1
|
Zhang Y, Liu J, Li M, Dong Y, Li Z, Yi D, Wu T, Wang L, Zhao D, Hou Y. Zinc Oxide Administration Relieves the Diarrhea of ETEC K88-Infected Piglets by Reducing Ileal Apoptosis and Maintaining Gut Microbial Balance. Vet Sci 2025; 12:115. [PMID: 40005874 PMCID: PMC11861302 DOI: 10.3390/vetsci12020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The impact of ZnO as a feed additive on growth-performance and intestinal function of Enterotoxigenic Escherichia coli (ETEC) K88-infected piglets remains unclear. Fecal scores of piglets in ETEC group were significantly increased compared to control group. ETEC K88 significantly damages the small intestine, including a reduction in villus height in the jejunum, duodenum, and ileum, and a decrease in total superoxide dismutase activity in the jejunum and catalase activity in the ileum and jejunum. Compared to control group, ETEC K88 infection significantly elevated the mRNA level of gene IL-1β and the level of ileal epithelial cell apoptosis. ZnO administration significantly alleviated these negative effects and improved the antioxidative capability of the ileum. Moreover, ZnO supplementation alleviated the imbalance of gut microbiota by restoring the reduced amount of Enterococcus and Lactobacillus in the jejunum, Clostridium in the ileum, and Lactobacillus in the cecum, as well as the increased amount of total eubacteria in the ileum and Enterococcus in the cecum induced by the ETEC K88 infection. In conclusion, ZnO administration can reduce the diarrhea of piglets infected with ETEC K88 by reducing the structural damage of the intestine, attenuating intestinal oxidative stress and epithelial cell apoptosis, and modulating the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430024, China
| |
Collapse
|
2
|
Kargar S, Moradi B, Kanani M, Albenzio M, Caroprese M, Zamiri MJ, de Castro ÍRR, Marcondes MI. Pasteurized waste milk vs. milk replacer at the same crude protein:metabolizable energy ratio with different energy sources (fat vs. lactose) to pre-weaning Holstein calves: Effects on growth performance, feeding behavior, and health. PLoS One 2025; 20:e0317405. [PMID: 39820892 PMCID: PMC11737732 DOI: 10.1371/journal.pone.0317405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
The improved growth performance of calves at weaning results from an effective pre-weaning feeding strategy. The type and pasteurization process of liquid feed are among the most variable feeding practices affecting calves' growth and health. In previous studies that compared waste milk (WM) vs. milk replacer (MR), little consideration has been given to the variations in chemical composition and feeding behavior between them, and there has been a lack of justification for the crude protein: metabolizable energy (CP:ME) ratio adopted. Hence, this study aimed to evaluate the effects of feeding pasteurized WM or MR differing in energy source (fat vs. lactose, respectively) with similar CP:ME ratio on intake, growth, feeding behavior, and health of newborn Holstein calves. Thirty-two male calves (4-d-old; 40.0 ± 0.58 kg BW) were assigned to the trial and randomly allocated to each liquid feed diet (WM or MR). Calves were housed in individual pens with free access to starter feed and fresh water. Calves were weaned on d 61 and assessed until d 101 as the postweaning period. WM-fed calves had greater total nutrient intake (DM, CP, EE, and ME), weight gain, final BW, skeletal growth parameters, and feed efficiency (d 30). Calves WM-fed sorted less against particles retained on the 2.36-mm sieve but more against particles retained on the sieve of 0.6 mm. In WM-fed calves, the sorting index decreased for feedstuff retaining on the bottom pan compared with MR-fed calves. Irrespective of the type of the liquid feed, all calves sorted for particles retaining on the sieve of 4.75 mm and the bottom pan, and against the particles that were retained on the sieves of 2.36- (MR-fed calves only), 1.18- and 0.6-mm. Starter feed nutrient intake and particle size intake from the sieves of 4.75-, 2.36-, and 1.18-mm increased in WM- vs. MR-fed calves. Eating rate and meal size but not meal frequency and length were greater in WM-fed calves, leading to higher pre- and post-weaning starter feed intake. Calves WM-fed spent less time eating and standing but more time ruminating and lying than MR-fed calves. Calves WM-fed had a lower likelihood of having elevated general appearance (score ≥2; hazard ratio = 2.79), diarrhea (score ≥3; hazard ratio = 1.35), and pneumonia (hazard ratio = 4.77). Calves WM-fed experienced shorter days with elevated general appearance, diarrhea, and pneumonia. Overall, feeding WM led to increased starter feed intake by boosting the eating rate and meal size, promoting greater growth than MR. Additionally, compared with MR, WM feeding increased time spent ruminating and lying and reduced susceptibility to diarrhea and pneumonia.
Collapse
Affiliation(s)
- Shahryar Kargar
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Borhan Moradi
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Meysam Kanani
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, Foggia, Italy
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, Foggia, Italy
| | - Mohammad Javad Zamiri
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Marcos Inácio Marcondes
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Jiang Z, Yang M, Su W, Mei L, Li Y, Guo Y, Li Y, Liang W, Yang B, Huang Z, Wang Y. Probiotics in piglet: from gut health to pathogen defense mechanisms. Front Immunol 2024; 15:1468873. [PMID: 39559358 PMCID: PMC11570287 DOI: 10.3389/fimmu.2024.1468873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Various problems and obstacles are encountered during pig farming, especially the weaning phase when switching from liquid to solid feed. Infection by pathogenic bacteria causes damage to the intestinal barrier function of piglets, disrupts the balance of the intestinal microbiota, and destroys the chemical, mechanical, and immune barriers of the intestinal tract, which is one of the main causes of gut inflammation or gut diseases in piglets. The traditional method is to add antibiotics to piglet diets to prevent bacterial infections. However, long-term overuse of antibiotics leads to bacterial resistance and residues in animal products, threatening human health and causing gut microbiota dysbiosis. In this context, finding alternatives to antibiotics to maintain pre- and post-weaning gut health in piglets and prevent pathogenic bacterial infections becomes a real emergency. The utilization of probiotics in piglet nutrition has emerged as a pivotal strategy to promote gut health and defend against pathogenic infections, offering a sustainable alternative to traditional antibiotic usage. This review introduces recent findings that underscore the multifaceted roles of probiotics in enhancing piglet welfare, from fortifying the gut barrier to mitigating the impacts of common bacterial pathogens. Meanwhile, this study introduces the functions of probiotics from different perspectives: positive effects of probiotics on piglet gut health, protecting piglets against pathogen infection, and the mechanisms of probiotics in preventing pathogenic bacteria.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Mingzhi Yang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Mei
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yuqi Li
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yuguang Guo
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yangyuan Li
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Weifan Liang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Bo Yang
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Zhiyi Huang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liang J, Wang S, Kou S, Chen C, Zhang W, Nie C. Clostridium butyricum Prevents Diarrhea Incidence in Weaned Piglets Induced by Escherichia coli K88 through Rectal Bacteria-Host Metabolic Cross-Talk. Animals (Basel) 2024; 14:2287. [PMID: 39199821 PMCID: PMC11350811 DOI: 10.3390/ani14162287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the effects of Clostridium butyricum (C. butyricum) on the prevention of the diarrhea rates and growth performances of weaned piglets induced by Escherichia coli K88 (E. coli K88). Twenty-four weaned piglets (6.92 ± 0.11 kg) were randomly assigned to one of three treatment groups for a period of 21 days. Each group consisted of eight pigs, with each pig being housed in an individual pen. Group I received the control diet along with normal saline, Group II received the control diet along with E. coli K88, and Group III received the control diet supplemented with 5 × 108 CFU/kg of C. butyricum and E. coli K88. We examined alterations in rectal microbiota and metabolites, analyzed the incidence of diarrhea, and investigated the interactions between microbiota and metabolites through the application of Illumina MiSeq sequencing and liquid chromatography-mass spectrometry. The results showed that, from days 14 to 21, the diarrhea incidence in Group III decreased significantly by 83.29% compared to Group II (p < 0.05). Over the entire experimental duration, the average daily feed intake of Group III decreased significantly by 11.13% compared to Group I (p < 0.05), while the diarrhea incidence in Group III decreased by 71.46% compared to Group II (p < 0.05). The predominant microbial flora in the rectum consisted of Firmicutes (57.32%), Bacteroidetes (41.03%), and Proteobacteria (0.66%). Administering E. coli K88 orally can elevate the relative abundance of Megasphaera (p < 0.05). Conversely, the supplementation of C. butyricum in the diet reduced the relative abundance of Megasphaera (p < 0.05), while increasing the relative abundance of unclassified_f_Lachnospiraceae (p < 0.05). Rectal metabolomics analysis revealed that supplementing C. butyricum in the feed significantly altered the amino acids and fatty acids of the piglets infected with E. coli K88 (p < 0.05). The correlation analysis showed that the occurrence of diarrhea was inversely related to adipic acid (p < 0.05) and positively associated with (5-hydroxyindol-3-YL) acetic acid and L-aspartic acid (p < 0.05). Prevotella_1 exhibited a negative correlation with octadecanoic acid (p < 0.05). Prevotellaceae_UCG-005 showed a negative correlation with (5-hydroxyindol-3-YL) acetic acid (p < 0.05). The findings from this research study aid in probiotic development and the enhancement of healthy growth in weaned piglets.
Collapse
Affiliation(s)
- Jing Liang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Sihu Wang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shasha Kou
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| |
Collapse
|
5
|
Zou D, Yang Y, Ji F, Lv R, Wu H, Hou G, Xu T, Zhou H, Hu C. Polystyrene Microplastics Causes Diarrhea and Impairs Intestinal Angiogenesis through the ROS/METTL3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39012162 DOI: 10.1021/acs.jafc.4c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Due to the immature intestinal digestion, immunity, and barrier functions, weaned infants are more susceptible to pathogens and develop diarrhea. Microplastics (MPs), pervasive contaminants in food, water, and air, have unknown effects on the intestinal development of weaned infants. This study explored the impact of polystyrene MPs on intestinal development using a weaned piglet model. Piglets in the control group received a basal diet, and those in the experimental groups received a basal diet contaminated with 150 mg/kg polystyrene MPs. The results showed that exposure to polystyrene MPs increased the diarrhea incidence and impaired the intestinal barrier function of weaned piglets. Notably, the exposure led to oxidative stress and inflammation in the intestine. Furthermore, polystyrene MPs-treated weaned piglets showed a reduced level of intestinal angiogenesis. Mechanistically, polystyrene MPs suppressed methyltransferase-like 3 (METTL3) expression by increasing reactive oxygen species (ROS) production, consequently destabilizing angiogenic factors' mRNA and hindering intestinal angiogenesis. In summary, polystyrene MPs contamination in the diet increases diarrhea and compromises intestinal angiogenesis through the ROS/METTL3 pathway, demonstrating their toxic effects on the intestine health of weaned infants.
Collapse
Affiliation(s)
- Dongbin Zou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Life Sciences, Hainan University, Haikou 571101, China
| | - Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
6
|
Ye C, Chen Y, Yu R, Zhao M, Yin R, Qiu Y, Fu S, Liu Y, Wu Z. Baicalin-aluminum complex on the regulation of IPEC-1 infected with enterotoxigenic Escherichia coli. Heliyon 2024; 10:e33038. [PMID: 39027442 PMCID: PMC11254522 DOI: 10.1016/j.heliyon.2024.e33038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the main bacterial cause of diarrhea in weaned piglets. Baicalin-aluminum (BA) complex is the main active ingredient of Scutellaria baicalensis Georgi extracted-aluminum complex, which has been used to treat diarrhea in weaning piglets, however the underlying mechanism remains unclear. To investigate the effects of the BA complex on the regulation of porcine intestinal epithelial (IPEC-1) cells infected with ETEC, IPEC-1 cells were incubated with an ETEC bacterial strain at a multiplicity of infection of 1 for 6 h and then treated with different concentrations of the BA complex for 6 h. ETEC infection increased the levels of cAMP and cGMP, upregulated CFTR (cystic fibrosis transmembrane conductance regulator) mRNA, and downregulated NHE4 mRNA in IPEC-1 cells. Treatment with the BA complex inhibited ETEC adhesion and the production of cAMP and cGMP, reduced CFTR mRNA expression, and increased NHE4 mRNA expression. Overall, the BA complex weakened the adhesion of ETEC to IPEC-1 cells, and inhibited cAMP/cGMP-CFTR signaling in IPEC-1 cells.
