Met, Trp, His, Ile, Leu, Phe, and Val (HSaa). The HShp diet met or exceeded all AA requirements. The HSaa diet was formulated on the basis of ideal protein. Pigs were fed the same amount at 0700 and 1900 hours during the 21-d study. Blood samples were collected at 1700 hours (2.0 h before the evening meal), 2030 hours, and 2130 hours (1.5 and 2.5 h after the evening meal). At the end, all pigs were sacrificed to collect intestinal mucosa and a 5-cm section from each segment of the small intestine from each pig. Villi measures, expression of AA transporters (y+L and B0) in mucosa, and SC of AA were analyzed. Ambient temperature fluctuated daily from 24.5 to 42.6 °C. Weight gain and G.F were not affected by dietary treatment. Villi height tended to be larger (P ≤ 0.10) and the villi height:crypt depth ratio was higher in duodenum and jejunum of pigs fed the HSaa diet (P < 0.05). Gene expression of transporter y+L in jejunum tended to be lower (P < 0.10) and transporter B0 in the ileum was lower (P < 0.05) in HSaa pigs. Preprandial (1700 hours) SC of Arg, His, Ile, Leu, Thr, Trp, and Val was higher (P < 0.05), and Phe tended to be higher (P < 0.10) in HShp pigs. At 2030 hours (1.5 h postprandial), serum Lys, Met, and Thr were higher in the HSaa pigs (P < 0.05). At 2130 hours (2.5 h), Arg, His, Ile, Phe, and Trp were lower (P < 0.05); Met was higher (P < 0.05); and Lys tended to be higher (P < 0.10) in HSaa pigs. In conclusion, feeding HS pigs with low protein diets supplemented with free AA reduces the damage of the intestinal epithelia and seems to improve its absorption capacity, in comparison with HS pigs fed diets containing solely protein-bound AA. This information is useful to formulate diets that correct the reduced AA consumption associated with the decreased voluntary feed intake of pigs under HS.
Collapse
Affiliation(s)
- Adriana Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Tania Gómez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Yuri D Villalobos
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Hugo Bernal
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | | | - Salvador Espinoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Jorge Yáñez
- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Miguel Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| |
Collapse
|
14
|
Sun W, Li Y, Tang Z, Chen H, Wan K, An R, Wu L, Sun Z. Effects of adding sodium dichloroacetate to low-protein diets on nitrogen balance and amino acid metabolism in the portal-drained viscera and liver of pigs. J Anim Sci Biotechnol 2020; 11:36. [PMID: 32308979 PMCID: PMC7153232 DOI: 10.1186/s40104-020-00437-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Identifying regulatory measures to promote glucose oxidative metabolism while simultaneously reducing amino acid oxidative metabolism is one of the foremost challenges in formulating low-protein (LP) diets designed to reduce the excretion of nitrogen-containing substances known to be potential pollutants. In this study, we investigated the effects of adding sodium dichloroacetate (DCA) to a LP diet on nitrogen balance and amino acid metabolism in the portal-drained viscera (PDV) and liver of pigs.To measure nitrogen balance, 18 barrows (40 ± 1.0 kg) were fed one of three diets (n = 6 per group): 18% crude protein (CP, control), 13.5% CP (LP), and 13.5% CP + 100 mg DCA/kg dry matter (LP-DCA). To measure amino acid metabolism in the PDV and liver, 15 barrows (40 ± 1.0 kg) were randomly assigned to one of the three diets (n = 5 per group). Four essential amino acids (Lys, Met, Thr, and Trp) were added to the LP diets such that these had amino acid levels comparable to those of the control diet. Results The LP-DCA diet reduced nitrogen excretion in pigs relative to that of pigs fed the control diet (P < 0.05), without any negative effects on nitrogen retention (P > 0.05). There were no differences between the control and LP-DCA groups with respect to amino acid supply to the liver and extra-hepatic tissues in pigs (P > 0.05). The net release of ammonia into the portal vein and production rate of urea in the liver of pigs fed the LP-DCA diet was reduced relative to that of pigs fed the control and LP diets (P < 0.05). Conclusion The results indicated that addition of DCA to a LP diet can efficiently reduce nitrogen excretion in pigs and maximize the supply of amino acids to the liver and extra-hepatic tissues.
