1
|
Zeng R, Huang X, Fu W, Ji W, Cai W, Xu M, Lan D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. Int J Mol Sci 2024; 25:9431. [PMID: 39273379 PMCID: PMC11394755 DOI: 10.3390/ijms25179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yak is an excellent germplasm resource on the Tibetan Plateau and is able to live in high-altitude areas with hypoxic, cold, and harsh environments. Studies on induced pluripotent stem cells (iPSCs) in large ruminants commonly involve a combination strategy involving six transcription factors, Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28 (OSKMNL). This strategy tends to utilize genes from the same species to optimize pluripotency maintenance. In this study, we cloned the six pluripotency genes (OSKMNL) from yak and constructed a multi-cistronic lentiviral vector carrying these genes. This vector efficiently delivered the genes into yak fibroblasts, aiming to promote the reprogramming process. We verified that the treated cells had several pluripotency characteristics, marking the first successful construction of a lentiviral system carrying yak pluripotency genes. This achievement lays the foundation for subsequent establishment of yak iPSCs and holds significant implications for yak-breed improvement and germplasm-resource conservation.
Collapse
Affiliation(s)
- Ruilin Zeng
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianpeng Huang
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenhui Ji
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenyi Cai
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Wu Y, Wang C, Fan X, Ma Y, Liu Z, Ye X, Shen C, Wu C. The impact of induced pluripotent stem cells in animal conservation. Vet Res Commun 2024; 48:649-663. [PMID: 38228922 DOI: 10.1007/s11259-024-10294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
It is widely acknowledged that we are currently facing a critical tipping point with regards to global extinction, with human activities driving us perilously close to the brink of a devastating sixth mass extinction. As a promising option for safeguarding endangered species, induced pluripotent stem cells (iPSCs) hold great potential to aid in the preservation of threatened animal populations. For endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni), supply of embryos is often limited. After the death of the last male in 2019, only two females remained in the world. IPSC technology offers novel approaches and techniques for obtaining pluripotent stem cells (PSCs) from rare and endangered animal species. Successful generation of iPSCs circumvents several bottlenecks that impede the development of PSCs, including the challenges associated with establishing embryonic stem cells, limited embryo sources and immune rejection following embryo transfer. To provide more opportunities and room for growth in our work on animal welfare, in this paper we will focus on the progress made with iPSC lines derived from endangered and extinct species, exploring their potential applications and limitations in animal welfare research.
Collapse
Affiliation(s)
- Yurou Wu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chengwei Wang
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xinyun Fan
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yuxiao Ma
- Department of Biology, New York University, New York, NY, USA
| | - Zibo Liu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xun Ye
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chongyang Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
- Sichuan Engineering Research Center for Endangered Medicinal Animals, Chengdu, China.
| |
Collapse
|
3
|
Chen L, Tang B, Xie G, Yang R, Zhang B, Wang Y, Zhang Y, Jiang D, Zhang X. Bovine Pluripotent Stem Cells: Current Status and Prospects. Int J Mol Sci 2024; 25:2120. [PMID: 38396797 PMCID: PMC10889747 DOI: 10.3390/ijms25042120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pluripotent stem cells (PSCs) can differentiate into three germ layers and diverse autologous cell lines. Since cattle are the most commonly used large domesticated animals, an important food source, and bioreactors, great efforts have been made to establish bovine PSCs (bPSCs). bPSCs have great potential in bovine breeding and reproduction, modeling in vitro differentiation, imitating cancer development, and modeling diseases. Currently, bPSCs mainly include bovine embryonic stem cells (bESCs), bovine induced pluripotent stem cells (biPSCs), and bovine expanded potential stem cells (bEPSCs). Establishing stable bPSCs in vitro is a critical scientific challenge, and researchers have made numerous efforts to this end. In this review, the category of PSC pluripotency; the establishment of bESCs, biPSCs, and bEPSCs and its challenges; and the application outlook of bPSCs are discussed, aiming to provide references for future research.
