1
|
Meng Z, Yang C, Leng J, Zhu W, Cheng Y. Production, purification, characterization and application of two novel endoglucanases from buffalo rumen metagenome. J Anim Sci Biotechnol 2023; 14:16. [PMID: 36740711 PMCID: PMC9900955 DOI: 10.1186/s40104-022-00814-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/02/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lignocellulose biomass is the most abundant and renewable material in nature. The objectives of this study were to characterize two endoglucanases TrepCel3 and TrepCel4, and determine the effect of the combination of them (1.2 mg TrepCel3, 0.8 mg TrepCel4) on in vitro rumen fermentation characteristics. In this study, three nature lignocellulosic substrates (rice straw, RS; wheat straw, WS; leymus chinensis, LC) were evaluated for their in vitro digestibility, gas, NH3-N and volatile fatty acid (VFA) production, and microbial protein (MCP) synthesis by adding enzymatic combination. METHODS Two endoglucanases' genes were successfully expressed in Escherichia coli (E. coli) BL21 (DE3), and enzymatic characteristics were further characterized. The combination of TrepCel3 and TrepCel4 was incubated with lignocellulosic substrates to evaluate its hydrolysis ability. RESULTS The maximum enzymatic activity of TrepCel3 was determined at pH 5.0 and 40 °C, while TrepCel4 was at pH 6.0 and 50 °C. They were stable over the temperature range of 30 to 60 °C, and active within the pH range of 4.0 to 9.0. The TrepCel3 and TrepCel4 had the highest activity in lichenan 436.9 ± 8.30 and 377.6 ± 6.80 U/mg, respectively. The combination of TrepCel3 and TrepCel4 exhibited the highest efficiency at the ratio of 60:40. Compared to maximum hydrolysis of TrepCel3 or TrepCel4 separately, this combination was shown to have a superior ability to maximize the saccharification yield from lignocellulosic substrates up to 188.4% for RS, 236.7% for wheat straw WS, 222.4% for LC and 131.1% for sugar beet pulp (SBP). Supplemental this combination enhanced the dry matter digestion (DMD), gas, NH3-N and VFA production, and MCP synthesis during in vitro rumen fermentation. CONCLUSIONS The TrepCel3 and TrepCel4 exhibited the synergistic relationship (60:40) and significantly increased the saccharification yield of lignocellulosic substrates. The combination of them stimulated in vitro rumen fermentation of lignocellulosic substrates. This combination has the potential to be a feed additive to improve agricultural residues utilization in ruminants. If possible, in the future, experiments in vivo should be carried out to fully evaluate its effect.
Collapse
Affiliation(s)
- Zhenxiang Meng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengjian Yang
- Buffalo Research Institute, Chinese Academy of Agricultural, Nanning, 530000, China
| | - Jing Leng
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650000, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zhang J, Wang C, Liu Q, Guo G, Huo W, Pei C, Jiang Q. Influence of fibrolytic enzymes mixture on performance, nutrient digestion, rumen fermentation and microbiota in Holstein bulls. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/147188/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Sakita GZ, Tavares Lima PDM, Filho ALA, Bompadre TFV, Ovani VS, Silva Chaves CDME, Bizzuti BE, dos Santos da Costa W, do Prado Paim T, Campioni TS, de Oliva Neto P, Bremer-Neto H, Louvandini H, Abdalla AL. Treating tropical grass with fibrolytic enzymes from the fungus Trichoderma reesei: effects on animal performance, digestibility and enteric methane emissions of growing lambs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Long C, Venema K. Pretreatment of Rapeseed Meal Increases Its Recalcitrant Fiber Fermentation and Alters the Microbial Community in an in vitro Model of Swine Large Intestine. Front Microbiol 2020; 11:588264. [PMID: 33329463 PMCID: PMC7711092 DOI: 10.3389/fmicb.2020.588264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
The aim of current study was to investigate in an in vitro study how enzymatic and chemical pretreated rapeseed meal (RSM) influences the fiber fermentation and microbial community in the swine large intestine. RSM was processed enzymatically by a cellulase (CELL), two pectinases (PECT), or chemically by an alkaline (ALK) treatment. 16S rRNA gene sequencing data was performed to evaluate changes in the gut microbiota composition, whereas short-chain fatty acid (SCFA) production (ion-chromatography) and non-starch polysaccharides (NSP) composition (using monoclonal antibodies; mAbs) were used to assess fiber degradation. The results showed that ALK, CELL, PECT1, and PECT2 changed microbial community composition, increased the predicted abundance of microbial fiber-degrading enzymes and pathways, and increased acetic acid, propionic acid, butyric acid, and total SCFA production. The increased microbial genera positively correlated with SCFA production. Monoclonal antibody analyses showed that the cell wall polysaccharide structures of RSM shifted after ALK, CELL, PECT1, and PECT2 treatment. The degradation of NSP during the fermentation period was dynamic, and not continuous based on the epitope recognition by mAbs. This study provides the first detailed analysis of changes in the swine intestinal microbiota due to RSM modified by ALK, CELL, PECT1, and PECT2, which altered the microbial community structure, shifted the predicted functional metagenomic profile and subsequently increased total SCFA production. Our findings that ALK, CELL, PECT1, and PECT2 increased fiber degradability in RSM could help guide feed additive strategies to improve efficiency and productivity in swine industry. The current study gave insight into how enzymatic treatment of feed can alter microbial communities, which provides good opportunity to develop novel carbohydrase treatments, particularly in swine feed.