Collapse
Affiliation(s)
- Weizhong Sun
- 1Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715 People's Republic of China
| | - Yunxia Li
- 2Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130 People's Republic of China
| | - Zhiru Tang
- 1Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715 People's Republic of China
| | - Huiyuan Chen
- 1Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715 People's Republic of China
| | - Ke Wan
- 1Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715 People's Republic of China
| | - Rui An
- 1Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715 People's Republic of China
| | - Liuting Wu
- 1Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715 People's Republic of China
| | - Zhihong Sun
- 1Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, 400715 People's Republic of China
| |
Collapse
|
15
|
Shen J, Wang H, Pi Y, Gao K, Zhu W. Casein hydrolysate supplementation in low-crude protein diets increases feed intake and nitrogen retention without affecting nitrogen utilization of growing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1748-1756. [PMID: 31825531 DOI: 10.1002/jsfa.10196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND An extreme reduction of the crude protein (CP) level in diets, even balanced with amino acids (AAs), is detrimental for intestinal nitrogen (N) metabolism and the growth of pigs. This study investigated the effects of casein hydrolysate supplementation in low-CP diets on growth performance, N balance, and intestinal N supply for pigs. A total of 24 barrows were randomly assigned to one of three dietary treatments of 160 g kg-1 CP (control), 130 g kg-1 CP (LAA), and 130 g kg-1 CP plus casein hydrolysate (LCH) for 28 days. RESULTS The LCH group had a higher average daily feed intake (ADFI) and average daily gain (ADG) than the LAA group, and a higher ADG than the control (P < 0.05). Compared with the control, both the LAA and LCH decreased N intake, serum urea N, fecal N, and N excretion, and increased apparent N availability, with LCH having higher N intake and N retention than LAA group (P < 0.05). Compared with LAA, LCH increased ileal fluxes of CP and AA (P < 0.05), and with values similar to those of the control. However, ileal flows of CP and AA were similar between LCH and LAA, both of which were lower than those in the control (P < 0.05). CONCLUSION Using protein hydrolysate to replace some crystalline AAs in low-CP diets increased feed intake, N retention and ADG without affecting N utilization. These findings point to the important impact of protein hydrolysate supplementation on improving growth for pigs fed low-CP diets. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhua Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Huisong Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yu Pi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kan Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Allameh S, Toghyani M. Effect of dietary valine supplementation to low protein diets on performance, intestinal morphology and immune responses in broiler chickens. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Bouchard MJ, Chorfi Y, Létourneau-Montminy MP, Guay F. Effects of deoxynivalenol and sodium meta-bisulphite on nutrient digestibility in growing pigs. Arch Anim Nutr 2019; 73:360-373. [PMID: 31342788 DOI: 10.1080/1745039x.2019.1641369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Deoxynivalenol (DON), a mycotoxin synthesised by the Fusarium, is known to affect the growth of pigs. This effect can be attenuated with sodium meta-bisulphite (SBS). The aim of this study was to evaluate the effect of SBS with antioxidant blend on nutrient digestibility in pigs fed a diet contaminated naturally with DON. Six crossbred castrated pigs fitted surgically with single-T cannulas in the distal ileum received one of four barley-corn-soybean diets with or without SBS. After 8 d of feeding, faeces and ileal digesta were collected for 2 d. Apparent ileal digestibility (AID) of the dry matter (DM), energy, nutrients and DON, and apparent total tract digestibility (ATTD) of DM, acid detergent fibre (ADF), neutral detergent fibre (NDF), energy and DON were evaluated. The AID of phosphorus, calcium and some amino acids was increased (p < 0.05) in the DON diets whereas the ATTD of DM and energy tended to decrease (p = 0.064 and p = 0.071). SBS reduced the AID of DM, energy, ADF, ether extract, phosphorus and DON (p < 0.05) but had no effect on the ATTD of DM, energy, fibre or DON. These results show that DON improved the AID of some nutrients but tended to reduce the ATTD of energy, which could explain, although anorexia is the main effect of DON on live weight gain, the reported negative effect of DON on pig growth. Finally, SBS with antioxidant blend had reduced AID of some nutrients and intestinal absorption of DON.
Collapse
Affiliation(s)
- Mélina Josiane Bouchard
- a Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval , Ville de Québec , Québec , Canada
| | - Younes Chorfi
- b Département de biomédecines, Faculté de médecine vétérinaire, Université de Montréal , St-Hyacinthe , Québec , Canada
| | - Marie-Pierre Létourneau-Montminy
- a Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval , Ville de Québec , Québec , Canada
| | - Frédéric Guay
- a Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval , Ville de Québec , Québec , Canada
| |
Collapse
|
18
|
Liu H, Wu L, Han H, Li Y, Wang L, Yin J, Fan W, Bai M, Yao J, Huang X, Li T. Reduced dietary nitrogen with a high Lys:CP ratio restricted dietary N excretion without negatively affecting weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2019; 5:115-123. [PMID: 31193922 PMCID: PMC6544577 DOI: 10.1016/j.aninu.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/02/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022]
Abstract
We hypothesized that balancing the content of exogenous amino acids, especially lysine, to reduce protein content in swine diets could reduce nitrogen (N) pollution associated with animal husbandry. Two experiments (45 d each experiment) were performed on weaned piglets (Duroc × Landrace × Yorkshire, 28 d of age) to test this and to determine the optimal lysine to crude protein (Lys:CP) ratio in diet. In Exp. 1, 12 piglets (6 replicates [n = 6]) were fed diets containing different levels of CP (17% and 20%) but the same level of Lys. Increased CP content resulted in significant increases (P < 0.05) of average daily gain (ADG), average daily feed intake (ADFI), and body weight (BW), but did not affect the feed to gain ratio. In Exp. 2, 24 piglets (8 replicates [n = 8]) were fed 1 of 3 diets as follows: 1) 20% CP with a regular Lys:CP ratio (6.23%, control); 2) 17% CP with a reduced Lys:CP ratio (6.14%, LL); or 3) 17% CP with a standard Lys:CP ratio (7.32%, SL). The ADG, final BW, serum concentrations of growth hormone and insulin-like growth factor-1, villus height in the jejunum, and villus height to crypt depth ratio were the lowest in piglets fed LL diet, whereas blood urea N concentration was the lowest and the value of lipase activity was the highest in the piglets fed SL diet. The SL diet did not affect growth performance, intestinal morphology, or serum hormone concentrations, indicating that reduced dietary N with a high Lys:CP ratio can efficiently reduce dietary N excretion without negatively affecting weaned piglets.