Collapse
Affiliation(s)
- Lanxin Chen
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guanghong Xie
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Jiang Y, Cai NN, An XL, Zhu WQ, Yang R, Tang B, Li ZY, Zhang XM. Naïve-like conversion of bovine induced pluripotent stem cells from Sertoli cells. Theriogenology 2023; 196:68-78. [PMID: 36401934 DOI: 10.1016/j.theriogenology.2022.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Feeder cells are essential to derive pluripotent stem cells (PSCs). Mouse embryonic fibroblasts (MEF) are widely used as feeder to generate and culture embryonic stem cells (ESCs) and induced PSCs (iPSCs) in many species. However it may not be suitable for livestock ESCs/iPSCs due to interspecies difference. Previously we derived bovine iPSCs from bovine Sertoli cells using MEF feeder. Here we compared the effects of MEF feeder and bovine embryonic fibroblasts (BEF) feeder on the maintenance of bovine iPSC pluripotency and morphology as well their contributions to the naïve-like conversion, based on a naïve medium (NM). The results showed successful conversion of the primed bovine iPSCs to naïve-like state within 3-4 days both on MEF feeder and BEF feeder in NM (termed as MNM and BNM respectively). These naïve-like iPSCs showed normal karyotype. There were more iPSC colonies under BNM condition than MNM condition. Epigenetically, histone modification H3K4 was upregulated, while H3K27 was downregulated in the naïve-like iPSCs. We further analyzed the naïve markers and differentiation potential both in vitro and in vivo of these cells, which were all reserved throughout the maintenance. Together, bovine naïve-like iPSCs can be generated both on MEF and BEF feeder in NM condition. The BNM condition is able to sustain the pluripotency and differentiation potential of the naïve-like bovine iPSCs, and improve the conversion efficiency.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning-Ning Cai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xing-Lan An
- First Hospital, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi-Yi Li
- First Hospital, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Widerspick L, Steffen JF, Tappe D, Muñoz-Fontela C. Animal Model Alternatives in Filovirus and Bornavirus Research. Viruses 2023; 15:158. [PMID: 36680198 PMCID: PMC9863967 DOI: 10.3390/v15010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The order Mononegavirales contains a variety of highly pathogenic viruses that may infect humans, including the families Filoviridae, Bornaviridae, Paramyxoviridae, and Rhabodoviridae. Animal models have historically been important to study virus pathogenicity and to develop medical countermeasures. As these have inherent shortcomings, the rise of microphysiological systems and organoids able to recapitulate hallmarks of the diseases caused by these viruses may have enormous potential to add to or partially replace animal modeling in the future. Indeed, microphysiological systems and organoids are already used in the pharmaceutical R&D pipeline because they are prefigured to overcome the translational gap between model systems and clinical studies. Moreover, they may serve to alleviate ethical concerns related to animal research. In this review, we discuss the value of animal model alternatives in human pathogenic filovirus and bornavirus research. The current animal models and their limitations are presented followed by an overview of existing alternatives, such as organoids and microphysiological systems, which might help answering open research questions.
Collapse
Affiliation(s)
- Lina Widerspick
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| | | | - Dennis Tappe
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- National Reference Center for Tropical Pathogens, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Zhou M, Zhang M, Guo T, Zhao L, Guo X, Yin Z, Cheng L, Liu H, Zhao L, Li X, Li R. Species origin of exogenous transcription factors affects the activation of endogenous pluripotency markers and signaling pathways of porcine induced pluripotent stem cells. Front Cell Dev Biol 2023; 11:1196273. [PMID: 37152293 PMCID: PMC10160484 DOI: 10.3389/fcell.2023.1196273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The incomplete silencing of exogenous transcription factors (TFs) and the lack of endogenous counterpart activation hampers the application of porcine induced pluripotent stem cells (piPSCs). We used porcine, bovine and murine TFs to reprogram porcine fetal fibroblasts. Porcine TFs-derived piPSCs (ppiPSCs) showed the highest levels of endogenous pluripotency markers activation, were able to differentiate into three germ layers and primordial germ cell-like cells (PGCLCs) and integrated into neural ectoderm of E7.5 mouse embryos in vitro. The bovine TFs derived piPSCs (bpiPSCs) expressed endogenous pluripotency markers higher than murine TFs derived piPSCs (mpiPSCs), but both had limited differentiation ability in vitro and depended on continuous expression of exogenous TFs for the maintenance. RNA sequencing confirmed ppiPSCs had distinct global transcriptional profiling, upregulated Hippo, PI3K-Akt, MAPK and relevant pluripotency signaling pathways as porcine blastocyst inner cell mass and expressed PGC early related genes. In addition, a positive and a negative correlation between exogenous and endogenous TFs' expression level were observed in ppiPSCs and bpiPSCs lines, respectively. The TFs' protein structures in pig were more similar to cattle than to mouse. In conclusion, the species affinity of the exogenous TFs is a key element, and the own species origin of TFs is optimal for iPSCs generation and application.