Collapse
Affiliation(s)
- Cheng Long
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Ribeiro GO, Gruninger RJ, Jones DR, Beauchemin KA, Yang WZ, Wang Y, Abbott DW, Tsang A, McAllister TA. Effect of ammonia fiber expansion-treated wheat straw and a recombinant fibrolytic enzyme on rumen microbiota and fermentation parameters, total tract digestibility, and performance of lambs. J Anim Sci 2020; 98:skaa116. [PMID: 32369600 PMCID: PMC7199887 DOI: 10.1093/jas/skaa116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to evaluate the effect of ammonia fiber expansion (AFEX)-treated wheat straw pellets and a recombinant fibrolytic enzyme on the rumen microbiome, rumen fermentation parameters, total tract diet digestibility, and performance of lambs. Eight rumen cannulated wethers and 60 lambs (n = 15 per diet, 8 rams and 7 ewes) were used in a replicated 4 × 4 Latin square design digestibility study and a complete randomized growth performance study, respectively. Four treatment diets were arranged in a 2 × 2 factorial structure with AFEX wheat straw (0% or 30% AFEX straw pellets on a dietary DM basis replacing alfalfa hay pellets) and fibrolytic enzyme (with or without XYL10C, a β-1,4-xylanase, from Aspergillus niger) as main factors. Enzyme was applied at 100 mg/kg of diet DM, 22 h before feeding. Rumen bacteria diversity Pielou evenness decreased (P = 0.05) with AFEX compared with the control diet and increased (P < 0.01) with enzyme. Enzyme increased (P ≤ 0.02) the relative abundancies of Prevotellaceae UCG-004, Christensenellaceae R-7 group, Saccharofermentans, and uncultured Kiritimatiellaeota. Total protozoa counts were greater (P ≤ 0.04) in the rumen of lambs fed AFEX compared with control, with enzyme reducing (P ≤ 0.05) protozoa counts for both diets. Digestibility of DM did not differ (P > 0.10) among diets, but digestibility of CP was reduced (P = 0.001), and digestibility of NDF and ADF increased (P < 0.05) as AFEX replaced alfalfa. Compared with control, AFEX promoted greater DMI (P = 0.003) and improved ADG up to 42 d on feed (P = 0.03), but not (P = 0.51) over the full ~94-d experiment. Consequently, overall G:F was reduced (P = 0.04) for AFEX when compared with control (0.188 vs. 0.199), but days on feed were lower (P = 0.04) for AFEX (97 vs. 91 d). Enzyme improved DMI of AFEX up to day 70 (P = 0.01), but did not affect DMI of the control diet. Enzyme addition improved ADG of lambs fed both diets in the first 28 d (P = 0.02), but not over the entire feeding period (P ≥ 10). As a result, G:F was improved with enzyme for the first 28 d (P = 0.04), but not overall (P = 0.45). This study shows that AFEX-treated wheat straw can replace alfalfa hay with no loss in lamb growth performance. Additionally, the enzyme XYL10C altered the rumen microbiome and improved G:F in the first month of the feeding.