Collapse
Affiliation(s)
- Hongnan Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China
| | - Li Wu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hui Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Department of Animal Science, Hunan Agriculture University, Changsha, 410128, China
| | - Yuying Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lijian Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wenjun Fan
- Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangdong Wangda Group Co., Ltd., Guangzhou, 510663, China
| | - Miaomiao Bai
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jiming Yao
- Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangdong Wangda Group Co., Ltd., Guangzhou, 510663, China
| | - Xingguo Huang
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China
- Department of Animal Science, Hunan Agriculture University, Changsha, 410128, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Department of Animal Science, Hunan Agriculture University, Changsha, 410128, China
- Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangdong Wangda Group Co., Ltd., Guangzhou, 510663, China
| |
Collapse
|
19
|
Impact of zinc and arginine on antioxidant status of weanling piglets raised under commercial conditions. ACTA ACUST UNITED AC 2019; 5:227-233. [PMID: 31528723 PMCID: PMC6737496 DOI: 10.1016/j.aninu.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/27/2019] [Accepted: 03/19/2019] [Indexed: 01/30/2023]
Abstract
The effects of dietary zinc and L-arginine supplements on the weight gain, feed efficiency, antioxidant capacity and oxidative status of weanling piglets raised under commercial conditions were examined. A total of 288 piglets aged 21 d were fed for 15 d a diet supplemented or not with 2,500 mg/kg of zinc (provided as zinc oxide) and 1% L-arginine·HCl. The 4 treatments were distributed in a randomized complete block design with 6 initial body weight categories (12 animals per pen). Access to feed and water was ad libitum. Data were analyzed as a 2 × 2 factorial experiment using the SAS MIXED procedure, with zinc and arginine as the main independent variables. Blood collection day (d 8 and 15, samples were collected from the same 2 piglets in each pen before the morning feeding) was included as a third factor. The zinc supplement increased the average daily gain (ADG) from d 0 to 7, d 8 to 15 and d 0 to 15 (0.289 vs. 0.217 kg/d), average daily feed intake (ADFI) from d 8 to 15 and d 0 to 15 (0.338 vs. 0.279 kg/d) and the gain to feed (G:F) ratio from d 0 to 7 and d 0 to 15 (0.86 vs. 0.77) (P < 0.001). Both supplements significantly decreased the malondialdehyde concentration (zinc: 4.37 vs. 3.91 μmol/L, P = 0.005; arginine: 4.38 vs. 3.89 μmol/L, P = 0.002). Total antioxidant capacity and reduced glutathione (GSH) increased from d 8 to 15 (0.953 vs. 1.391 μmol/L, 2.22 vs. 3.37 μmol/L, P < 0.05) regardless of dietary treatment. Total and oxidized GSH concentrations on d 8 were higher in response to the combined supplements (zinc × arginine interaction, P < 0.05). Piglets fed either Zn-supplemented diet had a lower haptoglobin serum concentration (509 vs. 1,417 mg/L; P < 0.001). In conclusion, the zinc supplement improved piglet growth performance (ADG and ADFI) and oxidative status (based on malondialdehyde concentration). The arginine supplement had a limited effect on growth performance and oxidative status under these conditions.
Collapse
|
20
|
Deglaire A, Moughan PJ, Tomé D. A Casein Hydrolysate Does Not Enhance Ileal Endogenous Protein Flows Compared With the Parent Intact Casein When Fed to Growing Pigs. Curr Dev Nutr 2019; 3:nzy083. [PMID: 30740585 PMCID: PMC6362323 DOI: 10.1093/cdn/nzy083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The form of dietary nitrogen (free peptides or intact proteins) may influence the amount of endogenous amino acids found at the terminal ileum of the pig, and it has been speculated that hydrolyzed dietary protein may lead to increased endogenous amino acids. OBJECTIVE To compare the effect of dietary free peptides on ileal endogenous nitrogen and amino acid flows [ileal endogenous nitrogen flow (ENFL), ileal endogenous amino acid flow (EAAFL)] with that of peptides released naturally from dietary protein during digestion, from the same intact parent protein source. METHODS Six pigs (mean body weight: 34 kg) were equipped with a postvalve T-caecum cannula. Semisynthetic test diets contained the same 15N-labeled intact casein (C) or hydrolyzed casein (HC). Pigs received the test diets every sixth day and the corresponding unlabeled diets in the intervening 5-d periods. Digesta were pooled from 4 to 10 h postprandially. EAAFL and ENFL, calculated with reference to the dietary marker titanium dioxide, were determined by isotope dilution for C and HC. RESULTS Ileal EAAFL and ENFL (mean flows n = 5 of 1828 and 1912 μg/g of dry matter intake for diets HC and C, respectively) did not differ (P > 0.05) between pigs fed HC and C. Centrifugation and ultrafiltration of the HC digesta allowed an estimation of label recycling into gut endogenous proteins. Some 20% of ileal endogenous protein (diet HC, ultrafiltered digesta) was 15N-labeled due to tracer recycling. CONCLUSIONS The administration of a casein hydrolysate had no effect on ileal endogenous protein flows compared with C. There was no evidence of enhanced ileal endogenous protein losses with the HC diet.
Collapse
Affiliation(s)
- Amélie Deglaire
- STLO, Agrocampus Ouest, INRA, Rennes, France
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
21
|
Wang Y, Zhou J, Wang G, Cai S, Zeng X, Qiao S. Advances in low-protein diets for swine. J Anim Sci Biotechnol 2018; 9:60. [PMID: 30034802 PMCID: PMC6052556 DOI: 10.1186/s40104-018-0276-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Recent years have witnessed the great advantages of reducing dietary crude protein (CP) with free amino acids (AA) supplementation for sustainable swine industry, including saving protein ingredients, reducing nitrogen excretion, feed costs and the risk of gut disorders without impairing growth performance compared to traditional diets. However, a tendency toward increased fatness is a matter of concern when pigs are fed low-protein (LP) diets. In response, the use of the net energy system and balanced AA for formulation of LP diets has been proposed as a solution. Moreover, the extent to which dietary CP can be reduced is complicated. Meanwhile, the requirements for the first five limiting AA (lysine, threonine, sulfur-containing AA, tryptophan, and valine) that growing-finishing pigs fed LP diets were higher than pigs fed traditional diets, because the need for nitrogen for endogenous synthesis of non-essential AA to support protein synthesis may be increased when dietary CP is lowered. Overall, to address these concerns and give a better understanding of this nutritional strategy, this paper reviews recent advances in the study of LP diets for swine and provides some insights into future research directions.