Collapse
Affiliation(s)
- Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Yuqian Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Ruixue Yu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Ming Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Ronghua Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430000, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430000, PR China
| |
Collapse
|
7
|
Li Y, Lu Y, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Effect of cordyceps militaris on growth performance, antioxidant capacity, and intestinal epithelium functions in weaned pigs. J Anim Sci 2024; 102:skae194. [PMID: 39001695 PMCID: PMC11322740 DOI: 10.1093/jas/skae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/13/2024] [Indexed: 08/15/2024] Open
Abstract
To explore the effects of cordyceps militaris (CM) on growth performance and intestinal epithelium functions, 180 weaned pigs were randomly assigned into 5 treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs were fed with basal diet (control) or basal diet supplemented with 100, 200, 400, and 800 mg/kg CM. The trial lasted for 42 d, and pigs from the control and optimal-dose groups (based on growth performance) were picked for blood and tissue collection (n = 6). Results showed that CM elevated the average daily gain (ADG) and decreased the ratio of feed intake to gain (F:G) in the weaned pigs (P < 0.05). CM supplementation at 100 mg/kg improved the digestibilities of dry matter (DM), crude protein (CP), and gross energy (GE) (P < 0.05). CM not only increased the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) but also increased the concentration of interleukin-10 (IL-10) in serum (P < 0.05). The serum concentrations of malondialdehyde (MDA), d-lactate, and diamine oxidase (DAO) were reduced by CM (P < 0.05). Interestingly, CM elevated the villus height and the ratio of villus height to crypt depth in the duodenum and jejunum and increased the activities of duodenal sucrase and maltase (P < 0.05). Moreover, CM elevated the expression levels of tight-junction proteins ZO-1, claudin-1, and occluding, as well as critical functional genes such as the fatty acid transport protein (FATP1), cationic amino acid transporter 1 (CAT1), and NF-E2-related factor 2 (Nrf2) in the duodenum and jejunum (P < 0.05). Importantly, CM increased the concentrations of acetic acid and butyric acid, and elevated the abundances of Bacillus and Lactobacillus in the cecum and colon, respectively (P < 0.05). These results indicated potential benefits of CM in improving the growth of weaned pigs, and such effect may be tightly associated with improvement in antioxidant capacity and intestinal epithelium functions.
Collapse
Affiliation(s)
- YanPing Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Yang Lu
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, People’s Republic of China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, People’s Republic of China
| |
Collapse
|
8
|
Zhang Y, Tian X, Dong Y, Li R, Shen M, Yi D, Wu T, Wang L, Zhao D, Hou Y. Bacillus coagulans prevents the decline in average daily feed intake in young piglets infected with enterotoxigenic Escherichia coli K88 by reducing intestinal injury and regulating the gut microbiota. Front Cell Infect Microbiol 2023; 13:1284166. [PMID: 38035331 PMCID: PMC10686232 DOI: 10.3389/fcimb.2023.1284166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC), an important intestinal pathogen, poses a significant threat to the intestinal health of piglets. Bacillus coagulans (BC), a potential feed additive, can improve the intestinal function of piglets. However, the effects of BC on growth performance and intestinal function in ETEC-infected piglets are still unclear. In this study, 24 7-day-old piglets were randomly assigned to three treatment groups: control group (fed a basal diet), ETEC group (fed a basal diet and challenged with ETEC K88) and BC+ETEC group (fed a basal diet, orally administered BC, challenged with ETEC K88). During Days 1-6 of the trial, piglets in the BC+ETEC group were orally administered BC (1×108CFU/kg). On Day 5 of the trial, piglets in the ETEC and BC+ETEC groups were orally administered ETEC K88 (5×109CFU/piglet). Blood, intestinal tissue, and content samples were collected from the piglets on Day 7 of the trial. Results The average daily feed intake in the ETEC group was significantly reduced compared to that of the control group. Further research revealed that ETEC infection significantly damaged the structure of the small intestine. Compared to the control group, the villus height and surface area of the jejunum, the ratio of villus height to crypt depth in the duodenum and jejunum, and the activities of catalase and total superoxide dismutase in the jejunum were significantly reduced. Additionally, the levels of myeloperoxidase in the jejunum, malondialdehyde in the plasma and jejunum, and intestinal epithelial apoptosis were significantly increased in the ETEC group. However, BC supplementation had significantly mitigated these negative effects in the BC+ETEC group by Day 7 of the trial. Moreover, BC supplementation improved the gut microbiota imbalance by reversing the decreased numbers of Enterococcus, Clostridium and Lactobacillus in jejunum and Escherichia coli, Bifidobacterium and Lactobacillus in the colon, as well as the increased number of Escherichia coli in the jejunum induced by ETEC K88. Conclusions Overall, BC supplementation reduced the decline in average daily feed intake in ETEC K88-infected piglets by attenuating intestinal epithelial apoptosis and oxidative stress and regulating the gut microbiota. This suggests that BC may be used to prevent intestinal infections caused by ETEC in piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
9
|
Zha A, Tu R, Qi M, Wang J, Tan B, Liao P, Wu C, Yin Y. Mannan oligosaccharides selenium ameliorates intestinal mucosal barrier, and regulate intestinal microbiota to prevent Enterotoxigenic Escherichia coli -induced diarrhea in weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115448. [PMID: 37696080 DOI: 10.1016/j.ecoenv.2023.115448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common diarrheal pathogen in humans and animals. To prevent and treat ETEC induced diarrhea, we synthesized mannan oligosaccharide selenium (MOSS) and studied its beneficial effect on ETEC-induced diarrhea. A total of 32 healthy weaned piglets (6.69 ± 0.01 kg) were randomly divided into four groups: NC group (Basal diet), MOSS group (0.4 mg/kg MOSS supplemented diet), MOET group (0.4 mg/kg MOSS supplemented diet + ETEC treatment), ETEC group (ETEC treatment). NC and ETEC group fed with basal diet, MOSS and MOET group fed with the MOSS supplemented diet. On the 8th and 15th day of the experiment, MOET and ETEC group were gavaged with ETEC, and NC and MOSS group were gavaged with stroke-physiological saline solution. Our data showed that dietary MOSS supplementation increased average daily gain (ADG) and average daily feed intake (ADFI) and significantly decreased diarrhea index and frequency in ETEC-treated piglets. MOSS did not affect the α diversity and β diversity of ileal microbial community, but it significantly decreased the proportion of lipopolysaccharide biosynthesis in ileal microbial community. MOSS supplementation regulated colonic microbiota community composition, which significantly increased carbohydrate metabolism, and inhibited lipopolysaccharide biosynthesis pathway in colonic microbial community. Moreover, MOSS significantly decreased inflammatory stress, and oxidative stress in ETEC treated piglets. Furthermore, dietary MOSS supplementation significantly decreased intestinal barrier permeability, and alleviated ETEC induced intestinal mucosa barrier irritation. In conclusion, our study showed that dietary MOSS supplementation ameliorated intestinal mucosa barrier, and regulated intestinal microbiota to prevent ETEC induced diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Ruiqi Tu
- College of veterinary medicine, Northwest A & F University, Yangling 712100, China
| | - Ming Qi
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Jing Wang
- College of animal science and technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of animal science and technology, Hunan Agricultural University, Changsha 410128, China
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Chenchen Wu
- College of veterinary medicine, Northwest A & F University, Yangling 712100, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of animal science and technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Warner AJ, Tokach MD, Carrender B, Amachawadi RG, Labbé A, Heuser W, Coble K, DeRouchey JM, Woodworth JC, Goodband RD, Kalam R, Shi X, Nagaraja TG, Gebhardt JT. Evaluation of a Lactococcus lactis-based dried fermentation product administered through drinking water on nursery pig growth performance, fecal Escherichia coli virulence genes and pathotypes, antibiotic usage, and mortality. Transl Anim Sci 2023; 7:txad093. [PMID: 37649650 PMCID: PMC10465268 DOI: 10.1093/tas/txad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
A total of 34,749 pigs were used in two experiments to evaluate the effects of a postbiotic dried fermentation product (DFP) administered through drinking water on nursery pig growth performance, antibiotic injection frequency, morbidity, mortality, fecal consistency, and characterization of fecal Escherichia coli. The DFP is composed of bioactive molecules derived from Lactococcus lactis. In Exp. 1, 350 barrows (DNA Line 200 × 400; initial body weight [BW] 6.1 ± 0.01 kg) were used in a 42-d study with five pigs per pen and 35 pens per treatment. The DFP was supplied for 14 d at a target dosage of 24 mg/kg BW using a water medicator at a 1:128 dilution. On days 7 and 14, fecal samples were collected for dry matter (DM) and to determine, by a multiplex polymerase chain reaction (PCR) assay, prevalence of 11 virulence genes characteristic of E. coli pathotypes. There was no evidence (P > 0.10) for differences for growth, incidence of diarrhea, number of antibiotic injections, removals, or fecal DM. On both fecal collection days, E. coli virulence genes were present with day 7 samples positive for genes that encode for hemolysins (hlyA, exhA), intimin (eae), and enteroaggregative heat-stable enterotoxin (astA). Prevalence of enterotoxin genes (elt, estA, estB, astA) increased on day 14, but DFP had no effects on the prevalence of any of the virulence genes. A total of 32 out of 72 E. coli isolates were identified as enterotoxigenic pathotype and all except one were from day 14 fecal samples. Fourteen isolates were positive for F4 fimbria and one isolate was positive for F4 and F18 fimbriae. In Exp. 2, 34,399 nursery pigs (initially 5.6 kg) were used in 20 nursery barns with 10 barns per treatment (control or DFP). The target dosage of the DFP for the first 14 d was 35 mg/kg BW. Following the 14-d supplementation period, pigs continued to be monitored for approximately 31 d. There was no evidence (P > 0.05) for the DFP to influence the overall percentage of pigs that died or growth performance. From days 0 to 14, providing the DFP reduced (P < 0.05) the percentage of pigs that were euthanized. However, providing the DFP increased (P < 0.05) the overall percentage of pigs that were euthanized and total mortality. For the number of antibiotic injections (treatment interventions), providing the DFP reduced the number of injections for the common period (P < 0.001) and overall (P = 0.002). These results indicate that the DFP did not influence growth performance but providing the DFP in Exp. 2 led to increased total nursery pig mortality.
Collapse
Affiliation(s)
- Alan J Warner
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | | | - Kyle Coble
- JBS Live Pork, LLC, Greeley, CO 65101, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Ramya Kalam
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
11
|
Zeng Y, Li R, Dong Y, Yi D, Wu T, Wang L, Zhao D, Zhang Y, Hou Y. Dietary Supplementation with Puerarin Improves Intestinal Function in Piglets Challenged with Escherichia coli K88. Animals (Basel) 2023; 13:1908. [PMID: 37370417 DOI: 10.3390/ani13121908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this study was to investigate the effect of puerarin supplementation on the growth performance and intestinal function of piglets challenged with enterotoxigenic Escherichia coli (ETEC) K88. Twenty-four ternary crossbred piglets were randomly assigned to three treatment groups: control group, ETEC group (challenged with ETEC K88 on day 8), and ETEC + Puerarin group (supplemented with 5 mg/kg puerarin and challenged with ETEC K88 on day 8). All piglets were orally administered D-xylose (0.1 g/kg body weight) on day 10, and blood samples were collected after 1 h. Subsequently, piglets were killed and intestinal samples were collected for further analysis. The results showed that puerarin supplementation significantly decreased the adverse effects of ETEC K88-challenged piglets; significantly improved growth performance; increased the number of Bifidobacterium in the colon and Lactobacillus in the jejunum, cecum and colon; decreased the number of Escherichia coli in the jejunum and cecum; reduced the hydrogen peroxide content in the jejunum and myeloperoxidase activity in the jejunum and ileum; and increased the activities of catalase and superoxide dismutase in the jejunum and ileum. In addition, puerarin supplementation alleviated ETEC K88-induced intestinal injury in piglets, significantly downregulated the mRNA level of Interleukin-1β and upregulated the mRNA levels of intercellular cell adhesion molecule-1, myxovirus resistance protein 1, myxovirus resistance protein 2, and guanylate-binding protein-1 in the small intestine of piglets. In conclusion, dietary supplementation with puerarin could attenuate ETEC K88-induced intestinal injury by increasing the antioxidant and anti-inflammatory capacity and the number of beneficial intestinal bacteria in piglets.