Collapse
Affiliation(s)
- Gabriel O Ribeiro
- Department of Animal and Poultry Science, University of Saskatchewan College of Agriculture Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Robert J Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Darryl R Jones
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Wen Zhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Yuxi Wang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| |
Collapse
|
6
|
Zhao MD, Di LF, Tang ZY, Jiang W, Li CY. Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1540-1547. [PMID: 31010984 PMCID: PMC6718903 DOI: 10.5713/ajas.18.0901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/27/2019] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to evaluate the effects of tannins and cellulase on growth performance, nutrient digestibility, blood profiles, intestinal morphology, and carcass characteristics in Hu sheep. Methods A total of 48 three-month-old meat Hu sheep (25.05±0.9 kg) were blocked based on body weight, and randomly allotted to 4 treatments with 3 replicates of 4 sheep each. The experiment lasted for 80 d, and dietary treatments were as follows: i) CON, control diet; ii) TAN, CON+0.1% tannins; iii) CEL, CON+0.1% cellulase; iv) TAN+CEL, CON+0.1% tannins and 0.1% cellulase. Results Compared with CON, CEL, and TAN+CEL had greater (p<0.05) final body weight (FBW) and average daily gain but lower (p<0.05) feed conversion ratio, while FBW of TAN+ CEL was lower (p<0.05) than that of CEL. The apparent total tract digestibility (ATTD) of dry matter in TAN, CEL, and TAN+CEL groups were higher (p<0.05) than that in CON. CEL and TAN+CEL groups had greater (p<0.05) ATTD of crude fiber compared with TAN and CON, while TAN group had lower (p<0.05) ATTD of crude protein than other treatments. TAN, CEL, and TAN+CEL groups increased (p<0.05) serum globulin and alkaline phosphatase but decreased (p<0.05) albumin/globulin. Serum total protein was greatest for TAN+CEL, intermediate for TAN and CEL and least for CON (p<0.05). TAN+CEL group increased (p<0.05) dressing percentage compared with CON, while the backfat thickness of CEL was lower (p<0.05) than that of CON. The villus height of jejunum and ileum in CEL and TAN+CEL groups were greater (p<0.05) than that in CON, and the crypt depth and villus height: crypt depth of jejunum were increased (p<0.05) in TAN, CEL, and TAN+CEL groups. Conclusion The addition of tannins and cellulase together promoted nutrient digestion, liver protein synthesis and intestinal development and thus improved growth performance and carcass characteristics.
Collapse
Affiliation(s)
- M D Zhao
- Department of Animal Science, Agricultural College of Yanbian University, Jilin 133002, China
| | - L F Di
- Department of Animal Science, Agricultural College of Yanbian University, Jilin 133002, China
| | - Z Y Tang
- Department of Animal Science, Agricultural College of Yanbian University, Jilin 133002, China
| | - W Jiang
- Department of Animal Science, Agricultural College of Yanbian University, Jilin 133002, China
| | - C Y Li
- Department of Animal Science, Agricultural College of Yanbian University, Jilin 133002, China.,Innovation Center of Beef Cattle Science and Industry Technology, Yanbian University, Jilin 133002, China
| |
Collapse
|
7
|
Ribeiro GO, Badhan A, Huang J, Beauchemin KA, Yang W, Wang Y, Tsang A, McAllister TA. New recombinant fibrolytic enzymes for improved in vitro ruminal fiber degradability of barley straw1. J Anim Sci 2018; 96:3928-3942. [PMID: 30053012 PMCID: PMC6127823 DOI: 10.1093/jas/sky251] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/28/2018] [Indexed: 11/14/2022] Open
Abstract
This study used a high-throughput in vitro microassay, in vitro batch culture, and the Rumen Simulation Technique (RUSITEC) to screen recombinant fibrolytic enzymes for their ability to increase the ruminal fiber degradability of barley straw. Eleven different recombinant enzymes in combination with a crude mixture of rumen enzymes (50% recombinant enzyme:50% crude mixture of rumen enzymes) were compared with the crude mixture of rumen enzymes alone. In the microassay, all treatments were applied at 15 mg of protein load per gram barley straw glucan. Based on the microassay results, 1 recombinant endoglucanase [EGL7A, from the glycoside hydrolase (GH) family 7], 2 recombinant xylanases (XYL10A and XYL10C, from GH10), and a recombinant enzyme mixture were selected and compared with a crude mixture of fibrolytic enzymes from Aspergillus aculeatus for their ability to hydrolyze barley straw. For batch culture, enzymes were applied to barley straw at 2 dosages (100 and 500 µg of protein/g of substrate DM). All enzymes increased (P < 0.05) DM disappearance and total VFA production, but the mixture of recombinant enzymes was not superior to the use of a single recombinant enzyme. Based on positive results (P < 0.05) for total DM disappearance and VFA production in batch culture, 3 enzymes (EGL7A, XYL10A, and XYL10C) were selected and applied to barley straw at 500 µg of protein per gram for further assessment in RUSITECs fed a concentrate:barley straw diet (300:700 g/kg DM). In RUSITECs, the recombinant enzyme XYL10A increased (P < 0.05) barley straw DM, NDF, and ADF disappearance, whereas EGL7A and XYL10C had no effect. The enzymes selected based on the high-throughput in vitro microassay consistently increased barley straw degradation in ruminal batch culture, but not in the semicontinuous culture RUSITEC system.