Collapse
Affiliation(s)
- Yuming Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Junyan Zhou
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Gang Wang
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shuang Cai
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Xiangfang Zeng
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| | - Shiyan Qiao
- 1State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
22
|
Zhou H, Yu B, Gao J, Htoo JK, Chen D. Regulation of intestinal health by branched-chain amino acids. Anim Sci J 2017; 89:3-11. [PMID: 29164733 DOI: 10.1111/asj.12937] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
23
|
Che LQ, Peng X, Hu L, Wu C, Xu Q, Fang ZF, Lin Y, Xu SY, Li J, Feng B, Tian G, Zhang RN, Sun H, Wu D, Chen DW. The addition of protein-bound amino acids in low-protein diets improves the metabolic and immunological characteristics in fifteen- to thirty-five-kg pigs. J Anim Sci 2017; 95:1277-1287. [PMID: 28380520 DOI: 10.2527/jas.2016.0990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study was to evaluate the effects of supplementation of AA form (crystalline vs. protein bound) in low-protein diets on growth, metabolic, and immunological characteristics of pigs. A total of 80 barrows (PIC 327 × 1050; 15.57 ± 0.13 kg BW and 48 ± 2 d of age), housed in 4 pigs per pen with 5 pens per treatment, were assigned to 4 dietary treatments of 17, 15, and 13% CP and 13% CP plus casein for 28 d. The crystalline AA were supplemented to meet the requirement of indispensable AA in pigs. Results showed that pigs fed the 13% CP diet or the 13% CP plus casein diet had lower ( < 0.01) ADG and ADFI and a greater ( < 0.01) feed:gain ratio than pigs fed the 17% CP or 15% CP diets over the 4-wk study period. Compared with other diets, pigs fed the 13% CP diet had decreased concentrations of plasma urea nitrogen, albumin ( < 0.01), and mRNA expressions of Toll-like receptor 4 (), nuclear factor kappa B (; < 0.05), and Toll-interacting protein (; < 0.01) in the ileum and also increased activity of plasma glutamate-pyruvate transaminase ( < 0.05) and concentrations of IL-1β ( < 0.05) and tumor necrosis factor-α ( < 0.01); however, these characteristics were partly normalized by feeding the 13% CP plus casein diet. Furthermore, the plasma concentration of insulin-like growth factor 1 (IGF-1; < 0.01) and mRNA expressions of protein kinase B (), mammalian target of rapamycin (), and ribosomal protein S6 kinase () in longissimus muscle were increased ( < 0.05) in pigs fed the 13% CP plus casein diet relative to pigs fed the 17% CP or 15% CP diets. In summary, reducing dietary CP level from 17% to 15% had no effect on growth, metabolic, and immunological characteristics of 15- to 35-kg pigs. A further reduction of dietary CP level up to 13% would lead to poor growth performance, but metabolic and immunological characteristics were partly normalized using protein-bound AA to replace synthesized AA in the 13% CP diet.
Collapse
|
24
|
Feed supplementation with arginine and zinc on antioxidant status and inflammatory response in challenged weanling piglets. ACTA ACUST UNITED AC 2017; 3:236-246. [PMID: 29767161 PMCID: PMC5941224 DOI: 10.1016/j.aninu.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/18/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022]
Abstract
Although supplementing the diet with zinc oxide and arginine is known to improve growth in weanling piglets, the mechanism of action is not well understood. We measured the antioxidant status and inflammatory response in 48 weanling castrated male piglets fed diets supplemented with or without zinc oxide (2,500 mg Zn oxide per kg) and arginine (1%) starting at the age of 20 days. The animals were injected with lipopolysaccharide (100 μg/kg) on day 5. Half of them received another injection on day 12. Blood samples were taken just before and 6, 24 and 48 h after injection and the mucosa lining the ileum was recovered following euthanizing on days 7 and 14. Zinc supplementation increased reduced and total glutathione (GSH) (reduced and total) during days 5 to 7 and arginine decreased oxidized GSH measured on days 5 and 12 and the ratio of total antioxidant capacity to total oxidative status during days 12 to 14. Zinc decreased plasma malondialdehyde measured on days 5 and 12 and serum haptoglobin measured on day 12 and increased both metallothionein-1 expression and total antioxidant capacity measured in the ileal mucosa on day 14. Tumour necrosis factor α concentration decreased from days 5 to 12 (all effects were significant at P < 0.05). This study shows that the zinc supplement reduced lipid oxidation and lipopolysaccharide-induced inflammation during the post-weaning period, while the arginine supplementation had only a limited effect.
Collapse
|
25
|
Zhou P, Luo Y, Zhang L, Li J, Zhang B, Xing S, Zhu Y, Gao F, Zhou G. Effects of cysteamine supplementation on the intestinal expression of amino acid and peptide transporters and intestinal health in finishing pigs. Anim Sci J 2016; 88:314-321. [PMID: 27245869 DOI: 10.1111/asj.12626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 11/30/2022]
Abstract
This study aimed to evaluate the effects of cysteamine supplementation on the expression of jejunal amino acid and peptide transporters and intestinal health in finishing pigs. Sixty barrows were allocated into two experimental diets consisting of a basal control diet supplemented with 0 or 142 mg/kg cysteamine. After 41 days, 10 pigs per treatment were slaughtered. The results showed that cysteamine supplementation increased the apparent digestibility of crude protein (CP) (P < 0.05) and the trypsin activity in jejunal digesta (P < 0.01). Cysteamine supplementation also increased the messenger RNA abundance of SLC7A7, SLC7A9 and SLC15A1, occludin, claudin-1 and zonula occludens protein-1 (P < 0.001) in the jejunum mucosa. Increased glutathione content (P < 0.01) and glutathione peroxidase activity (P < 0.05) and decreased malondialdehyde content (P < 0.01) were observed in pigs receiving cysteamine. Additionally, cysteamine supplementation increased the concentrations of secretory immunoglobulin A (IgA) (P < 0.05), IgM (P < 0.001) and IgG (P < 0.001) in the jejunal mucosa. It is concluded that cysteamine supplementation could influence protein digestion and absorption via increasing trypsin activity, enhancing the digestibility of CP, and promoting the expression of jejunal amino acid and peptide transporters. Moreover, cysteamine improved intestinal integrity, antioxidant capacity and immune function in the jejunum, which were beneficial for intestinal health.