Collapse
Affiliation(s)
- Yitong Zeng
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi Dong
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tao Wu
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Zhao
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Huang J, Qin W, Xu B, Sun H, Jing F, Xu Y, Zhao J, Chen Y, Ma L, Yan X. Rice bran oil supplementation protects swine weanlings against diarrhea and lipopolysaccharide challenge. J Zhejiang Univ Sci B 2023; 24:430-441. [PMID: 37190892 PMCID: PMC10186138 DOI: 10.1631/jzus.b2200565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/27/2023] [Indexed: 05/17/2023]
Abstract
Early weaned piglets suffer from oxidative stress and enteral infection, which usually results in gut microbial dysbiosis, serve diarrhea, and even death. Rice bran oil (RBO), a polyphenol-enriched by-product of rice processing, has been shown to have antioxidant and anti-inflammatory properties both in vivo and in vitro. Here, we ascertained the proper RBO supplementation level, and subsequently determined its effects on lipopolysaccharide (LPS)-induced intestinal dysfunction in weaned piglets. A total of 168 piglets were randomly allocated into four groups of seven replicates (42 piglets each group, (21±1) d of age, body weight (7.60±0.04) kg, and half males and half females) and were given basal diet (Ctrl) or basal diet supplemented with 0.01% (mass fraction) RBO (RBO1), 0.02% RBO (RBO2), or 0.03% RBO (RBO3) for 21 d. Then, seven piglets from the Ctrl and the RBO were treated with LPS (100 μg/kg body weight (BW)) as LPS group and RBO+LPS group, respectively. Meanwhile, seven piglets from the Ctrl were treated with the saline vehicle (Ctrl group). Four hours later, all treated piglets were sacrificed for taking samples of plasma, jejunum tissues, and feces. The results showed that 0.02% was the optimal dose of dietary RBO supplementation based on diarrhea, average daily gain, and average daily feed intake indices in early weaning piglets. Furthermore, RBO protected piglets against LPS-induced jejunal epithelium damage, which was indicated by the increases in villus height, villus height/crypt depth ratio, and Claudin-1 levels, as well as a decreased level of jejunal epithelium apoptosis. RBO also improved the antioxidant ability of LPS-challenged piglets, which was indicated by the elevated concentrations of catalase and superoxide dismutase, and increased total antioxidant capacity, as well as the decreased concentrations of diamine oxidase and malondialdehyde in plasma. Meanwhile, RBO improved the immune function of LPS-challenged weaned piglets, which was indicated by elevated immunoglobulin A (IgA), IgM, β-defensin-1, and lysozyme levels in the plasma. In addition, RBO supplementation improved the LPS challenge-induced dysbiosis of gut microbiota. Particularly, the indices of antioxidant capacity, intestinal damage, and immunity were significantly associated with the RBO-regulated gut microbiota. These findings suggested that 0.02% RBO is a suitable dose to protect against LPS-induced intestinal damage, oxidative stress, and jejunal microbiota dysbiosis in early weaned piglets.
Collapse
Affiliation(s)
- Juncheng Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China
| | - Wenxia Qin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China
| | - Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China
| | - Haihui Sun
- Yichun Dahaigui Life Science Co., Ltd., Yichun 336000, China
| | - Fanghua Jing
- Yichun Dahaigui Life Science Co., Ltd., Yichun 336000, China
| | - Yunzheng Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China
| | - Jianan Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China
| | - Yuwen Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China.
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan 430070, China.
| |
Collapse
|
13
|
Wu T, Zhang Q, Xu H, Li P, Zhao D, Wang L, Yi D, Hou Y. Protective effects of α-terpineol and Bacillus coagulans on intestinal function in weaned piglets infected with a recombinant Escherichia coli expressing heat-stable enterotoxin STa. Front Vet Sci 2023; 10:1118957. [PMID: 36846248 PMCID: PMC9950252 DOI: 10.3389/fvets.2023.1118957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
This study was to investigate the impact of α-terpineol (α-TPN) and Bacillus coagulans (B. coagulans) on weaned piglets infected with Enterotoxigenic Escherichia coli (ETEC). Thirty-two weaned piglets were assigned into four treatments: Control group (basal diet), STa group (basal diet + 1 × 1010 CFU ETEC), TPN+STa group (basal diet + 0.01% α-TPN + ETEC) and BC+STa group (basal diet + 2 × 106 CFU B. coagulans + ETEC). Result showed that both α-TPN and B. coagulans could alleviate diarrhea (decreased diarrhea rate), intestinal injury (improved intestinal morphology, decreased blood I-FABP concentration, increased protein expression level of Occludin), oxidative stress (increased GSH-Px activity and decreased MDA content) and inflammation (altered concentration of TNF-α, IL-1β in blood) induced by ETEC infection. Mechanism investigation further demonstrated that the beneficial effects of α-TPN and B. coagulans supplementation upon ETEC infection may be achieved by decreasing the protein expression levels of caspase-3, AQP4 and p-NF-κB and decreasing the gene expression levels of INSR and PCK1. Besides, α-TPN supplementation could specifically decreased expression level of gene b 0,+ AT, and B. coagulans supplementation could specifically decreased expression level of gene AQP10 and protein HSP70 in ETEC-infected weaned piglets. These results suggested that α-TPN and B. coagulans can be used as antibiotic alternatives against ETEC infection in weaned piglets.
Collapse
Affiliation(s)
| | | | - Haiwang Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Centre of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Centre of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Centre of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Centre of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Centre of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | | |
Collapse
|
14
|
Wei Z, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Effect of 3-caffeoylquinic acid on growth performance, nutrient digestibility, and intestinal functions in weaned pigs. J Anim Sci 2023; 101:skad234. [PMID: 37422911 PMCID: PMC10393208 DOI: 10.1093/jas/skad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023] Open
Abstract
Phenolic acid like with the 3-caffeoylquini acid (3-CQA) is formed by caffeic acid and qunic acid. This study was conducted to explore the effect of 3-CQA on growth performance and intestinal functions in weaned pigs. A total of 180 weaned pigs were randomly allocated into five treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs in the control group (CON) were fed with basal diet (BD), and the others in the experimental groups were fed with BD and supplemented with 12.5, 25, 50, and 100 mg/kg 3-CQA. On day 43, the blood sample-collected pigs in the CON and optimal-dose group (only based on growth performance) were picked, and housed in metabolism cages (a total of 12 pigs, N = 6). 3-CQA increased the feed efficiency from days 21 to 42 of the trial and throughout the trial (P < 0.05). 3-CQA increased the serum concentrations of total protein, albumin, and total cholesterol (P < 0.05). Moreover, 3-CQA supplementation at 25 mg/kg increased the apparent digestibility of DM, energy, and ash (P < 0.05). Interestingly, 3-CQA decreased the crypt depth but increased the ratio of villus height to crypt depth in the jejunum and ileum (P < 0.05). Moreover, 3-CQA also increased the activities of sucrase, lactase, and catalase in the jejunal mucosa, and increased the activities of alkaline phosphatase and superoxide dismutase in the ileal mucosa (P < 0.05). 3-CQA also increased the abundance of secretory immunoglobulin A in the ileal mucosa (P < 0.05). Importantly, 3-CQA not only elevated the expression levels of critical functional genes such as the zonula occludens-1 , occludin, solute carrier family 7 , and nuclear factor erythroid 2-related factor 2 (Nrf2) in the duodenum but also elevated the expression levels of divalent metal transporter-1 and Nrf2 in the jejunum (P < 0.05). These results suggested a positive effect of 3-CQA supplementation on the growth and intestinal functions of weaned pigs. The mechanisms of action may be associated with elevated anti-oxidant capacity and improved intestinal barrier functions.
Collapse
Affiliation(s)
- Zixiang Wei
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, P. R. China
| |
Collapse
|
15
|
Li C, Zhao P, Shao Q, Chen W, Huang S, Wang X, Zhang C, He L. Effects of dietary Glycyrrhiza polysaccharide on growth performance, blood parameters and immunity in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:136-146. [PMID: 35247286 DOI: 10.1111/jpn.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to evaluate the effects of dietary Glycyrrhiza polysaccharide (GCP) on growth performance, blood parameters and immunity in weaned piglets. A total of 240 (10.33 ± 0.62 kg body weight) 35-day-old (Duroc × Landrace × White) weaned piglets were randomly assigned to four dietary treatments, with six replicate pens per treatment and 10 piglets per pen (five males and five females). The dietary treatments continued for 21 days and comprised a basal diet supplemented with 0 (control group), 500, 1000 and 2000 mg/kg GCP. The results showed that the inclusion of 1000 and 2000 mg/kg GCP increased the average daily gain and decreased the feed conversion rate compared with the control group (p < 0.05). The piglets treated with 500 and 1000 mg/kg GCP had a lower diarrhoeal incidence than the control group (p < 0.05). Moreover, supplementation with 1000 mg/kg GCP increased the counts of white blood cells, neutrophils, red blood cells, and platelets, and elevated alkaline phosphatase, total protein, globulin, glucose, triglyceride, immunoglobulin A, immunoglobulin G, and total antioxidant capacity levels (p < 0.05), and decreased malondialdehyde content compare with the control group (p < 0.05). In addition, relative to the control group, piglets fed 500 and 1000 mg/kg GCP had significantly lower expression of interleukin-6 mRNA in spleen (p < 0.05). Our results indicate that dietary supplementation with GCP can improve growth performance, blood parameters and immunity in weaned piglets. Our study suggests that adding 1000 mg/kg GCP to the diet had the most beneficial effect.