Collapse
Affiliation(s)
- Gabriel O Ribeiro
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Ajay Badhan
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jiangli Huang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Yuxi Wang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
8
|
Cabeza-Luna I, Carro M, Fernández-Yepes J, Molina-Alcaide E. Effects of modifications to retain protozoa in continuous-culture fermenters on ruminal fermentation, microbial populations, and microbial biomass assessed by two different methods. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Tirado-González DN, Miranda-Romero LA, Ruíz-Flores A, Medina-Cuéllar SE, Ramírez-Valverde R, Tirado-Estrada G. Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1399135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Deli Nazmín Tirado-González
- Posgrado en Producción Animal (PPA), Departamento de Zootecnia, Universidad Autónoma Chapingo, México, CP, Mexico
| | - Luis Alberto Miranda-Romero
- Posgrado en Producción Animal (PPA), Departamento de Zootecnia, Universidad Autónoma Chapingo, México, CP, Mexico
| | - Agustín Ruíz-Flores
- Posgrado en Producción Animal (PPA), Departamento de Zootecnia, Universidad Autónoma Chapingo, México, CP, Mexico
| | | | - Rodolfo Ramírez-Valverde
- Posgrado en Producción Animal (PPA), Departamento de Zootecnia, Universidad Autónoma Chapingo, México, CP, Mexico
| | - Gustavo Tirado-Estrada
- Instituto Tecnológico El Llano Aguascalientes (ITEL), Aguascalientes, México, CP, Mexico
| |
Collapse
|
10
|
Influence of increasing doses of a yeast hydrolyzate obtained from sugarcane processing on in vitro rumen fermentation of two different diets and bacterial diversity in batch cultures and Rusitec fermenters. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
SUJANI S, PIYASENA T, SERESINHE T, PATHIRANA I, GAJAWEERA C. Supplementation of rice straw (Oryza sativa) with exogenous fibrolyticenzymes improves in vitro rumen fermentation characteristics. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES 2017. [DOI: 10.3906/vet-1503-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Oss DB, Ribeiro GO, Marcondes MI, Yang W, Beauchemin KA, Forster RJ, McAllister TA. Synergism of Cattle and Bison Inoculum on Ruminal Fermentation and Select Bacterial Communities in an Artificial Rumen (Rusitec) Fed a Barley Straw Based Diet. Front Microbiol 2016; 7:2032. [PMID: 28018336 PMCID: PMC5156676 DOI: 10.3389/fmicb.2016.02032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effect of increasing the proportion of bison relative to cattle inoculum on fermentation and microbial populations within an artificial rumen (Rusitec). The experiment was a completely randomized design with a factorial treatment structure (proportion cattle:bison inoculum; 0:100, 33:67, 67:33, and 100:0) replicated in two Rusitec apparatuses (n = 8 fermenters). The experiment was 15 d with 8 d of adaptation and 7 d of sampling. Fermenters were fed a diet of 70:30 barley straw:concentrate (DM basis). True digestibility of DM was determined after 48 h of incubation from d 13 to 15, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured on d 9–12. Protozoa counts were determined at d 9, 11, 13, and 15 and particle-associated bacteria (PAB) from d 13 to 15. Select bacterial populations in the PAB were measured using RT-qPCR. Fermenter was considered the experimental unit and day of sampling as a repeated measure. Increasing the proportion of bison inoculum resulted in a quadratic effect (P < 0.05) on straw, concentrate and total true DM disappearance and on straw and total neutral detergent fiber (aNDF) disappearance, with greater disappearances observed with mixed inoculum. There were no effect of source or proportion of inoculum on ADF disappearance (P > 0.05). Increasing bison inoculum linearly increased (P < 0.05) concentrate aNDF disappearance, total and concentrate N disappearance as well as total daily VFA and acetate production. A positive quadratic response (P < 0.05) was observed for daily NH3-N, propionate, butyrate, valerate, isovalerate and isobutyrate production, as well as the acetate:propionate ratio. Increasing the proportion of bison inoculum linearly increased (P < 0.05) total protozoa numbers. No effects were observed on pH, total gas and methane production, microbial N synthesis, or copies of 16S rRNA associated with total bacteria, Selenomonas ruminantium or Prevotella bryantii. Increasing bison inoculum had a quadratic effect (P < 0.05) on Fibrobacter succinogenes, and tended to linearly (P < 0.10) increase Ruminococcus flavefaciens and decrease (P < 0.05) Ruminococcus albus copy numbers. In conclusion, bison inoculum increased the degradation of feed protein and fiber. A mixture of cattle and bison rumen inoculum acted synergistically, increasing the DM and aNDF disappearance of barley straw.