Collapse
Affiliation(s)
- Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Tianxu Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiyun Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Linxin Cheng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Han Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lixia Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Rongfeng Li,
| |
Collapse
|
7
|
Verma R, Lee Y, Salamone DF. iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals (Basel) 2022; 12:3187. [PMID: 36428414 PMCID: PMC9686897 DOI: 10.3390/ani12223187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is an emerging technique to reprogram somatic cells into iPSCs that have revolutionary benefits in the fields of drug discovery, cellular therapy, and personalized medicine. However, these applications are just the tip of an iceberg. Recently, iPSC technology has been shown to be useful in not only conserving the endangered species, but also the revival of extinct species. With increasing consumer reliance on animal products, combined with an ever-growing population, there is a necessity to develop alternative approaches to conventional farming practices. One such approach involves the development of domestic farm animal iPSCs. This approach provides several benefits in the form of reduced animal death, pasture degradation, water consumption, and greenhouse gas emissions. Hence, it is essentially an environmentally-friendly alternative to conventional farming. Additionally, this approach ensures decreased zoonotic outbreaks and a constant food supply. Here, we discuss the iPSC technology in the form of a "Frozen Ark", along with its potential impact on spreading awareness of factory farming, foodborne disease, and the ecological footprint of the meat industry.
Collapse
Affiliation(s)
- Rajneesh Verma
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
| | - Younghyun Lee
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
- Laboratory of Reproductive Biotechnology, Building 454, Rm 343, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Daniel F. Salamone
- Department de Produccion Animal, Facultad de Agronomia, University of Buenos Aires, Av. San Martin 4453 Ciudad Autonoma de Buenos Aires, Buenos Aires B1406, Argentina
| |
Collapse
|
8
|
Recchia K, Pessôa LVDF, Pieri NCG, Pires PRL, Bressan FF. Influence of Cell Type in In Vitro Induced Reprogramming in Cattle. Life (Basel) 2022; 12:1139. [PMID: 36013318 PMCID: PMC9409886 DOI: 10.3390/life12081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been considered an essential tool in stem cell research due to their potential to develop new therapies and technologies and answer essential questions about mammalian early development. An important step in generating iPSCs is selecting their precursor cell type, influencing the reprogramming efficiency and maintenance in culture. In this study, we aim to characterize bovine mesenchymal cells from adipose tissue (bAdMSCs) and fetal fibroblasts (bFFs) and to compare the reprogramming efficiency of these cells when induced to pluripotency. The cells were characterized by immunostaining (CD90, SSEA1, SSEA3, and SSEA4), induced differentiation in vitro, proliferation rates, and were subjected to cell reprogramming using the murine OSKM transcription factors. The bFFs presented morphological changes resembling pluripotent cells after reprogramming and culture with different supplementation, and putative iPSCs were characterized by immunostaining (OCT4, SOX2, NANOG, and AP). In the present study, we demonstrated that cell line origin and cellular proliferation rate are determining factors for reprogramming cells into pluripotency. The generation of biPSCs is a valuable tool to improve both translational medicine and animal production and to study the different supplements required to maintain the pluripotency of bovine cells in vitro.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Pedro Ratto Lisboa Pires
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| |
Collapse
|
9
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
10
|