Collapse
Affiliation(s)
- Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Pengli Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Wenbin Chen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
16
|
Zhang Y, Yi D, Xu H, Tan Z, Meng Y, Wu T, Wang L, Zhao D, Hou Y. Dietary supplementation with sodium gluconate improves the growth performance and intestinal function in weaned pigs challenged with a recombinant Escherichia coli strain. BMC Vet Res 2022; 18:303. [PMID: 35933350 PMCID: PMC9356463 DOI: 10.1186/s12917-022-03410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background The purpose of this research is to determine the effects of sodium gluconate (SG) on the growth performance and intestinal function in weaned pigs challenged with a recombinant Escherichia coli strain expressing heat-stable type I toxin (STa). Results Pigs (n = 24, 21 days of age) were randomly allocated to three treatments: Control group (pigs were fed basal diet), STa group (pigs were fed basal diet and challenged with a recombinant E. coli strain expressing STa), and SG group (pigs were fed basal diet supplemented with 2500 mg/kg sodium gluconate and challenged with a recombinant E. coli strain expressing STa). The trial period lasted for 15 days. On days 12 and 13, pigs in the STa and SG groups were orally administered with the recombinant Escherichia coli strain, while those in the control group were orally administered with normal saline at the same volume. On day 15, blood, intestinal tissues and colonic contents were collected for further analysis. Results showed that dietary SG supplementation had a tendency to increase average daily gain, and reduced (P < 0.05) feed to gain ratio, plasma glucose concentration, and mean corpuscular hemoglobin concentration as compared with control group on days 0-10 of trial. Additionally, dietary SG supplementation attenuated(P < 0.05) the morphological abnormalities of small intestinal and the increase of the number of eosinophils in blood of pigs challenged with the recombinant Escherichia coli strain on day 15 of trial. Compared with control group, diarrhea rate and the number of eosinophils in blood and the concentrations of malondialdehyde in the jejunum were increased (P < 0.05). The height, width and surface area of the villi of the duodenum, the width and surface area of villi of jejunum and the height and width of villi of ileum were decreased (P < 0.05) in pigs challenged with the recombinant Escherichia coli strain in the STa group compared with those in control group on day 15 of trial. However, these adverse effects were ameliorated (P < 0.05) by SG supplementation in the SG group on day 15 of trial. Furthermore, dietary SG supplementation could reduce (P < 0.05) the total bacterial abundance in the colon, but SG did not restore the recombinant Escherichia coli-induced microbiota imbalance in colon. Conclusions In conclusion, dietary supplementation with SG could improve piglet growth performance and alleviate the recombinant Escherichia coli-induced intestinal injury, suggesting that SG may be a promising feed additive for swine.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Haiwang Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zihan Tan
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuxuan Meng
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science; School of animal science and nutrition engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
17
|
Effects of nature identical essential oils (carvacrol, thymol and cinnamaldehyde) on growth performance of piglets and non-invasive markers of antioxidant status and calprotectin release. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Boeckman JX, Sprayberry S, Korn AM, Suchodolski JS, Paulk C, Genovese K, Rech RR, Giaretta PR, Blick AK, Callaway T, Gill JJ. Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets. Sci Rep 2022; 12:5024. [PMID: 35323827 PMCID: PMC8943154 DOI: 10.1038/s41598-022-08446-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Post-weaning enteropathies in swine caused by pathogenic E. coli, such as post-weaning diarrhea (PWD) or edema disease (ED), remain a significant problem for the swine industry. Reduction in the use of antibiotics over concerns of antibiotic resistance and public health concerns, necessitate the evaluation of effective antibiotic alternatives to prevent significant loss of livestock and/or reductions in swine growth performance. For this purpose, an appropriate piglet model of pathogenic E. coli enteropathy is required. In this study, we attempted to induce clinical signs of post-weaning disease in a piglet model using a one-time acute or lower daily chronic dose of a pathogenic E. coli strain containing genes for both heat stable and labile toxins, as well as Shiga toxin. The induced disease state was monitored by determining fecal shedding and colonization of the challenge strain, animal growth performance, cytokine levels, fecal calprotectin, histology, fecal metabolomics, and fecal microbiome shifts. The most informative analyses were colonization and shedding of the pathogen, serum cytokines, metabolomics, and targeted metagenomics to determine dysbiosis. Histopathological changes of the gastrointestinal (GI) tract and tight junction leakage as measured by fecal calprotectin concentrations were not observed. Chronic dosing was similar to the acute regimen suggesting that a high dose of pathogen, as used in many studies, may not be necessary. The piglet disease model presented here can be used to evaluate alternative PWD treatment options.
Collapse
Affiliation(s)
- Justin X Boeckman
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Sarah Sprayberry
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Abby M Korn
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Chad Paulk
- Department of Animal Science, Texas A&M University, College Station, TX, USA.,Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Kenneth Genovese
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA
| | - Raquel R Rech
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Paula R Giaretta
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,School of Veterinary Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna K Blick
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Todd Callaway
- USDA-ARS, Food and Feed Safety Research Unit, College Station, TX, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, USA. .,Center for Phage Technology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
19
|
Duan Q, Chen D, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Effect of sialyllactose on growth performance and intestinal epithelium functions in weaned pigs challenged by enterotoxigenic Escherichia Coli. J Anim Sci Biotechnol 2022; 13:30. [PMID: 35236420 PMCID: PMC8892705 DOI: 10.1186/s40104-022-00673-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023] Open
Abstract
Background Sialyllactose (SL) is one of the most abundant oligosaccharides present in porcine breast milk. However, little is known about its effect on growth performance and intestinal health in weaned pigs. This study was conducted to explore the protective effect of SL on intestinal epithelium in weaned pigs upon enterotoxigenic Escherichia coli (ETEC) challenge. Methods Thirty-two pigs were randomly divided into four treatments. Pigs fed with a basal diet or basal diet containing SL (5.0 g/kg) were orally infused with ETEC or culture medium. Results SL supplementation elevated the average daily gain (ADG) and feed efficiency in the ETEC-challenged pigs (P < 0.05). SL also improved the digestibilities of dry matter (DM), gross energy (GE), and ash in non-challenged pigs (P < 0.05). Moreover, SL not only elevated serum concentrations of immunoglobulins (IgA, IgG, and IgM), but also significantly decreased the serum concentrations of inflammatory cytokines (TNF-α, IL-1β, and IL-6) upon ETEC challenge (P < 0.05). Interestingly, SL increased the villus height, the ratio of villus height to crypt depth (V:C), and the activities of mucosal sucrase and maltase in the jejunum and ileum (P < 0.05). SL also elevated the concentrations of microbial metabolites (e.g. acetic acid, propanoic acid, and butyric acid) and the abundance of Lactobacillus, Bifidobacterium, and Bacillus in the cecum (P < 0.05). Importantly, SL significantly elevated the expression levels of jejunal zonula occludins-1 (ZO-1), occluding, and fatty acid transport protein-4 (FATP4) in the ETEC-challenged pigs (P < 0.05). Conclusions SL can alleviate inflammation and intestinal injury in weaned pigs upon ETEC challenge, which was associated with suppressed secretion of inflammatory cytokines and elevated serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00673-8.
Collapse
Affiliation(s)
- Qiming Duan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China. .,Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
20
|
Tang Q, Xu E, Wang Z, Xiao M, Cao S, Hu S, Wu Q, Xiong Y, Jiang Z, Wang F, Yang G, Wang L, Yi H. Dietary Hermetia illucens Larvae Meal Improves Growth Performance and Intestinal Barrier Function of Weaned Pigs Under the Environment of Enterotoxigenic Escherichia coli K88. Front Nutr 2022; 8:812011. [PMID: 35118109 PMCID: PMC8805673 DOI: 10.3389/fnut.2021.812011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the effect of Hermetia illucens larvae meal (HI) on the growth performance and intestinal barrier function of weaned pigs. To achieve this, 72 weaned pigs [28-day-old, 8.44 ± 0.04 kg body weight (BW)] were randomly assigned to three dietary treatments: basal diet (negative control, NC), zinc oxide-supplemented diet (positive control, PC), and HI-supplemented diet [100% replacement of fishmeal (FM), HI], for 28 days in the presence of enterotoxigenic Escherichia coli (ETEC). The results showed that HI and PC increased (p < 0.05) the average daily gain (ADG) and average daily feed intake (ADFI) of weaned pigs from day 1 to 14, and decreased diarrhea incidence from day 1 to 28. Additionally, HI increased (p < 0.05) claudin-1, occludin, mucin-1 (MUC-1), and MUC-2 expression, goblet cell number, and secretory immunoglobulin A (sIgA) concentration in the intestine of weaned pigs. Compared with NC, HI downregulated (p < 0.05) interleukin-1β (IL-1β) and IL-8 expression, and upregulated IL-10, transforming growth factor-β (TGF-β), antimicrobial peptide [porcine β defensin 1 (pBD1), pBD2, protegrin 1-5 (PG1-5)] expression in the jejunum or ileum. Moreover, HI decreased (p < 0.05) toll-like receptor 2 (TLR2), phosphorylated nuclear factor-κB (p-NF-κB), and phosphorylated mitogen-activated protein kinase (p-MAPK) expression, and increased sirtuin 1 (SIRT1) expression in the ileum. Additionally, HI increased histone deacetylase 3 (HDAC3) expression and acetylation of histone 3 lysine 27 (acH3k27) in the ileum. Furthermore, HI positively influenced the intestinal microbiota composition and diversity of weaned pigs and increased (p < 0.05) butyrate and valerate concentrations. Overall, dietary HI improved growth performance and intestinal barrier function, as well as regulated histone acetylation and TLR2-NF-κB/MAPK signaling pathways in weaned pigs.
Collapse
Affiliation(s)
- Qingsong Tang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - E. Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhikang Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingfei Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Institute of Animal Nutrition and Feed Science, College of Animal Science, Ministry of Education, Guizhou University, Guiyang, China
| | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fengying Wang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Geling Yang
- Guangzhou AnRuiJie Environmental Protection Technology Co., Ltd., Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Li Wang
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Hongbo Yi
| |
Collapse
|
21
|
Qin L, Su G, Wu C, Zhou Q, Peng X, Hu L, Liu Y, Wang R, Xu Q, Fang Z, Lin Y, Xu S, Feng B, Li J, Wu D, Che L. Effects of Tremella fuciformis extract on growth performance, biochemical and immunological parameters of weaned piglets challenged with lipopolysaccharide. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mun D, Kyoung H, Kong M, Ryu S, Jang KB, Baek J, Park KI, Song M, Kim Y. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1314-1327. [PMID: 34957446 PMCID: PMC8672252 DOI: 10.5187/jast.2021.e109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
Bacillus is characterized by the formation of spores in harsh
environments, which makes it suitable for use as a probiotic for feed because of
thermostability and high survival rate, even under long-term storage. This study
was conducted to investigate the effects of Bacillus-based
probiotics on growth performance, nutrient digestibility, intestinal morphology,
immune response, and intestinal microbiota of weaned pigs. A total of 40 weaned
pigs (7.01 ± 0.86 kg body weight [BW]; 28 d old) were randomly assigned
to two treatments (4 pigs/pen; 5 replicates/treatment) in a randomized complete
block design (block = BW and sex). The dietary treatment was either a typical
nursery diet based on corn and soybean meal (CON) or CON supplemented with 0.01%
probiotics containing a mixture of Bacillus subtilis and
Bacillus licheniformis (PRO). Fecal samples were collected
daily by rectal palpation for the last 3 days after a 4-day adaptation. Blood,
ileal digesta, and intestinal tissue samples were collected from one pig in each
pen at the respective time points. The PRO group did not affect the feed
efficiency, but the average daily gain was significantly improved
(p < 0.05). The PRO group showed a trend of improved
crude protein digestibility (p < 0.10). The serum
transforming growth factor-β1 level tended to be higher
(p < 0.10) in the PRO group on days 7 and 14. There
was no difference in phylum level of the intestinal microbiota, but there were
differences in genus composition and proportions. However,
β-diversity analysis showed no statistical
differences between the CON and the PRO groups. Taken together,
Bacillus-based probiotics had beneficial effects on the
growth performance, immune system, and intestinal microbiota of weaned pigs,
suggesting that Bacillus can be utilized as a functional
probiotic for weaned pigs.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Myunghwan Kong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 2769, USA
| | - Jangryeol Baek
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyeong Ii Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Cheng YC, Duarte ME, Kim SW. Nutritional and functional values of lysed Corynebacterium glutamicum cell mass for intestinal health and growth of nursery pigs. J Anim Sci 2021; 99:skab331. [PMID: 34902029 PMCID: PMC8668180 DOI: 10.1093/jas/skab331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The objective was to determine the nutritional and functional values of lysed Corynebacterium glutamicum cell mass (CGCM) as a protein supplement and a source of cell wall fragments supporting the growth and intestinal health of nursery pigs. Thirty-two pigs (21 d of age) were allotted to four treatments (n = 8) based on the randomized block design with sex and initial body weight (BW) as blocks. The main effect was the dietary supplementation of lysed CGCM (0, 0.7, 1.4, and 2.1%) replacing blood plasma and fed in two phases (10 and 11 d, respectively). Feed intake and BW were measured at the end of each phase. Pigs were euthanized on day 21 to collect jejunal tissue and mucosa to evaluate intestinal health. Ileal digesta were collected to measure the apparent ileal digestibility of nutrients in diets. Data were analyzed using Proc Mixed and Reg of SAS. Increasing daily intake of CGCM increased (linear; P < 0.05) ADG of pigs. Increasing CGCM supplementation affected (quadratic; P < 0.05) the relative abundance of Lactobacillaceae (minimum: 26.4% at 1.2% CGCM), Helicobacteraceae (maximum: 29.3% at 1.2% CGCM), and Campylobacteraceae (maximum: 9.0% at 1.0% CGCM). Increasing CGCM supplementation affected (quadratic; P < 0.05) the concentrations of immunoglobulin G (maximum: 4.94 µg/mg of protein at 1.0% CGCM) and protein carbonyl (PC; maximum: 6.12 nmol/mg of protein at 1.1% CGCM), whereas linearly decreased (P < 0.05) malondialdehyde (MDA) in the proximal jejunal mucosa. Increasing CGCM supplemention affected (quadratic; P < 0.05) intestinal enterocyte proliferation rate (maximum: 13.3% at 1.0% CGCM), whereas it did not affect intestinal morphology and the nutrient digestibility. In conclusion, supplementing 1.0% to 1.2%, reducing blood plasma supplementation by 0.7% to 0.9%, respectively, increased potential pathogenic microbiota associated in the jejunal mucosa resulting in increased immune response, enterocyte proliferation, and PC concentration. However, supplementing diets with 2.1% CGCM, replacing 1.5% blood plasma, improved growth performance, and reduced MDA without affecting nutrient digestibility, intestinal morphology, and microbiota in the jejunal mucosa. In this study, based on the polynomial contrast, supplementing 1.0% to 1.2% CGCM suppressed the benefits from blood plasma, whereas supplementing 2.1% CGCM showed functional benefits of CGCM with similar effects from blood plasma supplementation.