Collapse
Affiliation(s)
- Ping Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Yiqiu Luo
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Bolin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Shen Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Yuping Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs. Animal 2016; 10:1812-1820. [PMID: 27210003 DOI: 10.1017/s1751731116000999] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to determine if a moderate or high reduction of dietary CP, supplemented with indispensable amino acids (IAA), would affect growth, intestinal morphology and immunological parameters of pigs. A total of 40 barrows (initial BW=13.50±0.50 kg, 45±2 day of age) were used in a completely randomized block design, and allocated to four dietary treatments containing CP levels at 20.00%, 17.16%, 15.30% and 13.90%, respectively. Industrial AA were added to meet the IAA requirements of pigs. After 4-week feeding, blood and tissue samples were obtained from pigs. The results showed that reducing dietary CP level decreased average daily gain, plasma urea nitrogen concentration and relative organ weights of liver and pancreas (P<0.01), and increased feed conversion ratio (P<0.01). Pigs fed the 13.90% CP diet had significantly lower growth performance than that of pigs fed higher CP at 20.00%, 17.16% or 15.30%. Moreover, reducing dietary CP level decreased villous height in duodenum (P<0.01) and crypt depth in duodenum, jejunum and ileum (P<0.01). The reduction in the dietary CP level increased plasma concentrations of methionine, alanine (P<0.01) and lysine (P<0.05), and decreased arginine (P<0.05). Intriguingly, reducing dietary CP level from 20.00% to 13.90% resulted in a significant decrease in plasma concentration of IgG (P<0.05), percentage of CD3+T cells of the peripheral blood (P<0.01), also down-regulated the mRNA abundance of innate immunity-related genes on toll-like receptor 4, myeloid differentiation factor 88 (P<0.01) and nuclear factor kappa B (P<0.05) in the ileum. These results indicate that reducing dietary CP level from 20.00% to 15.30%, supplemented with IAA, had no significant effect on growth performance and had a limited effect on immunological parameters. However, a further reduction of dietary CP level up to 13.90% would lead to poor growth performance and organ development, associated with the modifications of intestinal morphology and immune function.
Collapse
|
27
|
Ren M, Zhang SH, Zeng XF, Liu H, Qiao SY. Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1742-50. [PMID: 26580442 PMCID: PMC4647083 DOI: 10.5713/ajas.14.0131] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
Abstract
As a novel approach for disease control and prevention, nutritional modulation of the intestinal health has been proved. However, It is still unknown whether branched-chain amino acid (BCAA) is needed to maintain intestinal immune-related function. The objective of this study was to determine whether BCAA supplementation in protein restricted diet affects growth performance, intestinal barrier function and modulates post-weaning gut disorders. One hundred and eight weaned piglets (7.96±0.26 kg) were randomly fed one of the three diets including a control diet (21% crude protein [CP], CON), a protein restricted diet (17% CP, PR) and a BCAA diet (BCAA supplementation in the PR diet) for 14 d. The growth performance, plasma amino acid concentrations, small intestinal morphology and intestinal immunoglobulins were tested. First, average daily gain (ADG) (p<0.05) and average daily feed intake (ADFI) (p<0.05) of weaned pigs in PR group were lower, while gain:feed ratio was lower than the CON group (p<0.05). Compared with PR group, BCAA group improved ADG (p<0.05), ADFI (p<0.05) and feed:gain ratio (p<0.05) of piglets. The growth performance data between CON and BCAA groups was not different (p>0.05). The PR and BCAA treatments had a higher (p<0.05) plasma concentration of methionine and threonine than the CON treatment. The level of some essential and functional amino acids (such as arginine, phenylalanine, histidine, glutamine etc.) in plasma of the PR group was lower (p<0.05) than that of the CON group. Compared with CON group, BCAA supplementation significantly increased BCAA concentrations (p<0.01) and decreased urea concentration (p<0.01) in pig plasma indicating that the efficiency of dietary nitrogen utilization was increased. Compared with CON group, the small intestine of piglets fed PR diet showed villous atrophy, increasing of intra-epithelial lymphocytes (IELs) number (p<0.05) and declining of the immunoglobulin concentration, including jejunal immunoglobulin A (IgA) (p = 0.04), secreted IgA (sIgA) (p = 0.03) and immunoglobulin M (p = 0.08), and ileal IgA (p = 0.01) and immunoglobulin G (p = 0.08). The BCAA supplementation increased villous height in the duodenum (p<0.01), reversed the trend of an increasing IELs number. Notably, BCAA supplementation increased levels of jejunal and ileal immunoglobulin mentioned above. In conclusion, BCAA supplementation to protein restricted diet improved intestinal immune defense function by protecting villous morphology and by increasing levels of intestinal immunoglobulins in weaned piglets. Our finding has the important implication that BCAA may be used to reduce the negative effects of a protein restricted diet on growth performance and intestinal immunity in weaned piglets.
Collapse
Affiliation(s)
- M Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China ; Animal Science College, Anhui Science and Technology University, Anhui 233100, China
| | - S H Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - X F Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - H Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - S Y Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Morales A, Buenabad L, Castillo G, Arce N, Araiza BA, Htoo JK, Cervantes M. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition. J Anim Sci 2015; 93:2154-64. [PMID: 26020311 DOI: 10.2527/jas.2014-8834] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P < 0.01). Expression of b(0,+) in the duodenum was higher in pigs fed the LPAA compared with the HP diet (P= 0.036) but there was no difference in the jejunum and ileum. In the ileum, y+ L expression tended to be higher in pigs fed the LPAA diet (P = 0.098). Expression of b(0,+) in LPAA pigs did not differ between the duodenum and the jejunum, but in HP pigs, the expression of all AA transporters was higher in the jejunum than in the duodenum or ileum (P < 0.05). The serum concentration of Arg, His, Ile, Leu, Phe, and Val was higher but serum Lys and Met were lower in pigs fed the HP diet (P < 0.05). These results indicate that LPAA can substitute up to 8 percentage units of protein in HP wheat-SBM diets without affecting pig performance; nonessential N does not seem to be limiting in very low-protein wheat-SBM diets for growing pigs. Also, the inclusion of free AA in the diet appears to affect their serum concentration and the expression of the AA transporter b0,+ in the duodenum of pigs.