Pillai VV, Koganti PP, Kei TG, Gurung S, Butler WR, Selvaraj V. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells. Biol Open 2021; 10:272681. [PMID: 34719702 PMCID: PMC8565620 DOI: 10.1242/bio.058756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although derivation of naïve bovine embryonic stem cells is unachieved, the possibility for generation of bovine induced pluripotent stem cells (biPSCs) has been generally reported. However, attempts to sustain biPSCs by promoting self-renewal have not been successful. Methods established for maintaining murine and human induced pluripotent stem cells (iPSCs) do not support self-renewal of iPSCs for any bovid species. In this study, we examined methods to enhance complete reprogramming and concurrently investigated signaling relevant to pluripotency of the bovine blastocyst inner cell mass (ICM). First, we identified that forced expression of SV40 large T antigen together with the reprogramming genes (OCT4, SOX2, KLF4 and MYC) substantially enhanced the reprogramming efficacy of bovine fibroblasts to biPSCs. Second, we uncovered that TGFβ signaling is actively perturbed in the ICM. Inhibition of ALK4/5/7 to block TGFβ/activin/nodal signaling together with GSK3β and MEK1/2 supported robust in vitro self-renewal of naïve biPSCs with unvarying colony morphology, steady expansion, expected pluripotency gene expression and committed differentiation plasticity. Core similarities between biPSCs and stem cells of the 16-cell-stage bovine embryo indicated a stable ground state of pluripotency; this allowed us to reliably gain predictive understanding of signaling in bovine pluripotency using systems biology approaches. Beyond defining a high-fidelity platform for advancing biPSC-based biotechnologies that have not been previously practicable, these findings also represent a significant step towards understanding corollaries and divergent aspects of bovine pluripotency. This article has an associated First Person interview with the joint first authors of the paper. Summary: Pluripotency reprogramming by overcoming the stable epigenome of bovine cells, and uncovering precise early embryo self-renewal mechanisms enables sustenance and expansion of authentic induced pluripotent stem cells in vitro.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Shailesh Gurung
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - W Ronald Butler
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
11
|
Su Y, Wang L, Fan Z, Liu Y, Zhu J, Kaback D, Oudiz J, Patrick T, Yee SP, Tian X(C, Polejaeva I, Tang Y. Establishment of Bovine-Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms221910489. [PMID: 34638830 PMCID: PMC8508593 DOI: 10.3390/ijms221910489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Ling Wang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Jiaqi Zhu
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Julia Oudiz
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Tayler Patrick
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Siu Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Xiuchun (Cindy) Tian
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Irina Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
- Correspondence: (I.P.); (Y.T.)
| | - Young Tang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
- Correspondence: (I.P.); (Y.T.)
| |
Collapse
|
12
|
Bessi BW, Botigelli RC, Pieri NCG, Machado LS, Cruz JB, de Moraes P, de Souza AF, Recchia K, Barbosa G, de Castro RVG, Nogueira MFG, Bressan FF. Cattle In Vitro Induced Pluripotent Stem Cells Generated and Maintained in 5 or 20% Oxygen and Different Supplementation. Cells 2021; 10:cells10061531. [PMID: 34204517 PMCID: PMC8234940 DOI: 10.3390/cells10061531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
The event of cellular reprogramming into pluripotency is influenced by several factors, such as in vitro culture conditions (e.g., culture medium and oxygen concentration). Herein, bovine iPSCs (biPSCs) were generated in different levels of oxygen tension (5% or 20% of oxygen) and supplementation (bFGF or bFGF + LIF + 2i-bFL2i) to evaluate the efficiency of pluripotency induction and maintenance in vitro. Initial reprogramming was observed in all groups and bFL2i supplementation initially resulted in a superior number of colonies. However, bFL2i supplementation in low oxygen led to a loss of self-renewal and pluripotency maintenance. All clonal lines were positive for alkaline phosphatase; they expressed endogenous pluripotency-related genes SOX2, OCT4 and STELLA. However, expression was decreased throughout the passages without the influence of oxygen tension. GLUT1 and GLUT3 were upregulated by low oxygen. The biPSCs were immunofluorescence-positive stained for OCT4 and SOX2 and they formed embryoid bodies which differentiated in ectoderm and mesoderm (all groups), as well as endoderm (one line from bFL2i in high oxygen). Our study is the first to compare high and low oxygen environments during and after induced reprogramming in cattle. In our conditions, a low oxygen environment did not favor the pluripotency maintenance of biPSCs.