Collapse
Affiliation(s)
- Yi-Chi Cheng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Dietary supplementation of fructooligosaccharides alleviates enterotoxigenic E. coli-induced disruption of intestinal epithelium in a weaned piglet model. Br J Nutr 2021; 128:1526-1534. [PMID: 34763738 DOI: 10.1017/s0007114521004451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diarrhea caused by pathogens such as enterotoxigenic E. coli (ETEC) is a serious threat to the health of young animals and human infants. Here, we investigated the protective effect of fructooligosaccharides (FOS) on the intestinal epithelium with ETEC-challenge in a weaned piglet model. Twenty-four weaned piglets were randomly divided into three groups: (1) non-ETEC-challenged control (CON), (2) ETEC-challenged control (ECON), and (3) ETEC challenge + 2.5 g/kg FOS (EFOS). On day 19, the CON pigs were orally infused with sterile culture, while the ECON and EFOS pigs were orally infused with active ETEC (2.5 × 109 colony-forming units). On day 21, pigs were slaughtered to collect venous blood and small intestine. Result showed that the pre-treatment of FOS improved the antioxidant capacity and the integrity of intestinal barrier in the ETEC-challenged pigs without affecting their growth performance. Specifically, comparing with ECON pigs, the level of GSH-Px (glutathione peroxidase) and CAT (catalase) in the plasma and intestinal mucosa of EFOS pigs was increased (P<0.05), and the intestinal barrier marked by ZO-1 and plasmatic DAO was also improved in EFOS pigs. A lower level (P<0.05) of inflammatory cytokines in the intestinal mucosa of EFOS pigs might be involved in the inhibition of TLR4/MYD88/NF-κB pathway. The apoptosis of jejunal cells in EFOS pigs was also lower than that in ECON pigs (P<0.05). Our findings provide convincing evidence of possible prebiotic and protective effect of FOS on the maintenance of intestinal epithelial function under the attack of pathogens.
Collapse
|
25
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA J 2021; 19:e06864. [PMID: 34729092 PMCID: PMC8546800 DOI: 10.2903/j.efsa.2021.6864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobials.
Collapse
|
26
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 11: Sulfonamides. EFSA J 2021; 19:e06863. [PMID: 34729091 PMCID: PMC8546515 DOI: 10.2903/j.efsa.2021.6863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The specific concentrations of sulfonamides in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were identified for three sulfonamides: sulfamethazine, sulfathiazole and sulfamerazine. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.
Collapse
|
27
|
Hossain M, Regassa A, Amarakoon S, Jayaraman B, Akhtar N, Li J, Karmin O, Nyachoti C. The effect of epidermal growth factor on performance and oxidative stress in piglets challenged with enterotoxigenic Escherichia coli K88. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the efficacy of epidermal growth factor (EGF) in piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). A total of 28 piglets were assigned to the following dietary treatments for 14 d: negative control (NC) (basal diet containing supernatant without EGF), PC (NC + 2.5 g antibiotic·kg−1 feed), EGF120 [basal diet + supernatant with 120 μg EGF·kg−1 body weight (BW)·d−1], and EGF180 (basal diet + supernatant with 180 μg EGF·kg−1 BW·d−1). After a 6 d acclimation period, each pig was gavaged with 6 mL (2.4 × 1013 cfu·mL−1) of ETEC on the morning of day 7. Overall, piglets fed the EGF and PC diets tended to have higher gain to feed ratio than those fed the NC diet (P = 0.063). Pigs fed EGF diets had lower rectal temperature than those fed the NC diet at 6 h after challenge (P < 0.05). Serum and ileal malondialdehyde concentrations were higher in piglets fed the NC diet compared with those fed EGF and PC diets on days 6 and 7 after challenge, respectively (P < 0.05). In conclusion, EGF has the potential to reduce oxidative stress and body temperature elevation in piglets exposed to ETEC while supporting better feed efficiency.
Collapse
Affiliation(s)
- M.M. Hossain
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - A. Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - S. Amarakoon
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - B. Jayaraman
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - N. Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J. Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - O. Karmin
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - C.M. Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
28
|
Liu L, Chen D, Yu B, Yin H, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Fructooligosaccharides improve growth performance and intestinal epithelium function in weaned pigs exposed to enterotoxigenic Escherichia coli. Food Funct 2021; 11:9599-9612. [PMID: 33151222 DOI: 10.1039/d0fo01998d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To explore the protective effect of Fructooligosaccharides (FOS) against Enterotoxigenic Escherichia coli (ETEC)-induced inflammation and intestinal injury, twenty-four weaned pigs were randomly assigned into three groups: (1) non-challenge (CON, fed with basal diet), (2) ETEC-challenge (ECON, fed with basal diet), and (3) ETEC challenge + FOS treatment (EFOS, fed with basal diet plus 2.5 g kg-1 FOS). On day 19, the CON group was orally infused with sterilized culture while pigs in the ECON group and EFOS group were orally infused with ETEC (2.5 × 1011 colony-forming units). After 3 days, pigs were slaughtered for sample collection. We showed that ETEC challenge significantly reduced average daily gain (ADG); however, FOS improved the ADG (P < 0.05), apparent digestibility of crude protein (CP), gross energy (GE), and ash and reduced the diarrhea incidence (P < 0.05). FOS reduced plasma concentrations of IL-1β and TNF-α and down-regulated (P < 0.05) the mRNA expression of IL-6 and TNF-α in the jejunum and ileum as well as IL-1β and TNF-α in the duodenum. The concentrations of plasma immunoglobulin A (IgA), immunoglobulin M (IgM) and secreted IgA (SIgA) in the jejunum (P < 0.05) were elevated. Interestingly, FOS elevated the villus height in the duodenum, and elevated the ratio of villus height to crypt depth in the duodenum and ileum in the EFOS group pigs (P < 0.05). Moreover, FOS increased lactase activity in the duodenum and ileum (P < 0.05). The activities of sucrase and alkaline phosphatase (AKP) were higher in the EFOS group than in the ECON group (P < 0.05). Importantly, FOS up-regulated the expressions of critical genes in intestinal epithelium function such as zonula occludens-1 (ZO-1), L-type amino acid transporter-1 (LAT1), and cationic amino acid transporter-1 (CAT1) in the duodenum and the expressions of ZO-1 and glucose transporter-2 (GLUT2) in the jejunum (P < 0.05). FOS also up-regulated the expressions of occludin, fatty acid transporter-4 (FATP4), sodium glucose transport protein 1 (SGLT1), and GLUT2 in the ileum (P < 0.05). FOS significantly increased the concentrations of acetic acid, propionic acid and butyric acid in the cecal digesta. Additionally, FOS reduced the populations of Escherichia coli, but elevated the populations of Bacillus and Bifidobacterium in the caecal digesta (P < 0.05). These results suggested that FOS could improve the growth performance and intestinal health in weaned pigs upon ETEC challenge, which was associated with suppressed inflammatory responses and improved intestinal epithelium functions and microbiota.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li HH, Jiang XR, Qiao JY. Effect of dietary Bacillus subtilis on growth performance and serum biochemical and immune indexes in weaned piglets. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1877717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hai-Hua Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, People’s Republic of China
| | - Xian-Ren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jia-Yun Qiao
- College of Life Science, Tianjin Normal University, Tianjin, People’s Republic of China
| |
Collapse
|
30
|
Metabolomic Profile of Weaned Pigs Challenged with E. coli and Supplemented with Carbadox or Bacillus subtilis. Metabolites 2021; 11:metabo11020081. [PMID: 33573321 PMCID: PMC7911053 DOI: 10.3390/metabo11020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study explored the metabolomic profiles in ileal mucosa and colon digesta in response to enterotoxigenic Escherichia coli F18 (ETEC) infection and dietary use of probiotics and low-dose antibiotics. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight) were randomly allotted to one of four treatments. Pigs in the negative control (NC) were fed a basal diet without ETEC challenge, whereas pigs in the positive control (PC), antibiotic, and probiotic groups were fed the basal diet, basal diet supplemented with 50 mg/kg of carbadox, or 500 mg/kg of Bacillus subtilis, respectively, and orally challenged with ETEC F18. All pigs were euthanized at day 21 post-inoculation to collect ileal mucosa and colon digesta for untargeted metabolomic profiling using gas chromatography coupled with time-of-flight mass spectrometry. Multivariate analysis highlighted a more distinct metabolomic profile of ileal mucosa metabolites in NC compared to the ETEC-challenged groups. The relative abundance of 19 metabolites from the ileal mucosa including polyamine, nucleotide, monosaccharides, fatty acids, and organic acids was significantly different between the NC and PC groups (q < 0.1). In colon digesta, differential metabolites including 2-monoolein, lactic acid, and maltose were reduced in the carbadox group compared with the probiotics group. In conclusion, several differential metabolites and metabolic pathways were identified in ileal mucosa, which may suggest an ongoing intestinal mucosal repair in the ileum of ETEC-challenged pigs on day 21 post-inoculation.
Collapse
|
31
|
Cao C, Li J, Ma Q, Zhang L, Shan A. Effects of dietary supplementation with the antimicrobial peptide WK3 on growth performance and intestinal health in diarrheic weanling piglets. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1916507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chunyu Cao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Jianan Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Qiuyuan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
32
|
Deng B, Wu J, Li X, Zhang C, Men X, Xu Z. Effects of Bacillus subtilis on growth performance, serum parameters, digestive enzyme, intestinal morphology, and colonic microbiota in piglets. AMB Express 2020; 10:212. [PMID: 33263814 PMCID: PMC7710768 DOI: 10.1186/s13568-020-01150-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/21/2020] [Indexed: 12/01/2022] Open
Abstract
The present study was conducted to investigate effects of Bacillus subtilis on growth performance, serum parameters, digestive enzymes, intestinal morphology, and colonic microbiota in piglets. A total of 72 piglets were weighed and randomly allotted into three treatments (four replication pens per treatment with six piglets/pen) for a 28-day experiment. The dietary treatments were as follows: basal diet (control group, CTR), basal diet supplementation with antibiotic (antibiotic group, ABT), and basal diet supplementation with 0.1% Bacillus subtilis (probiotic group, PBT). The average daily gain of body weight increased in both the ABT and PBT groups, and dietary antibiotics decreased the feed:gain ratio (F:G), as compared to the CTR group (P < 0.05). Both ABT and PBT piglets had increased serum triglycerides and lipase, amylase, maltase activities and villus height:crypt depth ratio (V/C) in ileum (P < 0.05). The PBT group also showed an increase in serum glucose and villus height in the ileum (P < 0.05). Dietary antibiotics increased Lactobacillus johnsonii, as compared to the CTR group, but decreased bacterial diversity and increased Escherichia coli, as compared to the PBT group (P < 0.05). Piglets dietary with B. subtilis modulated the microbiota by increasing the abundance of Firmicutes (L. johnsonii, L. reuteri) and decreasing the abundance of E. coli, as compared to the control group (P < 0.05). These results indicate that dietary of B. subtilis improves growth performance and intestinal health and can be a promising alternative to antibiotics in piglets diet.