Collapse
Affiliation(s)
- Daniela B Oss
- Departamento de Zootecnia, Universidade Federal de ViçosaViçosa, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da EducaçãoBrasília, Brazil
| | - Gabriel O Ribeiro
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da EducaçãoBrasília, Brazil; Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Marcos I Marcondes
- Departamento de Zootecnia, Universidade Federal de Viçosa Viçosa, Brazil
| | - WenZhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| | - Robert J Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| |
Collapse
|
13
|
Extracellular α-Galactosidase from Trichoderma sp. (WF-3): Optimization of Enzyme Production and Biochemical Characterization. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:860343. [PMID: 26609435 PMCID: PMC4644822 DOI: 10.1155/2015/860343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022]
Abstract
Trichoderma spp. have been reported earlier for their excellent capacity of secreting extracellular α-galactosidase. This communication focuses on the optimization of culture conditions for optimal production of enzyme and its characterization. The evaluation of the effects of different enzyme assay parameters such as stability, pH, temperature, substrate concentrations, and incubation time on enzyme activity has been made. The most suitable buffer for enzyme assay was found to be citrate phosphate buffer (50 mM, pH 6.0) for optimal enzyme activity. This enzyme was fairly stable at higher temperature as it exhibited 72% activity at 60°C. The enzyme when incubated at room temperature up to two hours did not show any significant loss in activity. It followed Michaelis-Menten curve and showed direct relationship with varying substrate concentrations. Higher substrate concentration was not inhibitory to enzyme activity. The apparent Michaelis-Menten constant (Km), maximum rate of reaction (Vmax), Kcat, and catalytic efficiency values for this enzyme were calculated from the Lineweaver-Burk double reciprocal plot and were found to be 0.5 mM, 10 mM/s, 1.30 U mg−1, and 2.33 U mg−1 mM−1, respectively. This information would be helpful in understanding the biophysical and biochemical characteristics of extracellular α-galactosidase from other microbial sources.
Collapse
|
14
|
Togtokhbayar N, Cerrillo MA, Rodríguez GB, Elghandour MMMY, Salem AZM, Urankhaich C, Jigjidpurev S, Odongo NE, Kholif AE. Effect of exogenous xylanase on rumenin vitrogas production and degradability of wheat straw. Anim Sci J 2015; 86:765-71. [DOI: 10.1111/asj.12364] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
| | - María A. Cerrillo
- Facultad de Medicina Veterinaria y Zootecnia; Universidad Juárez del Estado de Durango; Durango México
| | | | - Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia; Universidad Autónoma del Estado de México; Estado de México México
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia; Universidad Autónoma del Estado de México; Estado de México México
| | | | | | | | - Ahmed E. Kholif
- Dairy Science Department; National Research Centre; 33 Bohouth st. Dokki Giza Egypt
| |
Collapse
|
15
|
Effect of fibrolytic enzymes added to a Andropogon gayanus grass silage-concentrate diet on rumen fermentation in batch cultures and the artificial rumen (Rusitec). Animal 2015; 9:1153-62. [PMID: 25697879 DOI: 10.1017/s1751731115000221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In vitro batch cultures were used to screen four fibrolytic enzyme mixtures at two dosages added to a 60 : 40 silage : concentrate diet containing the C(4) tropical grass Andropogon gayanus grass ensiled at two maturities - vegetative stage (VS) and flowering stage (FS). Based on these studies, one enzyme mixture was selected to treat the same diets and evaluate its impact on fermentation using an artificial rumen (Rusitec). In vitro batch cultures were conducted as a completely randomized design with two runs, four replicates per run and 12 treatments in a factorial arrangement (four enzyme mixtures×three doses). Enzyme additives (E1, E2, E3 and E4) were commercial products and contained a range of endoglucanase, exoglucanase and xylanase activities. Enzymes were added to the complete diet 2 h before incubation at 0, 2 and 4 μl/g of dry matter (DM). Gas production (GP) was measured after 3, 6, 12, 24 and 48 h of incubation. Disappearance of DM (DMD), NDF (NDFD) and ADF (ADFD) were determined after 24 and 48 h. For all four enzyme mixtures, a dosage effect (P>0.05) DM, N, NDF or ADF disappearance after 48 h of incubation nor daily ammonia-N, volatile fatty acids or CH(4) production. However, enzyme application increased (P<0.05) microbial N production in feed particle-associated (loosely-associated) and silage feed particle-bound (firmly associated) fractions. With A. gayanus silage diets, degradation may not be limited by microbial colonization, but rather by the ability of fibrolytic enzymes to degrade plant cell walls within this recalcitrant forage.
