1
|
Shao Y, Zhang X, Zhang H, Tian B, Weng Y, Huang J, Lu CD, Shi H. Effects of Dietary Supplementation of Bovine Lactoferricin on Rumen Microbiota, Lactation, and Health in Dairy Goats. Front Nutr 2021; 8:722303. [PMID: 34552955 PMCID: PMC8450446 DOI: 10.3389/fnut.2021.722303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the biological effects of supplementation of bovine lactoferricin (BLFc) at the rate of 100 mg/kg/day (LF-1) or 200 mg/kg/day (LF-2) in lactating dairy goats. Dietary BLFc supplementation increased the concentration of lactoferrin (LF) in the milk and serum (p < 0.05) without affecting the feed intake. In the LF-1 group, serum Fe, total antioxidant (T-AOC), and immunoglobulin A (IgA) were increased (p < 0.05), while malondialdehyde (MDA) was decreased (p < 0.05). In the LF-2 group, ruminal fluid pH value was decreased (p < 0.05), and the composition of ruminal microflora on day 42 was more diversified. Firmicutes phylum in the LF-2 group was the most abundant phyla. In contrast, Bacteroidetes phylum in the control group and the LF-1 group were the most abundant. Lower milk somatic cell count and higher IgA were observed in the LF-1 group and the LF-2 group than those in the control group (p < 0.05). These results suggested beneficial effects of supplementation of 100 mg/kg/day BLFc on reducing the oxidative stress and altering diversity of ruminal microflora.
Collapse
Affiliation(s)
- Yuexin Shao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xian Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huawen Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bowen Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yunan Weng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Christopher D Lu
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii, Hilo, HI, United States
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Taghipoor M, Delattre M, Giger-Reverdin S. A novel modelling approach to quantify the response of dairy goats to a high-concentrate diet. Sci Rep 2020; 10:20376. [PMID: 33230137 PMCID: PMC7683544 DOI: 10.1038/s41598-020-77353-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022] Open
Abstract
High-producing ruminants need high-concentrate diets to satisfy their nutrient requirements and meet performance objectives. However, such diets induce sub-acute ruminal acidosis (SARA), which will adversely affect dry matter intake and lead to lower production performance. This work develops a novel modelling approach to quantify the capacity of dairy goats to adapt to a high-concentrate diet challenge at the individual level. The animal model used was dairy goats (from Saanen or Alpine breed), and rumen pH was used as the indicator of the response. A three-step modelling procedure was developed to quantify daily scores and produce a single global index for animals' adaptive response to the new diet. The first step summarizes the post-prandial kinetics of rumen acid status using three synthetic variables. In the second step, the effect of time on the response of goats is described, in the short and long terms. In the last step, a metric based on phase trajectories ranks goats for their resilience capacity. This modelling procedure showed a high variability among the goats in response to the new diet, highlighting in particular their daily and general strategies to buffer the effect of the diet change. Two main categories of adaptive strategies were observed: (i) acid status increased, but the goats tried to minimize its variations, and (ii) acid status oscillated between increases and decreases. Such phenotyping, alongside other behavioral, digestive, and metabolic measures, can help to determine biomarkers of goats' capacity to adapt to diets of higher nutritive value and to increase production performance without compromising their health status. Quantifying the capacity of goats to buffer the effect of highly fermentable diets helps to better adapt feed to animals in precision livestock farming. This procedure is generic and can be adapted to any indicator of animal health and performance. In particular, several indicators can be combined to assess multi-performance, which is of major interest in the context of selection for robust animals.
Collapse
Affiliation(s)
- Masoomeh Taghipoor
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 75005, Paris, France.
| | - Maud Delattre
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Sylvie Giger-Reverdin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 75005, Paris, France
| |
Collapse
|
3
|
Saro C, Molina-Alcaide E, Abecia L, Ranilla MJ, Carro MD. Comparison of automated ribosomal intergenic spacer analysis (ARISA) and denaturing gradient gel electrophoresis (DGGE) techniques for analysing the influence of diet on ruminal bacterial diversity. Arch Anim Nutr 2018; 72:85-99. [PMID: 29381103 DOI: 10.1080/1745039x.2018.1429135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was to compare the automated ribosomal intergenic spacer analysis (ARISA) and the denaturing gradient gel electrophoresis (DGGE) techniques for analysing the effects of diet on diversity in bacterial pellets isolated from the liquid (liquid-associated bacteria (LAB)) and solid (solid-associated bacteria (SAB)) phase of the rumen. The four experimental diets contained forage to concentrate ratios of 70:30 or 30:70 and had either alfalfa hay or grass hay as forage. Four rumen-fistulated animals (two sheep and two goats) received the diets in a Latin square design. Bacterial pellets (LAB and SAB) were isolated at 2 h post-feeding for DNA extraction and analysed by ARISA and DGGE. The number of peaks in individual samples ranged from 48 to 99 for LAB and from 41 to 95 for SAB with ARISA, and values of DGGE-bands ranged from 27 to 50 for LAB and from 18 to 45 for SAB. The LAB samples from high concentrate-fed animals tended (p < 0.10) to show greater peak numbers and Shannon index values than those isolated from high forage-fed animals with ARISA, but no differences were identified with DGGE. The SAB samples from high concentrate-fed animals had lower (p < 0.05) peak numbers and Shannon index values than those from animals fed high-forage diets with ARISA, but only a trend was noticed for these parameters with DGGE (p < 0.10). The ARISA detected that animals fed alfalfa hay diets showed lower (p < 0.05) SAB diversity than those fed grass hay diets, but no differences were observed with DGGE. No effect of forage type on LAB diversity was detected by any technique. In this study, ARISA detected some changes in ruminal bacterial communities that were not detected by DGGE, and therefore ARISA was considered more appropriate for assessing bacterial diversity of ruminal bacterial pellets. The results highlight the impact of the fingerprinting technique used to draw conclusions on dietary factors affecting bacterial diversity in ruminal bacterial pellets.