Collapse
|
33
|
He Y, Kim K, Kovanda L, Jinno C, Song M, Chase J, Li X, Tan B, Liu Y. Bacillus subtilis: a potential growth promoter in weaned pigs in comparison to carbadox. J Anim Sci 2020; 98:5900678. [PMID: 32877510 DOI: 10.1093/jas/skaa290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The study was conducted to investigate the efficacy of a probiotic Bacillus subtilis strain on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli and to compare the efficacy of B. subtilis with that of carbadox. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox (antibiotic growth promotor [AGP]) or 2.56 × 109 CFU/kg of B. subtilis probiotics (PRO). The experiment lasted for 28 d with 7 d before and 21 d after the first E. coli inoculation. Fecal and blood samples were collected on days 0, 3, 7, 14, and 21 post inoculation (PI) to analyze β-hemolytic coliforms and complete blood cell count, respectively. Diarrhea score was recorded daily for each pig to calculate the frequency of diarrhea. All pigs were euthanized at day 21 PI to collect jejunal and ileal mucosa for gene expression analysis. Pigs in AGP had greater (P < 0.05) BW on days 7, 14, and 21 PI than pigs in PC and PRO groups. Supplementation of PRO enhanced pigs' BW on day 21 PI compared with the PC. Escherichia coli F18 challenge reduced (P < 0.05) average daily gain (ADG) and feed efficiency from day 0 to 21 PI, while supplementation of carbadox or PRO enhanced ADG and feed efficiency in E. coli F18-challenged pigs from day 0 to 21 PI. Pigs in AGP and PRO groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on day 7 PI than pigs in the PC. Pigs in PRO had greater (P < 0.05) gene expression of CLDN1 in jejunal mucosa than pigs in the PC. Supplementation of carbadox or PRO reduced (P < 0.05) the gene expression of IL6 and PTGS2 in ileal mucosa of E. coli-infected pigs compared with pigs in the PC. Pigs in the PRO group had lower (P < 0.05) white blood cell number and neutrophil count, and serum haptoglobin concentration on day 7 PI, and less (P < 0.05) monocyte count on day 14 PI, compared with PC. In conclusion, supplementation of probiotic B. subtilis could enhance disease resistance and promote the growth performance of weaned pigs under disease challenge conditions. The potential mechanisms include but not limited to enhanced gut barrier integrity and local and systemic immune responses of weaned pigs.
Collapse
Affiliation(s)
- Yijie He
- Department of Animal Science, University of California, Davis, CA
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jennifer Chase
- School of Veterinary Medicine, University of California, Davis, CA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA
| |
Collapse
|
34
|
Ma T, Peng W, Liu Z, Gao T, Liu W, Zhou D, Yang K, Guo R, Duan Z, Liang W, Bei W, Yuan F, Tian Y. Tea polyphenols inhibit the growth and virulence of ETEC K88. Microb Pathog 2020; 152:104640. [PMID: 33232763 DOI: 10.1016/j.micpath.2020.104640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) causes high levels of morbidity and mortality in neonatal piglets. Owing to the abuse of antibiotics and emergence of drug resistance, antibiotics are no longer considered only beneficial, but also potentially harmful drugs. Supplements that can inhibit the growth of bacteria are expected to replace antibiotics. Tea polyphenols have numerous important biological functions, including antibacterial, antiviral, antioxidative, anti-inflammatory, and antihypertensive effects. We investigated the role of tea polyphenols in ETEC K88 infection using a mouse model. Pretreating with tea polyphenols attenuated the symptoms induced by ETEC K88. Furthermore, in a cell adherence assay, tea polyphenols inhibited ETEC K88 adherence to IPEC-J2 cells. When cells were infected with ETEC K88, mRNA and protein levels of claudin-1 were significantly decreased compared with those of control cells. However, when cells were pretreated with tea polyphenols, claudin-1 mRNA and protein levels were higher than those in cells without pretreatment upon cell infection with ETEC K88. TLR2 mRNA levels were also higher following cell infection with ETEC K88 when cells were pretreated with tea polyphenols. These data revealed that tea polyphenols could increase the barrier integrity of IPEC-J2 cells by upregulating expression of claudin-1 through activation of TLR2. Tea polyphenols had beneficial effects on epithelial barrier function. Therefore, tea polyphenols could be used as a novel strategy to control and treat pig infections caused by ETEC K88.
Collapse
Affiliation(s)
- Tianfeng Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Cooperative Innovation Center of Sustainable Pig Production, Wuhan, 430070, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
35
|
Human β-Defensin 118 Attenuates Escherichia coli K88-Induced Inflammation and Intestinal Injury in Mice. Probiotics Antimicrob Proteins 2020; 13:586-597. [PMID: 33185791 DOI: 10.1007/s12602-020-09725-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Antibiotics are widely used to treat various inflammatory bowel diseases caused by enterotoxigenic Escherichia coli (ETEC). However, continuous use of antibiotics may lead to drug resistance. In this study, we investigated the role of human β-defensin 118 (DEFB118) in regulating the ETEC-induced inflammation and intestinal injury. ETEC-challenged or non-challenged mice were treated by different concentrations of DEFB118. We show that ETEC infection significantly increased fecal score (P < 0.05) and serum concentrations of interlukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Moreover, the concentrations of D-lactic acid, C-reactive protein (CRP), creatinine (CREA), and urea (P < 0.05) were both increased in the ETEC-challenged mice. However, DEFB118 significantly decreased their concentrations in the serum (P < 0.05). DEFB118 not only alleviated tissue damage in spleen upon ETEC challenge, but also increased the villus height in duodenum and ileum (P < 0.05). Moreover, DEFB118 improved the localization and abundance of tight junction protein ZO-1 in jejunal epithelium. Interestingly, DEFB118 decreased the expression levels of critical genes involving in mucosal inflammatory responses (NF-κB, TLR4, IL-1β, and TNF-α) and the apoptosis (caspase3) upon ETEC challenge (P < 0.05), whereas DEFB118 significantly upregulated the expression of mucosa functional genes such as the mucin1 (MUC1) and sodium-glucose transporter-1 (SGLT-1) in the ETEC-challenged mice (P < 0.05). These results indicated a novel function of the DEFB118. The anti-inflammatory effect of DEFB118 should make it an attractive candidate to prevent various bacteria-induced inflammatory bowel diseases.
Collapse
|
36
|
Hong J, Ndou SP, Adams S, Scaria J, Woyengo TA. Canola meal in nursery pig diets: growth performance and gut health. J Anim Sci 2020; 98:skaa338. [PMID: 33098648 PMCID: PMC8060915 DOI: 10.1093/jas/skaa338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
An experiment was conducted to determine the effects of including canola meal (CM) in nursery pig diets on growth performance, immune response, fecal microbial composition, and gut integrity. A total of 200 nursery pigs (initial body weight = 7.00 kg) were obtained in two batches of 100 pigs each. Pigs in each batch were housed in 25 pens (four pigs per pen) and fed five diets in a randomized complete block design. The five diets were corn-soybean meal (SBM)-based basal diets with 0%, 10%, 20%, 30%, or 40% of CM. The diets were fed in three phases: phase 1: day 0 to 7, phase 2: day 7 to 21, and phase 3: day 21 to 42. Diets in each phase were formulated to similar net energy, Ca, and digestible P and amino acid contents. Feed intake and body weight were measured by phase. Immune response and gut integrity parameters were measured at the end of phases 1 and 2. Fecal microbial composition for diets with 0% or 20% CM was determined at the end of phase 2. Overall average daily gain (ADG) responded quadratically (P < 0.05) to increasing dietary level of CM such that ADG was increased by 17% due to an increase in the dietary level of CM from 0% to 20% and was reduced by 16% due to an increase in the dietary level of CM from 20% to 40%. Pigs fed diets with 0% or 40% CM did not differ in overall ADG. Dietary CM tended to quadratically decrease (P = 0.09) serum immunoglobulin A (IgA) level at the end of phase 2 such that serum IgA level tended to reduce with an increase in dietary CM from 0% to 20% and to increase with an increase in dietary CM from 20% to 40%. Dietary CM at 20% decreased (P < 0.05) the relative abundance of Bacteroidetes phylum and tended to increase (P = 0.07) the relative abundance of Firmicutes phylum. Dietary CM linearly increased (P < 0.05) the lactulose to mannitol ratio in the urine by 47% and 49% at the end of phases 1 and 2, respectively, and tended to linearly decrease (P < 0.10) ileal transepithelial electrical resistance at the end of phase 1 by 64%. In conclusion, CM fed in the current study could be included in corn-SBM-based diets for nursery pigs 20% to improve the growth performance and gut microbial composition and reduce immune response. Also, the CM used in the current study could be included in corn-SBM-based diets for nursery pigs at 30% or 40% without compromising growth performance. Dietary CM increased gut permeability, implying that dietary CM at 20% improves the growth performance of weaned pigs through mechanisms other than reducing gut permeability.