Collapse
|
16
|
A novel promising strain of Trichoderma evansii (WF-3) for extracellular α-galactosidase production by utilizing different carbon sources under optimized culture conditions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461624. [PMID: 25126562 PMCID: PMC4121999 DOI: 10.1155/2014/461624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022]
Abstract
A potential fungal strain of Trichoderma sp. (WF-3) was isolated and selected for the production of α-galactosidase. Optimum conditions for mycelial growth and enzyme induction were determined. Basal media selected for the growth of fungal isolate containing different carbon sources like guar gum (GG), soya bean meal (SM), and wheat straw (WS) and combinations of these carbon substrates with basic sugars like galactose and sucrose were used to monitor their effects on α-galactosidase production. The results of this study indicated that galactose and sucrose enhanced the enzyme activity in guar gum (GG) and wheat straw (WS). Maximum α-galactosidase production (213.63 UmL−1) was obtained when the basic medium containing GG is supplemented with galactose (5 mg/mL). However, the presence of galactose and sucrose alone in the growth media shows no effect. Soya meal alone was able to support T. evansii to produce maximum enzyme activity (170.36 UmL−1). The incubation time, temperature, and pH for the maximum enzyme synthesis were found to be 120 h (5 days), 28°C, and 4.5–5.5, respectively. All the carbon sources tested exhibited maximum enzyme production at 10 mg/mL concentration. Among the metal ions tested, Hg was found to be the strongest inhibitor of the enzyme. Among the chelators, EDTA acted as stronger inhibitor than succinic acid.
Collapse
|
17
|
Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 2014; 97:3231-61. [PMID: 24746124 DOI: 10.3168/jds.2013-7234] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022]
Abstract
Many opportunities exist to reduce enteric methane (CH4) and other greenhouse gas (GHG) emissions per unit of product from ruminant livestock. Research over the past century in genetics, animal health, microbiology, nutrition, and physiology has led to improvements in dairy production where intensively managed farms have GHG emissions as low as 1 kg of CO2 equivalents (CO2e)/kg of energy-corrected milk (ECM), compared with >7 kg of CO2 e/kg of ECM in extensive systems. The objectives of this review are to evaluate options that have been demonstrated to mitigate enteric CH4 emissions per unit of ECM (CH4/ECM) from dairy cattle on a quantitative basis and in a sustained manner and to integrate approaches in genetics, feeding and nutrition, physiology, and health to emphasize why herd productivity, not individual animal productivity, is important to environmental sustainability. A nutrition model based on carbohydrate digestion was used to evaluate the effect of feeding and nutrition strategies on CH4/ECM, and a meta-analysis was conducted to quantify the effects of lipid supplementation on CH4/ECM. A second model combining herd structure dynamics and production level was used to estimate the effect of genetic and management strategies that increase milk yield and reduce culling on CH4/ECM. Some of these approaches discussed require further research, but many could be implemented now. Past efforts in CH4 mitigation have largely focused on identifying and evaluating CH4 mitigation approaches based on nutrition, feeding, and modifications of rumen function. Nutrition and feeding approaches may be able to reduce CH4/ECM by 2.5 to 15%, whereas rumen modifiers have had very little success in terms of sustained CH4 reductions without compromising milk production. More significant reductions of 15 to 30% CH4/ECM can be achieved by combinations of genetic and management approaches, including improvements in heat abatement, disease and fertility management, performance-enhancing technologies, and facility design to increase feed efficiency and life-time productivity of individual animals and herds. Many of the approaches discussed are only partially additive, and all approaches to reducing enteric CH4 emissions should consider the economic impacts on farm profitability and the relationships between enteric CH4 and other GHG.