Collapse
Affiliation(s)
- Cristina Saro
- a Dpto. Producción Animal , Universidad de León , León , Spain
| | | | - Leticia Abecia
- b Estación Experimental del Zaidín (CSIC) , Granada , Spain
| | - María José Ranilla
- a Dpto. Producción Animal , Universidad de León , León , Spain.,c Instituto de Ganadería de Montaña (CSIC) , León , Spain
| | - María Dolores Carro
- d Dpto. Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas , Universidad Politécnica de Madrid, Ciudad Universitaria , Madrid , Spain
| |
Collapse
|
4
|
Abecia L, Soto EC, Ramos-Morales E, Molina-Alcaide E. Microbial and chemical composition of liquid-associated bacteria in goats' rumen and fermenters. J Anim Physiol Anim Nutr (Berl) 2014; 98:1001-12. [DOI: 10.1111/jpn.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/20/2013] [Indexed: 12/01/2022]
Affiliation(s)
- L. Abecia
- Estación Experimental del Zaidín (CSIC); Granada Spain
| | - E. C. Soto
- Estación Experimental del Zaidín (CSIC); Granada Spain
| | | | | |
Collapse
|
5
|
Romero-Huelva M, Molina-Alcaide E. Nutrient utilization, ruminal fermentation, microbial nitrogen flow, microbial abundances, and methane emissions in goats fed diets including tomato and cucumber waste fruits1. J Anim Sci 2013; 91:914-23. [DOI: 10.2527/jas.2012-5212] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M. Romero-Huelva
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - E. Molina-Alcaide
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
6
|
Hristov A, Lee C, Hristova R, Huhtanen P, Firkins J. A meta-analysis of variability in continuous-culture ruminal fermentation and digestibility data. J Dairy Sci 2012; 95:5299-5307. [DOI: 10.3168/jds.2012-5533] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/13/2012] [Indexed: 12/18/2022]
|
7
|
Soto EC, Yáñez-Ruiz DR, Cantalapiedra-Hijar G, Vivas A, Molina-Alcaide E. Changes in ruminal microbiota due to rumen content processing and incubation in single-flow continuous-culture fermenters. ANIMAL PRODUCTION SCIENCE 2012. [DOI: 10.1071/an11312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the impact of rumen content manipulation and its incubation in an in vitro system on the abundance of some microbial groups and the bacterial diversity of goat rumens. Animals and single-flow continuous-culture fermenters were fed diets differing in forage to concentrate ratio (70 : 30; LC and 30 : 70; HC). Rumen contents were sampled after animals’ adaptation to the experimental diets, processed for inoculum preparation and inoculated into fermenters. Fermenter contents were sampled 1 and 7 days after inoculation. Total bacteria, Fibrobacter succinogenes, fungi and methanogen abundances were lower in the fermenter than in goat rumens, but no differences were found for Ruminococcus flavefaciens. The abundances of all these microorganisms were similar at 1 and 7 days of rumen content incubation in fermenters. Bacterial species richness did not change due to rumen content processing or the in vitro incubation. Shannon–Wiener index and Pielou evenness were lower in the fermenter than in rumen only when the enzyme HaeIII was used in terminal-restriction fragment length polymorphism analysis. Non-metric multidimensional scaling analysis, both in denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, showed a segregation of in vivo and in vitro samples, but no trends of grouping for fermenter samples was observed. The HC diet promoted higher abundance of total bacteria than LC in rumen but not in fermenters. Diet only had an effect on bacterial diversity when the enzyme HaeIII was considered. Rumen content processing and incubation in fermenters caused an important decline of the studied ruminal microbial groups although bacterial community structure and diversity did not significantly change.
Collapse
|
8
|
Cantalapiedra-Hijar G, Yáñez-Ruiz D, Newbold C, Molina-Alcaide E. The effect of the feed-to-buffer ratio on bacterial diversity and ruminal fermentation in single-flow continuous-culture fermenters. J Dairy Sci 2011; 94:1374-84. [DOI: 10.3168/jds.2010-3260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022]
|