Collapse
Affiliation(s)
- Brendon Willian Bessi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
- Department of Pharmacology, Institute of Biosciences (IBB), São Paulo State University (UNESP), Botucatu 18618-689, Brazil
- Correspondence: (R.C.B.); (F.F.B.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), São Paulo 05508-270, Brazil
| | - Lucas Simões Machado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
| | - Jessica Brunhara Cruz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
| | - Pamela de Moraes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
| | - Kaiana Recchia
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
| | - Gabriela Barbosa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
- Department of Pathology, Reproduction and One Health, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Botucatu 14884-900, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Department of Biological Science, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, Brazil; (B.W.B.); (N.C.G.P.); (L.S.M.); (J.B.C.); (P.d.M.); (A.F.d.S.); (K.R.); (G.B.); (R.V.G.d.C.)
- Correspondence: (R.C.B.); (F.F.B.)
| |
Collapse
|
13
|
Strategy to Establish Embryo-Derived Pluripotent Stem Cells in Cattle. Int J Mol Sci 2021; 22:ijms22095011. [PMID: 34065074 PMCID: PMC8125899 DOI: 10.3390/ijms22095011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.
Collapse
|
14
|
Pain B, Baquerre C, Coulpier M. Cerebral organoids and their potential for studies of brain diseases in domestic animals. Vet Res 2021; 52:65. [PMID: 33941270 PMCID: PMC8090903 DOI: 10.1186/s13567-021-00931-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The brain is a complex organ and any model for studying it in its normal and pathological aspects becomes a tool of choice for neuroscientists. The mastering and dissemination of protocols allowing brain organoids development have paved the way for a whole range of new studies in the field of brain development, modeling of neurodegenerative or neurodevelopmental diseases, understanding tumors as well as infectious diseases that affect the brain. While studies are so far limited to the use of human cerebral organoids, there is a growing interest in having similar models in other species. This review presents what is currently developed in this field, with a particular focus on the potential of cerebral organoids for studying neuro-infectious diseases in human and domestic animals.
Collapse
Affiliation(s)
- Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France.
| | - Camille Baquerre
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Muriel Coulpier
- UMR1161 Virologie, Anses, INRAE, École Nationale Vétérinaire D'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
15
|
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells have the potential to differentiate to all cell types of an adult individual and are useful for studying development and for translational research. However, extrapolation of mouse and human ESC knowledge to deriving stable ESC lines of domestic ungulates and large livestock species has been challenging. In contrast to ESCs that are usually established from the blastocyst, mouse expanded potential stem cells (EPSCs) are derived from four-cell and eight-cell embryos. We have recently used the EPSC approach and established stem cells from porcine and human preimplantation embryos. EPSCs are molecularly similar across species and have broader developmental potential to generate embryonic and extraembryonic cell lineages. We further explore the EPSC technology for mammalian species refractory to the standard ESC approaches and report here the successful establishment of bovine EPSCs (bEPSCs) from preimplantation embryos of both wild-type and somatic cell nuclear transfer. bEPSCs express high levels of pluripotency genes, propagate robustly in feeder-free culture, and are genetically stable in long-term culture. bEPSCs have enriched transcriptomic features of early preimplantation embryos and differentiate in vitro to cells of the three somatic germ layers and, in chimeras, contribute to both the embryonic (fetal) and extraembryonic cell lineages. Importantly, precise gene editing is efficiently achieved in bEPSCs, and genetically modified bEPSCs can be used as donors in somatic cell nuclear transfer. bEPSCs therefore hold the potential to substantially advance biotechnology and agriculture.
Collapse
|
16
|
Relative abundance of pluripotency-associated candidate genes in immature oocytes and in vitro-produced buffalo embryos ( Bubalus bubalis). ZYGOTE 2021; 29:459-467. [PMID: 33818346 DOI: 10.1017/s0967199421000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was undertaken to analyze the relative abundance (RA) of pluripotency-associated genes (NANOG, OCT4, SOX2, c-MYC, and FOXD3) in different grades of immature oocytes and various stages of in vitro-produced buffalo embryos using RT-qPCR. Results showed that the RA of NANOG, OCT4, and FOXD3 transcripts was significantly higher (P < 0.05) in A grade oocytes compared with the other grades of oocytes. The RA of the c-MYC transcript was significantly higher (P < 0.05) in A grade compared with the C and D grades of oocytes, but the values did not differ significantly from the B grade of oocytes. The RA of the SOX2 transcript was almost similar in all grades of the oocytes. The expression levels of NANOG (P > 0.05), OCT4 (P > 0.05), c-MYC (P > 0.05) and SOX2 (P < 0.05) were higher in the blastocysts compared with the other stages of the embryos. Markedly, FOXD3 expression was significantly higher (P < 0.05) in 8-16-cell embryos compared with the 2-cell and 4-cell embryos and blastocyst, but did not differ significantly from the morula stage of the embryos. In the study, the majority of pluripotency-associated genes showed higher expression in A grade immature oocytes. Therefore, it is concluded that the A grade oocytes appeared to be more developmental competent and are suitable candidates for nuclear cloning research in buffalo. In buffalo, NANOG, OCT4, SOX2, and c-MYC are highly expressed in blastocysts compared with the other stages of embryos.