Collapse
Affiliation(s)
- J R Knapp
- Fox Hollow Consulting LLC, Columbus, OH 43201.
| | - G L Laur
- Gwinn-Sawyer Veterinary Clinic, Gwinn, MI 49841
| | - P A Vadas
- USDA Agricultural Research Service Forage Research Center, Madison, WI 53706
| | - W P Weiss
- Department of Animal Sciences, The Ohio State University, Wooster 44691
| | | |
Collapse
|
18
|
Díaz A, Ranilla MJ, Giraldo LA, Tejido ML, Carro MD. Treatment of tropical forages with exogenous fibrolytic enzymes: effects on chemical composition and in vitro rumen fermentation. J Anim Physiol Anim Nutr (Berl) 2014; 99:345-55. [PMID: 24605885 DOI: 10.1111/jpn.12175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/21/2014] [Indexed: 11/27/2022]
Abstract
The effects of three treatments of fibrolytic enzymes (cellulase from Trichoderma longibrachiatum (CEL), xylanase from rumen micro-organisms (XYL) and a 1:1 mixture of CEL and XYL (MIX) on the in vitro fermentation of two samples of Pennisetum clandestinum (P1 and P2), two samples of Dichanthium aristatum (D1 and D2) and one sample of each Acacia decurrens and Acacia mangium (A1 and A2) were investigated. The first experiment compared the effects of two methods of applying the enzymes to forages, either at the time of incubation or 24 h before, on the in vitro gas production. In general, the 24 h pre-treatment resulted in higher values of gas production rate, and this application method was chosen for a second study investigating the effects of enzymes on chemical composition and in vitro fermentation of forages. The pre-treatment with CEL for 24 h reduced (p < 0.05) the content of neutral detergent fibre (NDF) of P1, P2, D1 and D2, and that of MIX reduced the NDF content of P1 and D1, but XYL had no effect on any forage. The CEL treatment increased (p < 0.05) total volatile fatty acid (VFA) production for all forages (ranging from 8.6% to 22.7%), but in general, no effects of MIX and XYL were observed. For both P. clandestinum samples, CEL treatment reduced (p < 0.05) the molar proportion of acetate and increased (p < 0.05) that of butyrate, but only subtle changes in VFA profile were observed for the rest of forages. Under the conditions of the present experiment, the treatment of tropical forages with CEL stimulated their in vitro ruminal fermentation, but XYL did not produce any positive effect. These results showed clearly that effectiveness of enzymes varied with the incubated forage and further study is warranted to investigate specific, optimal enzyme-substrate combinations.
Collapse
Affiliation(s)
- A Díaz
- Departamento de Producción, Animal, Universidad de León, León, Spain
| | | | | | | | | |
Collapse
|
19
|
Studholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Ward JL, Beale MH, Thornton CR, Grant M. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. FRONTIERS IN PLANT SCIENCE 2013; 4:258. [PMID: 23908658 PMCID: PMC3726867 DOI: 10.3389/fpls.2013.00258] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/25/2013] [Indexed: 05/03/2023]
Abstract
Trichoderma hamatum strain GD12 is unique in that it can promote plant growth, activate biocontrol against pre- and post-emergence soil pathogens and can induce systemic resistance to foliar pathogens. This study extends previous work in lettuce to demonstrate that GD12 can confer beneficial agronomic traits to other plants, providing examples of plant growth promotion in the model dicot, Arabidopsis thaliana and induced foliar resistance to Magnaporthe oryzae in the model monocot rice. We further characterize the lettuce-T. hamatum interaction to show that bran extracts from GD12 and an N-acetyl-β-D-glucosamindase-deficient mutant differentially promote growth in a concentration dependent manner, and these differences correlate with differences in the small molecule secretome. We show that GD12 mycoparasitises a range of isolates of the pre-emergence soil pathogen Sclerotinia sclerotiorum and that this interaction induces a further increase in plant growth promotion above that conferred by GD12. To understand the genetic potential encoded by T. hamatum GD12 and to facilitate its use as a model beneficial organism to study plant growth promotion, induced systemic resistance and mycoparasitism we present de novo genome sequence data. We compare GD12 with other published Trichoderma genomes and show that T. hamatum GD12 contains unique genomic regions with the potential to encode novel bioactive metabolites that may contribute to GD12's agrochemically important traits.