Collapse
|
29
|
Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. SPRINGERPLUS 2015; 4:147. [PMID: 25830085 PMCID: PMC4377136 DOI: 10.1186/s40064-015-0927-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/15/2015] [Indexed: 01/10/2023]
Abstract
Improving feed efficiency of pigs with dietary application of amino acids (AAs) is becoming increasingly important because this practice can not only secure the plasma AA supply for muscle growth but also protect the environment from nitrogen discharge with feces and urine. Lysine, the first limiting AA in typical swine diets, is a substrate for generating body proteins, peptides, and non-peptide molecules, while excess lysine is catabolized as an energy source. From a regulatory standpoint, lysine is at the top level in controlling AA metabolism, and lysine can also affect the metabolism of other nutrients. The effect of lysine on hormone production and activities is reflected by the change of plasma concentrations of insulin and insulin-like growth factor 1. Lysine residues in peptides are important sites for protein post-translational modification involved in epigenetic regulation of gene expression. An inborn error of a cationic AA transporter in humans can lead to a lysinuric protein intolerance condition. Dietary deficiency of lysine will impair animal immunity and elevate animal susceptibility to infectious diseases. Because lysine deficiency has negative impact on animal health and growth performance and it appears that dietary lysine is non-toxic even at a high dose of supplementation, nutritional emphasis should be put on lysine supplementation to avoid its deficiency rather than toxicity. Improvement of muscle growth of monogastric animals such as pigs via dietary lysine supply may be due to a greater increase in protein synthesis rather than a decrease in protein degradation. Nevertheless, the underlying metabolic and molecular mechanisms regarding lysine effect on muscle protein accretion merits further clarification. Future research undertaken to fully elucidate the metabolic and regulatory mechanisms of lysine nutrition could provide a sound scientific foundation necessary for developing novel nutritional strategies to enhance the muscle growth and development of meat animals.
Collapse
|
30
|
Ren M, Liu C, Zeng X, Yue L, Mao X, Qiao S, Wang J. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig. Mol Biol Rep 2014; 41:3611-20. [PMID: 24510411 DOI: 10.1007/s11033-014-3225-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
The objective of this study was to investigate the effects of free amino acids supplementation to protein restricted diet on the intestinal morphology and proteome composition in weaning pigs. Weanling piglets were randomly fed one of the three diets including a corn-soybean based control diet and two lower protein diets with or without free amino acids supplementation for 2 weeks. The jejunum samples of piglets were collected for morphology and proteome analysis. Compared with the control diet, the protein restricted diet had a significant lower average daily gain and higher feed conversion rate. Free amino acids supplementation to the protein restricted diet significantly improved average daily gain and higher feed conversion rate, compared with the protein restricted diet. The villous height in pigs fed the protein restricted diet was lower than that of the control and free amino acids diet. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 16 differentially expressed protein spots in the jejunum of the weaning piglet. These proteins were related to stress and immune response, the metabolism of carbohydrates and lipids, and tissue structure. Based on the proteome and ELISA analysis, free amino acids diet significantly down-regulated the jejunal expression of stress protein heat shock 60 kDa protein. Our results indicated that amino acids supplementation to the protein restricted diet could enhance weight gain and feed efficiency in weanling pigs through improving intestinal nutrient absorption and transportation, gut health, and mucosal immunity.
Collapse
Affiliation(s)
- Man Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Bergeron N, Robert C, Guay F. Antioxidant status and inflammatory response in weanling piglets fed diets supplemented with arginine and zinc. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bergeron, N., Robert, C. and Guay, F. 2014. Antioxidant status and inflammatory response in weanling piglets fed diets supplemented with arginine and zinc. Can. J. Anim. Sci. 94: 87–97. Dietary supplementation with zinc oxide (Zn oxide) and arginine (Arg) is known to improve growth in weanling piglets. The mechanism of action is not yet well understood, although antioxidant effects and inflammatory responses may be involved. This experiment was conducted to evaluate the effects of Zn and Arg supplementation on the antioxidant status and inflammatory response of piglets. Thirty-two 20-d-old weanling piglets were placed for 12 d on diets supplemented or not with Zn (2500 mg Zn oxide kg−1) and Arg (1%), designated ZN0ARG0, ZN2500ARG0, ZN0ARG1 and ZN2500ARG1. On day 12, blood samples were taken before and 3 h after intra-peritoneal injection of lipopolysaccharide (LPS; 10 µg kg−1). The piglets were euthanized just after the second blood sample, and samples of mucosae were taken from the jejunum and ileum for determination of mRNA expression and morphological observation. Zn supplementation decreased plasma malondialdehyde measured before LPS injection (P<0.05). Arg supplementation increased the ferric-reducing ability of plasma (indicator of antioxidant status) measured after LPS injection (P<0.05). Piglets fed Zn-supplemented diets had lower total plasma superoxide-dismutase (SOD) activity (P<0.05) but higher plasma tumour necrosis factor-α (P<0.05) after LPS injection. Zinc-supplemented diets increased metallothionein-1 expression and total antioxidant capacity in the ileum and jejunum (P<0.05) and decreased interleukin-10 expression (P<0.05) in the ileum. In the jejunum, the combination of Zn and Arg supplementation increased villus height (Arg×Zn, P<0.05). These results indicate that Zn may reduce systemic oxidation and improve the antioxidant status in the jejunal and ileal mucosae. However, Zn and Arg supplementation did not appear to act synergistically to enhance antioxidant status or reduce inflammation in weanling piglets.