Collapse
|
17
|
Abstract
Organoids are three-dimensional structures that are derived from the self-organization of stem cells as they differentiate in vitro. The plasticity of stem cells is one of the major criteria for generating organoids most similar to the tissue structures they intend to mimic. Stem cells are cells with unique properties of self-renewal and differentiation. Depending on their origin, a distinction is made between pluripotent (embryonic) stem cells (PSCs), adult (or tissue) stem cells (ASCs), and those obtained by somatic reprogramming, so-called induced pluripotent stem cells (iPSCs). While most data since the 1980s have been acquired in the mouse model, and then from the late 1990s in humans, the process of somatic reprogammation has revolutionized the field of stem cell research. For domestic animals, numerous attempts have been made to obtain PSCs and iPSCs, an approach that makes it possible to omit the use of embryos to derive the cells. Even if the plasticity of the cells obtained is not always optimal, the recent progress in obtaining reprogrammed cells is encouraging. Along with PSCs and iPSCs, many organoid derivations in animal species are currently obtained from ASCs. In this study, we present state-of-the-art stem cell research according to their origins in the various animal models developed.
Collapse
Affiliation(s)
- Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, CSC USC1361, Bron, France.
| |
Collapse
|
18
|
Xiang J, Wang H, Zhang Y, Wang J, Liu F, Han X, Lu Z, Li C, Li Z, Gao Y, Tian Y, Wang Y, Li X. LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine-mouse chimeras from iPSCs and bovine fetal fibroblasts. FEBS J 2021; 288:4394-4411. [PMID: 33524211 DOI: 10.1111/febs.15744] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/19/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Cattle have emerged as one of the most important domestic animals widely used for meat, milk, and fur. Derivation of bovine pluripotent stem cells (PSCs) can be applied in drug selecting and human disease modeling and facilitated agriculture-related applications such as production of genetically excellent cattle by gene editing. Extended PSCs (EPSCs), capable of differentiating into embryonic and extraembryonic parts, have been generated in mouse, human, and pig. Whether bovine EPSCs could be generated, and their chimeric competency remains unclear. This study focused on derivation of bovine EPSCs using LCDM medium and exploring the characteristics of EPSCs among different species, including bovine, mouse, and human EPSCs. Here, using LCDM medium (consisting of hLIF, CHIR99021, (S)-(+)-dimethindene maleate, and minocycline hydrochloride) enables the derivation of bovine EPSCs from induced PSCs (iPSCs) and bovine fetal fibroblasts (BFF) with stable morphology, pluripotent marker expression, and in vitro differentiation ability. Notably, bovine EPSCs exhibited interspecies chimeric contribution to embryonic and extraembryonic tissues in pre-implantation blastocysts and postimplantation bovine-mouse chimeras. Transcriptome analysis revealed the unique molecular characteristics of bovine EPSCs compared with iPSCs. The similarities and differences in molecular features across bovine, human, and mouse EPSCs were also described by transcriptome analysis. Taken together, the LCDM culture system containing chemical cocktails can be used for the establishment and long-term passaging of bovine EPSCs with embryonic and extraembryonic potency in bovine-mouse chimeras. Our findings lay the foundation of generating PSCs in domestic animals and open avenues for basic and applied research in biology, medicine, and agriculture. DATABASE: Gene expression data of bovine EPSCs and bovine iPSCs are available in the GEO databases under the accession number PRJNA693452.