Collapse
Affiliation(s)
- Jinsu Hong
- Department of Animal Science, South Dakota State University, Brookings, SD
| | | | - Seidu Adams
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Joy Scaria
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
37
|
Park S, Lee JW, Jerez Bogota K, Francis D, González-Vega JC, Htoo JK, Woyengo TA. Growth performance and gut health of Escherichia coli-challenged weaned pigs fed diets supplemented with a Bacillus subtilis direct-fed microbial. Transl Anim Sci 2020; 4:txaa172. [PMID: 33134875 PMCID: PMC7584393 DOI: 10.1093/tas/txaa172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate the effects of a direct-fed microbial (DFM) product (Bacillus subtilis strain DSM 32540) in weaned pigs challenged with K88 strain of Escherichia coli on growth performance and indicators of gut health. A total of 21 weaned pigs [initial body weight (BW) = 8.19 kg] were housed individually in pens and fed three diets (seven replicates per diet) for 21 d in a completely randomized design. The three diets were a corn-soybean meal-based basal diet without feed additives, a basal diet with 0.25% antibiotics (neo-Oxy 10-10; neomycin + oxytetracycline), or a basal diet with 0.05% DFM. All pigs were orally challenged with a subclinical dose (6.7 × 108 CFU/mL) of K88 strain of E. coli on day 3 of the study (3 d after weaning). Feed intake and BW data were collected on days 0, 3, 7, 14, and 21. Fecal scores were recorded daily. On day 21, pigs were sacrificed to determine various indicators of gut health. Supplementation of the basal diet with antibiotics or DFM did not affect the overall (days 0-21) growth performance of pigs. However, antibiotics or DFM supplementation increased (P = 0.010) gain:feed (G:F) of pigs during the post-E. coli challenge period (days 3-21) by 23% and 24%, respectively. The G:F for the DFM-supplemented diet did not differ from that for the antibiotics-supplemented diet. The frequency of diarrhea for pigs fed a diet with antibiotics or DFM tended to be lower (P = 0.071) than that of pigs fed the basal diet. The jejunal villous height (VH) and the VH to crypt depth ratio (VH:CD) were increased (P < 0.001) by 33% and 35%, respectively, due to the inclusion of antibiotics in the basal diet and by 43% and 41%, respectively due to the inclusion of DFM in the basal diet. The VH and VH:CD for the DFM-supplemented diet were greater (P < 0.05) than those for the antibiotics-supplemented diet. Ileal VH was increased (P < 0.05) by 46% due to the inclusion of DFM in the basal diet. The empty weight of small intestine, cecum, or colon relative to live BW was unaffected by dietary antibiotics or DFM supplementation. In conclusion, the addition of DFM to the basal diet improved the feed efficiency of E. coli-challenged weaned pigs to a value similar to that of the antibiotics-supplemented diet and increased jejunal VH and VH:CD ratio to values greater than those for the antibiotics-supplemented diet. Thus, under E. coli challenge, the test DFM product may replace the use of antibiotics as a growth promoter in diets for weaned pigs to improve feed efficiency and gut integrity.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, South Dakota State University, Brookings, SD.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jung Wook Lee
- Department of Animal Science, South Dakota State University, Brookings, SD.,Department of Animal and Food Sciences, University of Kentucky, Lexington
| | - Kevin Jerez Bogota
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - David Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD
| | | | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Tofuko Awori Woyengo
- Department of Animal Science, South Dakota State University, Brookings, SD.,Department of Animal Science, Aarhus University, Blichers Allé, Tjele, Denmark
| |
Collapse
|
38
|
Silva Júnior CD, Martins CCS, Dias FTF, Sitanaka NY, Ferracioli LB, Moraes JE, Pizzolante CC, Budiño FEL, Pereira R, Tizioto P, Paula VRC, Coutinho LL, Ruiz US. The use of an alternative feed additive, containing benzoic acid, thymol, eugenol, and piperine, improved growth performance, nutrient and energy digestibility, and gut health in weaned piglets. J Anim Sci 2020; 98:skaa119. [PMID: 32280983 PMCID: PMC7229883 DOI: 10.1093/jas/skaa119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 02/01/2023] Open
Abstract
This research evaluated a feed additive (benzoic acid, eugenol, thymol, and piperine), associated or not with colistin, in weaned piglets feeding. The parameters evaluated were growth performance, apparent total tract digestibility (ATTD) of nutrients, diarrhea incidence, intestinal morphology, relative weights of digestive organs, microbial diversity, and the percentages of operational taxonomic units of microorganisms in the cecum content of pigs. One-hundred and eight crossbred piglets (5.3 ± 0.5 kg) were used in a three-phase feeding program (21 to 35, 36 to 50, 51 to 65 d of age) and fed a control diet with no inclusion of growth promoter feed additive, a diet with 40 ppm of colistin, a diet with 0.3% of alternative additive, and a diet with 0.3% of alternative additive and 40 ppm of colistin. The diets were based on corn, soybean meal, dairy products, and spray-dried blood plasma and formulated to provide 3.40, 3.38, and 3.20 Mcal of ME/kg and 14.5, 13.3, and 10.9 g/kg of digestible lysine, in phases 1, 2, and 3, respectively. The piglets were housed three per pen, with nine replicates per diet, in a complete randomized block design based on initial BW. The data were submitted to ANOVA and means were separated by Tukey test (5%), using SAS. Pigs fed diets with the alternative feed additive had greater (P < 0.05) ADG (114.3 vs. 91.8 g) and ADFI (190.1 vs. 163.3 g) in phase 1 than pigs fed diets without the product. The alternative additive improved (P < 0.05) ATTD of crude protein (CP) in phase 1 (71.0% vs. 68.6%), gross energy in phases 1 (77.4% vs. 75.2%) and 3 (79.0% vs. 77.1%), and dry matter in phase 3 (79.1% vs. 77.1%). The antibiotic inclusion in the diets increased (P < 0.05) ATTD of CP in phase 1 (71.5% vs. 68.2%). The alternative feed additive tended (P = 0.06) to increase (46%) normal feces frequency, decreased (P < 0.05) goblet cells count (104.3 vs. 118.1) in the jejunum, and decreased (P < 0.05) small intestine (4.60% vs. 4.93%) and colon (1.41% vs. 1.65%) relative weights, compared with pigs not fed with the alternative additive. There was a tendency (P = 0.09) for a lower concentration of Escherichia-Shigella (1.46% vs. 3.5%) and lower (P < 0.05) percentage of Campylobacter (0.52% vs. 10.21%) in the cecum content of piglets fed diets containing essential oils and benzoic acid compared with pigs fed diets without the alternative feed additive. The alternative feed additive was effective in improving growth performance, diets digestibility, and gut health in piglets soon after weaning.
Collapse
Affiliation(s)
- Cláudio D Silva Júnior
- Faculty of Agricultural and Technological Sciences, São Paulo State University, Dracena, SP, Brazil
| | | | | | | | | | - José E Moraes
- Institute of Animal Science and Pastures, Nova Odessa, SP, Brazil
| | | | - Fábio E L Budiño
- Institute of Animal Science and Pastures, Nova Odessa, SP, Brazil
| | - Rafaela Pereira
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Polyana Tizioto
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- NGS Soluções Genômicas, Piracicaba, SP, Brazil
| | - Vinicius R C Paula
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Urbano S Ruiz
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
39
|
Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu J, Huang Z, Luo J, Luo Y, Yu B. Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets. ACTA ACUST UNITED AC 2020; 6:152-159. [PMID: 32542195 PMCID: PMC7283367 DOI: 10.1016/j.aninu.2020.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 01/23/2023]
Abstract
This experiment was conducted to investigate the effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of piglets. In a 26-d experiment, 25 piglets were randomly assigned to 5 treatments: 1) a basal diet, negative control (NC), 2) NC added with antibiotics, positive control (PC); 3) NC added with benzoic acid at 3,000 g/t and Bacillus coagulans at 400 g/t (AB); 4) NC added with benzoic acid at 3,000 g/t and oregano oil at 400 g/t (AO); 5) NC added with 3,000 g/t benzoic acid and Bacillus coagulans at 400 g/t and oregano oil at 400 g/t (ABO). On d 27, all piglets were euthanized to obtain jejunal mucosa to measure immune status and intestinal barrier integrity. Results showed that pigs fed AB diet increased the final body weight and average daily body weight gain and decreased the ratio of feed to gain compared with NC group (P < 0.05). Compared with NC group, AB, AO and ABO decreased serum tumor necrosis factor-α concentration and ABO decreased interleukin-1β concentration in serum and jejunal mucosa (P < 0.05). Compared with NC group, AB up-regulated mRNA expressions of sodium-glucose cotransporte1, claudin-1, occludin and mucin2 in jejunal mucosa and the populations of Bifidobacterium and Bacillus in cecal digesta (P < 0.05). Compared with NC group, ABO increased jejunal mucosal occludin mRNA abundance and Bifidobacterium population in cecal digesta, and decreased Escherichia coli population in cecal digesta (P < 0.05). Furthermore, AB and ABO increased Bacillus population in cecal digesta compared with PC group (P < 0.05). These results indicated that dietary AB supplementation could improve growth performance and intestinal barrier integrity of piglets when fed antibiotic-free diets, which was possibly associated with the improvement of immune status and intestinal microflora. Dietary ABO supplementation is also beneficial to improve immune status and intestinal barrier integrity and microflora of piglets.
Collapse
Affiliation(s)
- Junning Pu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
40
|
Zhao J, Bai Y, Zhang G, Liu L, Lai C. Relationship between Dietary Fiber Fermentation and Volatile Fatty Acids' Concentration in Growing Pigs. Animals (Basel) 2020; 10:ani10020263. [PMID: 32045993 PMCID: PMC7070776 DOI: 10.3390/ani10020263] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/19/2020] [Accepted: 02/01/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The study suggests differences in fermentable capacity of fibrous feed ingredients are associated with fiber composition in pig. Results demonstrate that the fiber digestibility of oat bran, sugar beet pulp and soybean hulls is greater than for corn bran, wheat bran and rice bran in the pig intestine. Furthermore, results indicate that volatile fatty acids’ concentration (VFA) is positively correlated primarily with insoluble dietary fiber (IDF) fermentation, and the digestibility of IDF is the best single variable to predict fecal VFA concentrations. The contribution of this study is to provide instructions on how to implement fiber-rich ingredients effectively in the feed formulation for swine. Abstract This study was conducted to determine whether differences in fiber fermentation in fiber-rich feed ingredients exist and to assess relationship between fiber fermentation and concentration of volatile fatty acids (VFA) in pig. Castrated males (barrows) were allotted randomly to six diets formulated with different amounts of wheat bran (WB), corn bran (CB), sugar beet pulp (SBP), oat bran (OB), soybean hulls (SH) or rice bran (RB). The apparent ileal digestibility (AID) of soluble dietary fiber (SDF) for OB and SH diets was greater (P < 0.05) than for the other diets. The fermentation of total dietary fiber (TDF) and insoluble dietary fiber (IDF) in the hindgut were greater (P < 0.05) for SBP and SH diets than for WB, CB, OB and RB diets. The apparent total tract digestibility (ATTD) values of all fiber components in SBP, SH and OB diets were greater (P < 0.05) than for WB, CB and RB diets. The concentration of VFA in feces was positively correlated with the ATTD of IDF and cellulose, and ATTD of IDF is the best factor for predicting fecal VFA concentration. Overall, dietary fiber source affected fermentable characteristics of fiber components in the different digestive segments of pig intestine.
Collapse
|
41
|
Xu R, Wan J, Lin C, Su Y. Effects of Early Intervention with Antibiotics and Maternal Fecal Microbiota on Transcriptomic Profiling Ileal Mucusa in Neonatal Pigs. Antibiotics (Basel) 2020; 9:E35. [PMID: 31963653 PMCID: PMC7168243 DOI: 10.3390/antibiotics9010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
This study aimed to investigate the effects of early intervention with antibiotics and maternal fecal microbiota on ileal morphology and barrier function, and transcriptomic profiling in neonatal piglets. Piglets in the amoxicillin (AM), fecal microbiota transplantation (FMT), and control (CO) groups were orally administrated with amoxicillin solution (6.94 mg/mL), maternal fecal microbiota suspension [>109 colony forming unit (CFU)/mL], and physiological saline, respectively. Compared with the CO group, early intervention with AM or FMT significantly decreased ileal crypt depth on day 7 and altered gene expression profiles in ileum on days 7 and 21, and especially promoted the expression of chemokines (CCL5, CXCL9, and CXCL11) involved in the toll-like receptor signaling pathway on day 21. FMT changed major immune activities from B cell immunity on day 7 to T cell immunity on day 21 in the ileum. On the other hand, both AM and FMT predominantly downregulated the gene expression of toll-like receptor 4 (TLR4). In summary, both early interventions modulated intestinal barrier function and immune system in the ileum with a low impact on ileal morphology and development.
Collapse
Affiliation(s)
- Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Wan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhui Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.X.); (J.W.); (C.L.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Zhang J, Wan J, Wu G, Chen D, Yu B, Huang Z, Mao X, Zheng P, Yu J, He J. Low-molecular-weight chitosan relieves enterotoxigenic Escherichia coli-induced growth retardation in weaned pigs. Int Immunopharmacol 2020; 78:105798. [DOI: 10.1016/j.intimp.2019.105798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
|
43
|
Ren M, Cai S, Zhou T, Zhang S, Li S, Jin E, Che C, Zeng X, Zhang T, Qiao S. Isoleucine attenuates infection induced by E. coli challenge through the modulation of intestinal endogenous antimicrobial peptide expression and the inhibition of the increase in plasma endotoxin and IL-6 in weaned pigs. Food Funct 2019; 10:3535-3542. [PMID: 31149689 DOI: 10.1039/c9fo00218a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enteric infection is a major cause of morbidity and mortality in both humans and animals worldwide. Immunotherapy against intestinal infection is a well-known alternative to the antibiotic strategy. Herein, we demonstrated that isoleucine significantly suppressed the multiplication of E. coli in the presence of IPEC-J2 cells. Isoleucine supplementation enhanced the concentrations of total plasma protein and IgA in pigs compared to the alanine control diet, while inhibiting the increase in plasma endotoxin and IL-6 contents induced by E. coli challenge. A significant interaction between the E. coli challenge and the diet treatment was found in the red blood cell volume. Isoleucine improved the expression of porcine β-defensin-1 (pBD-1), pBD-2, pBD-3, pBD-114 and pBD-129 in the jejunum and ileum of pigs with or without E. coli challenge. Conclusively, isoleucine attenuated the infection caused by the E. coli challenge possibly through increasing the intestinal β-defensin expression and inhibiting the increase in plasma endotoxin and IL-6 in weaned pigs.