Collapse
Affiliation(s)
- Nadia Bergeron
- Department of Animal Science, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Claude Robert
- Department of Animal Science, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Frédéric Guay
- Department of Animal Science, Université Laval, Québec, Québec, Canada G1V 0A6
| |
Collapse
|
32
|
Saki A, Matin HH, Zamani P, Tabatabai M, Vatanchian M. Various ratios of pectin to cellulose affect intestinal morphology, DNA quantitation, and performance of broiler chickens. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Woodward AD, Nielsen BD, Liesman J, Lavin T, Trottier NL. Protein quality and utilization of timothy, oat-supplemented timothy, and alfalfa at differing harvest maturities in exercised Arabian horses. J Anim Sci 2011; 89:4081-92. [PMID: 21788427 DOI: 10.2527/jas.2010-3825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To evaluate the protein quality and postgut N utilization of full-bloom timothy hay, oat-supplemented timothy-hay diets, and alfalfa hay harvested at different maturities, apparent whole tract N digestibility, urinary N excretion, and serum AA profiles were determined in light to moderately exercised Arabian horses. Six Arabian geldings (16.0 ± 0.3 yr; 467 ± 11 kg of BW) were randomly allocated to a 6 × 6 Latin square design. Diets included full-bloom timothy grass hay (G), G + 0.2% BW oat (G1), G + 0.4% BW oat (G2), mid-bloom alfalfa (A1), early-bloom alfalfa (A2), and early-bud alfalfa hay (A3). Forages were fed at 1.6% of the BW of the horse (as-fed). Each period consisted of an 11-d adaptation period followed by total collection of feces and urine for 3 d. Blood samples were taken on d 11 for analysis of serum AA concentrations. During the 3-d collection period, urine and feces were collected every 8 h and measured and weighed, respectively. Approximately 10% of the total urine volume and fecal weight per period was retained for N analyses. Fecal DM output was less (P < 0.05) in A1, A2, or A3 compared with G, G1, or G2. Apparent whole tract N digestibility was greater (P < 0.01) in A1, A2, and A3 compared with G, G1, or G2, and was greater (P < 0.05) in G1 and G2 compared with G. Nitrogen retention was not different from zero, and there were no differences (P > 0.05) in N retention among diets. Urinary N excretion and total N excretion were greater (P < 0.05) in A1, A2, and A3 compared with G, G1, or G2. Plasma concentrations for the majority of AA increased curvilinearly in response to feeding G, A1, A2, and A3 (quadratic, P < 0.05), with values appearing to maximize 2-h postfeeding. Although alfalfa N digestibility increased with decreasing harvest maturity, N retention did not differ and urinary volume and N excretion increased, indicating that postabsorptive N utilization decreased. In contrast, inclusion of oats at either 0.2 or 0.4% of the BW of the horse to timothy hay markedly enhanced N digestibility without increasing N excretion, indicating improvement in postgut N utilization. These findings indicate that feeding oat-supplemented timothy hay is more environmentally sustainable than feeding alfalfa to the horse at maintenance or under light to moderate exercise.
Collapse
Affiliation(s)
- A D Woodward
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
34
|
Osada T, Takada R, Shinzato I. Potential reduction of greenhouse gas emission from swine manure by using a low-protein diet supplemented with synthetic amino acids. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Effects of pig genotype (Iberian v. Landrace × Large White) on nutrient digestibility, relative organ weight and small intestine structure at two stages of growth. Animal 2011; 5:547-57. [DOI: 10.1017/s1751731110002181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Rubio LA, Ruiz R, Peinado MJ, Echavarri A. Morphology and enzymatic activity of the small intestinal mucosa of Iberian pigs as compared with a lean pig strain1. J Anim Sci 2010; 88:3590-7. [DOI: 10.2527/jas.2010-3040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Opapeju FO, Rademacher M, Nyachoti CM. Effect of dietary crude protein level on jejunal brush border enzyme activities in weaned pigs. Arch Anim Nutr 2009; 63:455-66. [DOI: 10.1080/17450390903299133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Nortey TN, Patience JF, Sands JS, Trottier NL, Zijlstra RT. Effects of xylanase supplementation on the apparent digestibility and digestible content of energy, amino acids, phosphorus, and calcium in wheat and wheat by-products from dry milling fed to grower pigs1,2. J Anim Sci 2008; 86:3450-64. [DOI: 10.2527/jas.2007-0472] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Yue L, Qiao S. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest Sci 2008. [DOI: 10.1016/j.livsci.2007.06.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Deglaire A, Moughan PJ, Rutherfurd SM, Bos C, Tomé D. Feeding dietary peptides to growing rats enhances gut endogenous protein flows compared with feeding protein-free or free amino acid-based diets. J Nutr 2007; 137:2431-6. [PMID: 17951481 DOI: 10.1093/jn/137.11.2431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of dietary peptides on gut endogenous nitrogen (N) flow (ENFL) and amino acid (AA) flow (EAAFL) was studied. Semisynthetic diets containing enzyme-hydrolyzed casein (HC; 11%) or a free AA mixture devoid of Asp and Ser (A1) or Gly and Ala (A2) were formulated to have similar AA compositions except for the excluded AA and similar dietary electrolyte balances (Na(+)+K(+)-Cl(-)). A protein-free diet (PF) served as a control. Sprague-Dawley rats were given the diets 8 times/d for 10 min each hour for 7 d. Rats were killed and digesta were sampled (6 observations within each group) along the intestinal tract 6 h after the first meal on d 7. EAAFL and ENFL, estimated with reference to the dietary marker TiO(2), were determined directly (PF, A1, and A2) or after centrifugation and ultrafiltration of the digesta (HC). Endogenous flows of Asp and Ser or Gly and Ala did not differ (P > 0.05) in any of the intestinal sections between rats fed PF and A1 or PF and A2, respectively, except in the stomach where Ser flow was greater for rats fed A1. Ileal endogenous flows for most of the AA and for N were higher (P < 0.05) for rats fed the HC diet compared with those for rats fed the PF, A1, or A2 diets, except for Phe, Tyr, Lys, which did not differ among the groups. Ileal EAAFL and ENFL were not influenced by body N balance per se but were affected by the presence in the gut of dietary peptides derived from casein.