Collapse
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuanyuan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuejie Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhenyu Lu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zihong Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanru Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yujing Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yingjie Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
19
|
FOXC1 Downregulates Nanog Expression by Recruiting HDAC2 to Its Promoter in F9 Cells Treated by Retinoic Acid. Int J Mol Sci 2021; 22:ijms22052255. [PMID: 33668324 PMCID: PMC7956269 DOI: 10.3390/ijms22052255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
FOXC1, a transcription factor involved in cell differentiation and embryogenesis, is demonstrated to be a negative regulator of Nanog in this study. FOXC1 is up-regulated in retinoic acid-induced differentiation of F9 Embryonal Carcinoma (EC) cells; furthermore, FOXC1 specifically inhibits the core pluripotency factor Nanog by binding to the proximal promoter. Overexpression of FOXC1 in F9 or knockdown in 3T3 results in the down-regulation or up-regulation of Nanog mRNA and proteins, respectively. In order to explain the mechanism by which FOXC1 inhibits Nanog expression, we identified the co-repressor HDAC2 from the FOXC1 interactome. FOXC1 recruits HDAC2 to Nanog promoter to decrease H3K27ac enrichment, resulting in transcription inhibition of Nanog. To the best of our knowledge, this is the first report that FOXC1 is involved in the epigenetic regulation of gene expression.
Collapse
|
20
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
21
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
22
|
Hanna M, Sahito RGA, Rateb M, Kachiwal AB, Seddiek HA, Bhutto B, Hescheler J. Generation of transgene-free induced pluripotent stem cells from cardiac fibroblasts of goat embryos. J Stem Cells Regen Med 2020; 16:34-43. [PMID: 33414579 DOI: 10.46582/jsrm.1602007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/11/2020] [Indexed: 11/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold a great potential for therapeutic regenerative medicine. The aim of this study was to generate induced pluripotent stem cells from goat embryonic cardiac tissue derived fibroblasts. The isolated cardiac fibroblasts from the cardiac tissue of goat embryos were positive for alfa smooth muscle actin, vimentin and discoidin domain receptor2. From these cells, we generated transgene free iPSCs using piggyBac transposons / transposase using five transcription factors (Oct4, Sox2, Klf, Myc and Lin 28). The generated iPSCs were SSEA1, SSEA4 and Oct4 positive. They were cultured on neofeeders using 20% Serum replacement - IMDM with bFGF. They could form cystic and compact embryoid bodies that showed differentiated ectodermal and mesodermal like cells when cultured using 20% FBS-IMDM without bFGF. The iPSCs, generated in the frame of this approach were produced without the use of integrating virus and the reprogramming transgenes were removed at the end of the process. Though there were limitations in the approach used, a substantial sign of reprogramming was obtained.
Collapse
Affiliation(s)
- Mira Hanna
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, 50931 Cologne, Germany.,Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | | | - Moshira Rateb
- Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | - Allah Bux Kachiwal
- Department of Veterinary Physiology and Biochemistry, Sindh Agriculture University Tandojam, Pakistan
| | - Hanan A Seddiek
- Department of physiology, Faculty of medicine (Kasr El-Aini) Cairo University, El-Maniel, Cairo 11451, Egypt
| | - Bachal Bhutto
- Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Pakistan
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, 50931 Cologne, Germany
| |
Collapse
|
23
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
24
|
Mavaro I, De Felice E, Palladino A, D'Angelo L, de Girolamo P, Attanasio C. Anatomical templates for tissue (re)generation and beyond. Biotechnol Bioeng 2020; 117:3938-3951. [PMID: 32776516 DOI: 10.1002/bit.27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable alternative to stem cells in regenerative medicine overcoming their ethical limitations, like embryo disruption. Takahashi and Yamanaka in 2006 reprogrammed, for the first time, mouse fibroblasts into iPSCs through the retroviral delivery of four reprogramming factors: Oct3/4, Sox2, c-Myc, and Klf4. Since then, several studies started reporting the derivation of iPSC lines from animals other than rodents for translational and veterinary medicine. Here, we review the potential of using these cells for further intriguing applications, such as "cellular agriculture." iPSCs, indeed, can be a source of in vitro, skeletal muscle tissue, namely "cultured meat," a product that improves animal welfare and encourages the consumption of healthier meat along with environmental preservation. Also, we report the potential of using iPSCs, obtained from endangered species, for therapeutic treatments for captive animals and for assisted reproductive technologies as well. This review offers a unique opportunity to explore the whole spectrum of iPSC applications from regenerative translational and veterinary medicine to the production of artificial meat and the preservation of currently endangered species.