Collapse
Affiliation(s)
- David J. Studholme
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Beverley Harris
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Kate Le Cocq
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Rebecca Winsbury
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Venura Perera
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Lauren Ryder
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Jane L. Ward
- Plant Biology and Crop Science, Rothamsted ResearchHarpenden, UK
| | - Michael H. Beale
- Plant Biology and Crop Science, Rothamsted ResearchHarpenden, UK
| | - Chris R. Thornton
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| | - Murray Grant
- Biosciences, Molecular Plant Pathology, College of Life and Environmental Sciences, University of ExeterExeter, UK
| |
Collapse
|
20
|
Effects of an exogenous proteolytic enzyme on growth performance of beef steers and in vitro ruminal fermentation in continuous cultures1. ACTA ACUST UNITED AC 2012. [DOI: 10.15232/s1080-7446(15)30385-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
González-García E, Albanell E, Caja G, Casals R. In vitrofermentative characteristics of ruminant diets supplemented with fibrolytic enzymes and ranges of optimal endo-β-1,4-glucanase activity. J Anim Physiol Anim Nutr (Berl) 2010; 94:250-63. [DOI: 10.1111/j.1439-0396.2008.00903.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Saili T, Marsetyo, Poppi DP, Isherwood P, Nafiu L, Quigley SP. Effect of treatment of cocoa-pods with Aspergillus niger on liveweight gain and cocoa-pod intake of Bali (Bos sondaicus) cattle in South-East Sulawesi. ANIMAL PRODUCTION SCIENCE 2010. [DOI: 10.1071/an09193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cocoa-pods, a by-product of the cocoa industry, could potentially be used as a feed resource for ruminants in eastern Indonesia. However, little is known regarding the optimal amount to be included in the diet or the effect of treatment with Aspergillus niger on cocoa-pod quality. In this experiment the effect of rate of inclusion (0 or 10 g DM/kg liveweight.day or ad libitum) of A. niger-treated or untreated cocoa-pods in the diet on intake and liveweight gain of Bali cattle (Bos sondaicus) was investigated. Ad libitum intake of cocoa-pods was greater when they were treated with A. niger (17.1 ± 0.07 g DM/kg liveweight.day; mean ± s.e.m.) compared with untreated cocoa-pods (13.9 ± 0.19 g DM/kg liveweight.day) when offered as the sole component of the diet. The digestibility of A. niger-treated cocoa-pods (448.9 ± 23.7 g/kg) was not different to untreated cocoa-pods (422.9 ± 13.9 g/kg) when fed ad libitum, which was lower than native grass (527.2 ± 10.7 g/kg). Animals offered A. niger-treated cocoa-pods lost less liveweight than animals offered untreated cocoa-pods when offered ad libitum (–0.104 ± 0.02 and –0.280 ± 0.02 kg/day, respectively), and grew faster when included in the diet at 10 g DM/kg liveweight.day (0.233 ± 0.02 and 0.129 ± 0.02 kg/day, respectively). In conclusion, in areas where cocoa plantations exist, cocoa-pods may be a useful feed resource for ruminants when fed at low levels of inclusion in the diet. The treatment of cocoa-pods with A. niger will result in increased liveweight gain. However, it is unlikely such treatments will be adopted by small-holder farmers due to the increased requirements for inputs, such as time, labour, funds, equipment, and technical skills.
Collapse
|
23
|
Hernández-Díaz R, Pimentel-González DJ, Figueira AC, Viniegra-González G, Campos-Montiel RG. Influence of an aerobic fungus grown on solid culture on ruminal degradability and on a mixture culture of anaerobic cellulolytic bacteria. J Anim Physiol Anim Nutr (Berl) 2009; 94:330-7. [PMID: 19663984 DOI: 10.1111/j.1439-0396.2008.00912.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the effect of a solid fungal culture of Aspergillus niger (An) grown on coffee pulp on the in situ ruminal degradability (RD) of corn stover was evaluated. In addition, the effect of its extracts on the in vitro dry matter disappearance (IVDMD) and on a mixed culture of anaerobic cellulolytic bacteria (MCACB) was also investigated. The solid ferment was a crude culture of An, grown on coffee pulp. Regarding in situ RD, a significant difference (p < 0.05) was found between treatment with 200 g/day of the solid culture and control (no solid culture added) on dry matter, crude protein and neutral detergent fibre on RD. All the water extracts (pH 4, 7 and 10) enhanced IVDMD and stimulated the cellulolytic activity on a MCACB. Ultrafiltration results showed that active compounds with a molecular weight lower than 30 kDa were responsible for the effect on MCACB. Such results suggest that the effects of the solid An culture in RD are related to the presence of water soluble compounds having a molecular weight lower than 30 kDa.
Collapse
Affiliation(s)
- R Hernández-Díaz
- ICAP, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, Rancho Universitario, Tulancingo, Hgo., México
| | | | | | | | | |
Collapse
|
24
|
Effect of inoculated corn silage on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC). Anim Feed Sci Technol 2009. [DOI: 10.1016/j.anifeedsci.2009.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Giraldo LA, Tejido ML, Ranilla MJ, Ramos S, Carro MD. Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass hay-based diet1. J Anim Sci 2008; 86:1617-23. [DOI: 10.2527/jas.2007-0343] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Giraldo L, Tejido M, Ranilla M, Carro M. Effects of exogenous fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage:concentrate ratios. Anim Feed Sci Technol 2008. [DOI: 10.1016/j.anifeedsci.2007.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|