Collapse
Affiliation(s)
- Man Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang S, Yoo DH, Ao X, Kim IH. Effects of dietary probiotic, liquid feed and nutritional concentration on the growth performance, nutrient digestibility and fecal score of weaning piglets. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1617-1623. [PMID: 32054199 PMCID: PMC7463077 DOI: 10.5713/ajas.19.0473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/30/2019] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to investigate the effects of dietary probiotic blend and liquid feed program at different nutritional densities on growth performance, nutrient digestibility, fecal score of weaning piglets. Methods A total of 120 weaning pigs with an initial body weight of 7.05±0.93 kg per pig (21 days of age) were randomly allocated into 1 of the following 8 dietary treatments (3 replicates per treatment with 5 pigs per replicate) in a 2×2×2 factorial arrangement (nutrition levels: apparent metabolic energy [AME] = 3,500 kcal/kg, crude protein [CP] = 20% vs AME = 3,400 kcal/kg, CP = 19.42%; feed types:dry vs wet; probiotics levels: 0 mg/kg vs 300 mg/kg). Results During d 5 to d 15, greater average daily gain (ADG) and average daily feed intake (ADFI) (p<0.05) were observed in probiotics treatments. During d 15 to d 25, gain:feed (G:F) ratio (p<0.05) were significantly improved in probiotics, wet feed and high nutrition diet. Moreover, two interactions i) between nutrition levels and feed types, and ii) between nutrition levels and probiotics were found in G:F ratio. Furthermore, there was a significant positive interaction on G:F among those 3 factors (p<0.05). Overall, increasing ADG, ADFI, and G:F ratio were detected in probiotics treatment significantly (p<0.05). Besides, an obvious reduction on fecal score was observed in probiotics treatment from d 0 to d 5 (p<0.05). There was an interactive effect on fecal score between feed types and nutrition concentrations from d 5 to d 25 (p<0.05). Conclusion These results indicated that probiotics supplementation could benefit growth performance and reduce the frequency of watery feces. Besides, wet feed program (feed:water = 1:1.25) could improve the G:F. The effect of liquid feed or probiotic could be influenced by dietary nutrition density in weaned piglets. An increased value of G:F was obtained when wet feeding a high nutrition diet (100 kcal higher than NRC 2012 recommendations) was supplemented with probiotics for 15 to 25 days.
Collapse
Affiliation(s)
- Song Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea.,Kemin Industries (China) Co., Ltd. Sanzao, Zhuhai 519040, China
| | - Dong Huy Yoo
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea.,All The Best Co., Ltd. Seoul 05399, Korea
| | - Xiang Ao
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
45
|
Luise D, Bertocchi M, Motta V, Salvarani C, Bosi P, Luppi A, Fanelli F, Mazzoni M, Archetti I, Maiorano G, Nielsen BKK, Trevisi P. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics. J Anim Sci Biotechnol 2019; 10:74. [PMID: 31528339 PMCID: PMC6740008 DOI: 10.1186/s40104-019-0380-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Probiosis is considered a potential strategy to reduce antibiotics use and prevent post-weaning diarrhea (PWD). This study investigated the effect of Bacillus amyloliquefaciens DSM25840 or Bacillus subtilis DSM25841 supplementation on growth, health, immunity, intestinal functionality and microbial profile of post-weaning pigs after enterotoxigenic E. coli (ETEC) F4 challenge. Methods Sixty-four post-weaning piglets (7748 g ± 643 g) were randomly allocated to four groups: control basal diet (CO); CO + 1.28 × 106 CFU/g of B. amyloliquefaciens (BAA); CO + 1.28 × 106 CFU/g feed of B. subtilis (BAS); CO + 1 g colistin/kg of feed (AB). At day (d) 7, animals were challenged with 105 CFU/mL of ETEC F4ac O149 and then followed for fecal score and performance until d 21. Blood was collected at d 6, d 12 and d 21 for immunoglobulins, at d 8 for acute phase proteins, at d 8 and d 21 for metabolomics analysis. Jejunum was sampled for morphometry, quantification of apoptosis, cell proliferation, neutral and acid mucine and IgA secretory cells, and microarray analysis at d 21. Jejunum and cecum contents were collected for microbiota at d 21. Results AB and BAS reduced the fecal score impairment compared to CO (P < 0.05) at d 14. Body weight (BW), average daily weight gain (ADWG), average daily feed intake (ADFI) and gain to feed ratio (G:F) did not differ between Bacillus groups and CO. AB improved BW at d 7, d 14 and d 21, ADWG ADFI and G:F from d 0 to d 7 (P < 0.05). At d 8, CO had higher plasma arginine, lysine, ornithine, glycine, serine and threonine than other groups, and higher haptoglobin than AB (P < 0.05). At d 21, CO had lower blood glycine, glutamine and IgA than BAS. Morphology, cells apoptosis and mucins did not differ. BAS and AB increased the villus mitotic index. Transcriptome profile of BAS and AB were more similar than CO. Gene sets related to adaptive immune response were enriched in BAA, BAS and AB. CO had enriched gene set for nuclear structure and RNA processing. CO had a trend of higher Enterobacteriaceae in cecum than the other groups (P = 0.06). Conclusion Bacillus subtilis DSM25841 treatment may reduce ETEC F4ac infection in weaned piglets, decreasing diarrhea and influencing mucosal transcriptomic profile.
Collapse
Affiliation(s)
- Diana Luise
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Micol Bertocchi
- 2Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, Campobasso, Italy
| | - Vincenzo Motta
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Chiara Salvarani
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Paolo Bosi
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Andrea Luppi
- 3Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Bruno Ubertini, V. Bianchi 9, 25124 Brescia, Italy
| | - Flaminia Fanelli
- 4Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna - S.Orsola-Malpighi Hospital, via Massarenti 9, 40138 Bologna, Italy
| | - Maurizio Mazzoni
- 5Department of Veterinary Medical Sciences, University of Bologna, Via. Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Ivonne Archetti
- 3Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Bruno Ubertini, V. Bianchi 9, 25124 Brescia, Italy
| | - Giuseppe Maiorano
- 2Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, Campobasso, Italy
| | | | - Paolo Trevisi
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
46
|
Kim K, He Y, Xiong X, Ehrlich A, Li X, Raybould H, Atwill ER, Maga EA, Jørgensen J, Liu Y. Dietary supplementation of Bacillus subtilis influenced intestinal health of weaned pigs experimentally infected with a pathogenic E. coli. J Anim Sci Biotechnol 2019. [DOI: 10.1186/s40104-019-0364-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
47
|
Barba-Vidal E, Martín-Orúe SM, Castillejos L. Practical aspects of the use of probiotics in pig production: A review. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Li H, Li H, Xie P, Li Z, Yin Y, Blachier F, Kong X. Dietary supplementation with fermented Mao-tai lees beneficially affects gut microbiota structure and function in pigs. AMB Express 2019; 9:26. [PMID: 30778768 PMCID: PMC6379501 DOI: 10.1186/s13568-019-0747-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022] Open
Abstract
Gut microbiota positively contribute to livestock nutrition and metabolism. The manipulation of these microbes may improve animal health. Some feed additives improve livestock health and metabolism by regulating gut microbiota composition and activity. We fed hybrid pigs diets supplemented with 0% (control), 5% (treat 1), 10% (treat 2), or 15% (treat 3) fermented Mao-tai lees (FML) for 90 days. Short-chain fatty acids (SCFAs), bioamines, and microbial communities found in colonic contents were analyzed to investigate microbiota composition and metabolic profiles. Concentrations of straight-chain fatty acids (e.g., acetate, propionate, and butyrate) and tyramine increased with FML supplementation content. Contrary to the minor effects of 5% and 10% FML on gut microbiota, 15% FML influenced beta diversity (Jaccard or Bray-Curtis dissimilarity) but not alpha diversity (number of operational taxonomic units and Shannon diversity) of pig gut microbial communities compared to the control group. Notably, 15% FML animals were characterized by a higher abundance of potentially beneficial bacteria (Lactobacillus and Akkermansia) but lower abundances of potential pathogens (Escherichia). Numerous genes associated with metabolism (e.g., starch, sucrose, and sulfur-compounds metabolism) showed a higher relative abundance in the 15% FML than in the control group. Additionally, most Phascolarctobacterium, Treponema, Prevotella, and Faecalibacterium bacterial markers in the 15% FML group were positively correlated with straight-chain fatty acid concentrations, suggesting that these bacteria are likely associated with SCFA production. Taken together, our findings demonstrate the beneficial effects of 15% FML on fermentation of undigested compounds and gut microbiota composition in the colon. Thus, 15% FML supplementation in pig feed may possibly represent a way to optimize pig colon health for livestock farming.
Collapse
|
49
|
Li JH, Yousif MH, Li ZQ, Wu ZH, Li SL, Yang HJ, Wang YJ, Cao ZJ. Effects of antibiotic residues in milk on growth, ruminal fermentation, and microbial community of preweaning dairy calves. J Dairy Sci 2019; 102:2298-2307. [PMID: 30692007 DOI: 10.3168/jds.2018-15506] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate the effects of antibiotic residues in milk on growth, ruminal fermentation, and microbial community of dairy calves in their first 35 d of age. Twenty newborn Holstein bull calves were assigned to 1 of 2 treatments equally: milk replacer without antibiotics (control) and milk replacer plus 4 antibiotics: 0.024 mg/L of penicillin, 0.025 mg/L of streptomycin, 0.1 mg/L of tetracycline, and 0.33 mg/L of ceftiofur (ANT). Starter intake and fecal consistency scores of each calf were recorded on a daily basis. Body weight, withers height, body length, and heart girth were measured on d 1, 7, 14, 21, 28, and 35 before feeding in the morning. Rumen fluid was collected on d 15, 25, and 35 to determine ruminal pH, volatile fatty acids (VFA), and NH3-N concentrations. A total of 10 (5 per treatment) samples of rumen fluid taken on d 35 were analyzed for microbial community. Rumen tissues from the cranial ventral sac and cranial dorsal sac were collected from 8 calves of each group for morphology analysis on d 35 after being harvested. The results showed that calves in 2 treatments had similar starter intake, body weight, withers height, body length, heart girth, and average daily gain. The ANT group showed a lower diarrhea frequency in wk 4, and no differences were found for other weeks. Calves in the ANT group exhibited a greater concentration of acetic acid in the rumen and no differences for other VFA, total VFA, rumen pH, or NH3-N. As for rumen morphology, the length of papillae from cranial ventral sac of the ANT group was longer than that of the control group. The results of ruminal microbial community showed that antibiotic residues had minor effects on bacteria phyla and bacteria diversity. At the genus level, calves in the ANT group showed lower richness of Prevotella and higher richness of Acetitomaculum. In conclusion, antibiotic residues stimulated the development of ruminal papillae and increased the production of acetic acid in rumen, which might be caused by the influence of antibiotics on the ruminal microbial community.
Collapse
Affiliation(s)
- J H Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - M H Yousif
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Z Q Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471003, China
| | - Z H Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - S L Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - H J Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Y J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Z J Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
Effects of Early Intervention with Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite Profiles of Piglets. Metabolites 2018; 8:metabo8040089. [PMID: 30563199 PMCID: PMC6316024 DOI: 10.3390/metabo8040089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022] Open
Abstract
We investigated the effects of early intervention with maternal fecal microbiota and antibiotics on gut microbiota and the metabolites. Five litters of healthy neonatal piglets (Duroc × Landrace × Yorkshire, nine piglets in each litter) were used. Piglets in each litter were orally treated with saline (CO), amoxicillin treatment (AM), or maternal fecal microbiota transplantation (MFMT) on days 1–6, with three piglets in each treatment. Results were compared to the CO group. MFMT decreased the relative abundances of Clostridium sensu stricto and Parabacteroides in the colon on day 7, whereas the abundance of Blautia increased, and the abundance of Corynebacterium in the stomach reduced on day 21. AM reduced the abundance of Arcanobacterium in the stomach on day 7 and reduced the abundances of Streptococcus and Lachnoclostridium in the ileum and colon on day 21, respectively. The metabolite profile indicated that MFMT markedly influenced carbohydrate metabolism and amino acid (AA) metabolism on day 7. On day 21, carbohydrate metabolism and AA metabolism were affected by AM. The results suggest that MFMT and AM discriminatively modulate gastrointestinal microflora and alter the colonic metabolic profiles of piglets and show different effects in the long-term. MFMT showed a location-specific influence on the gastrointestinal microbiota.
Collapse
|