Collapse
|
41
|
Nortey TN, Patience JF, Simmins PH, Trottier NL, Zijlstra RT. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun. J Anim Sci 2007; 85:1432-43. [PMID: 17325125 DOI: 10.2527/jas.2006-613] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of these studies was to determine if dietary enzymes increase the digestibility of nutrients bound by nonstarch polysaccharides, such as arabinoxylans, or phytate in wheat millrun. Effects of millrun inclusion rates (20 or 40%), xylanase (0 or 4,375 units/kg of feed), and phytase (0 or 500 phytase units/kg of feed) on nutrient digestibility and growth performance were investigated in a 2 x 2 x 2 factorial arrangement with a wheat control diet (0% millrun). Diets were formulated to contain 3.34 Mcal of DE/kg and 3.0 g of true ileal digestible Lys/Mcal of DE and contained 0.4% chromic oxide. Each of 18 cannulated pigs (36.2 +/- 1.9 kg of BW) was fed 3 diets at 3x maintenance in successive 10-d periods for 6 observations per diet. Feces and ileal digesta were collected for 2 d. Ileal energy digestibility was reduced (P < 0.01) linearly by millrun and increased by xylanase (P < 0.01) and phytase (P < 0.05). Total tract energy digestibility was reduced linearly by millrun (P < 0.01) and increased by xylanase (P < 0.01). For 20% millrun, xylanase plus phytase improved DE content from 3.53 to 3.69 Mcal/kg of DM, a similar content to that of the wheat control diet (3.72 Mcal/kg of DM). Millrun linearly reduced (P < 0.01) ileal digestibility of Lys, Thr, Met, Ile, and Val. Xylanase improved (P < 0.05) ileal digestibility of Ile. Phytase improved ileal digestibility of Lys, Thr, Ile, and Val (P < 0.05). Millrun linearly reduced (P < 0.05) total tract P and Ca digestibility and retention. Phytase (P < 0.01) and xylanase (P < 0.05) improved total tract P digestibility, and phytase and xylanase tended to improve (P < 0.10) P retention. Phytase improved Ca digestibility (P < 0.05) and retention (P < 0.01). The 9 diets were also fed for 35 d to 8 individually housed pigs (36.2 +/- 3.4 kg of BW) per diet. Millrun reduced (P < 0.05) ADFI, ADG, and final BW. Xylanase increased (P < 0.05) G:F; phytase reduced (P < 0.05) ADFI; and xylanase tended to reduce (P = 0.07) ADFI. In summary, millrun reduced energy, AA, P, and Ca digestibility and growth performance compared with the wheat control diet. Xylanase and phytase improved energy, AA, and P digestibility, indicating that nonstarch polysaccharides and phytate limit nutrient digestibility in wheat byproducts. The improvement by xylanase of energy digestibility coincided with improved G:F but did not translate into improved ADG.
Collapse
Affiliation(s)
- T N Nortey
- Prairie Swine Centre Inc., Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
42
|
Guay F, Trottier NL. Muscle growth and plasma concentrations of amino acids, insulin-like growth factor-I, and insulin in growing pigs fed reduced-protein diets. J Anim Sci 2006; 84:3010-9. [PMID: 17032795 DOI: 10.2527/jas.2005-559] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Twenty barrows were used to determine if partial replacement of protein-bound AA with crystalline AA (CAA) reduces AA use for muscle tissue and whole-body growth. Barrows (44.2 +/- 1.3 kg of BW) were assigned to 4 diets in a randomized complete block design. Diets consisted of 16.1% CP with no CAA, and 12.8, 10.1, and 7.8% CP containing CAA. As the CP concentration decreased, CAA were gradually increased to meet requirements on a true ileal digestibility basis. Barrows were weighed on d 0 and 13. Blood samples were collected before the morning feeding on d 0, 6, and 12 (prefeeding), and 2 h after the morning feeding on d 13 (postfeeding). Pigs were euthanized on d 13, and liver and right LM were removed and weighed. The reduction in the dietary CP concentration linearly decreased (P < 0.01) ADG, G:F, LM weight, and the CP content of LM. Reducing the CP concentration decreased pre- and postfeeding plasma concentrations of IGF-I (linear, P < 0.01) and insulin (linear, P < 0.10). The reduction in the dietary CP concentration increased prefeeding plasma concentrations of Ala, Gln, Gly, and total AA but decreased Arg, Asn, His, Ile, Phe, Trp, and Tyr (linear, P < 0.05). Plasma concentration of total indispensable AA decreased initially and increased thereafter as the dietary CP concentration decreased from 16.1 to 7.8% (quadratic, P < 0.01). The reduction in the dietary CP concentration increased postfeeding plasma concentrations of Ala, Lys, Met (linear, P < 0.01), and Gly (linear, P = 0.073) and decreased Asn, Ser, Tyr, Arg, His, and Leu (linear, P < 0.05). Plasma concentrations of Ile, Phe, Thr, Trp, and Val decreased initially and increased thereafter as the dietary CP concentration decreased from 16.1 to 7.8% (quadratic, P < 0.05). In muscle tissue, concentrations of free Ala, Asp, Glu, Gln, Gly, and Lys increased (linear, P < 0.05) as the dietary CP concentration decreased. Concentrations of free His, Ile, Phe, Thr, Trp, and Val in muscle tissue decreased initially and increased thereafter as the dietary CP concentration decreased from 16.1 to 7.8% (quadratic, P < 0.05). In summary, the reduction in the dietary protein-bound AA decreased whole-body and LM growth, altered the free AA pool profile in muscle tissue, and decreased plasma insulin and IGF-I. As the replacement of protein-bound AA with CAA increased, 1) free Ala and Gln in muscle tissue increased, indicating an increase of muscle tissue protein breakdown; and 2) utilization of indispensable AA in muscle tissue decreased.
Collapse
Affiliation(s)
- F Guay
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|