Collapse
Affiliation(s)
- Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Antonio Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
25
|
Bressan FF, Bassanezze V, de Figueiredo Pessôa LV, Sacramento CB, Malta TM, Kashima S, Fantinato Neto P, Strefezzi RDF, Pieri NCG, Krieger JE, Covas DT, Meirelles FV. Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Res Ther 2020; 11:247. [PMID: 32586372 PMCID: PMC7318412 DOI: 10.1186/s13287-020-01716-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results. METHODS Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous and induced differentiation. RESULTS Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs) exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs). CONCLUSIONS The generation of reproducible protocols in different animal species will provide an informative tool for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities in animal breeding through transgenic technology and will support a new era of translational medicine with large animal models.
Collapse
Affiliation(s)
- Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Bassanezze
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Present Address: Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chester Bittencourt Sacramento
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Present Address: Weill Cornell Medicine, Cornell University, Ithaca, USA
| | - Tathiane Maistro Malta
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Simone Kashima
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ricardo De Francisco Strefezzi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - José Eduardo Krieger
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,*Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew's Center for Burns and Plastic Surgery, Chelmsford, United Kingdom.,*Both the authors contributed equally to this article
| |
Collapse
|
27
|
Kowalski K, Brzoska E, Ciemerych MA. The role of CXC receptors signaling in early stages of mouse embryonic stem cell differentiation. Stem Cell Res 2019; 41:101636. [PMID: 31722287 DOI: 10.1016/j.scr.2019.101636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
Interplay between CXCR7 and other CXC receptors, namely CXCR4 or CXCR3, binding such ligands as SDF-1 or ITAC, was shown to regulate multiple cellular processes. The developmental role of signaling pathways mediated by these receptors was proven by the phenotypes of mice lacking either functional CXCR4, or CXCR7, or SDF-1, showing that formation of certain lineages relies on these factors. In this study, using in vitro differentiating mouse embryonic stem cells that lacked the function of CXCR7, we asked the question about the role of CXCR mediated signaling during early steps of differentiation. Our analysis showed that interaction of SDF-1 or ITAC with CXC receptors is necessary for the regulation of crucial developmental regulators expression and that CXCR7 is involved in the control of ESC pluripotency and differentiation into mesodermal lineages.
Collapse
Affiliation(s)
- Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| |
Collapse
|
28
|
Gandolfi F, Arcuri S, Pennarossa G, Brevini TAL. New tools for cell reprogramming and conversion: Possible applications to livestock. Anim Reprod 2019; 16:475-484. [PMID: 32435291 PMCID: PMC7234139 DOI: 10.21451/1984-3143-ar2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Somatic cell nuclear transfer and iPS are both forms of radical cell reprogramming able to transform a fully differentiated cell type into a totipotent or pluripotent cell. Both processes, however, are hampered by low efficiency and, in the case of iPS, the application to livestock species is uncertain. Epigenetic manipulation has recently emerged as an efficient and robust alternative method for cell reprogramming. It is based upon the use of small molecules that are able to modify the levels of DNA methylation with 5-azacitidyne as one of the most widely used. Among a number of advantages, it includes the fact that it can be applied to domestic species including pig, dog and cat. Treated cells undergo a widespread demethylation which is followed by a renewed methylation pattern induced by specific chemical stimuli that lead to the desired phenotype. A detailed study of the mechanisms of epigenetic manipulation revealed that cell plasticity is achieved through the combined action of a reduced DNA methyl transferase activity with an active demethylation driven by the TET protein family. Surprisingly the same combination of molecular processes leads to the transformation of fibroblasts into iPS and regulate the epigenetic changes that take place during early development and, hence, during reprogramming following SCNT. Finally, it has recently emerged that mechanic stimuli in the form of a 3D cell rearrangement can significantly enhance the efficiency of epigenetic reprogramming as well as of maintenance of pluripotency. Interestingly these mechanic stimuli act on the same mechanisms both in epigenetic cell conversion with 5-Aza-CR and in iPS. We suggest that the balanced combination of epigenetic erasing, 3D cell rearrangement and chemical induction can go a long way to obtain ad hoc cell types that can fully exploit the current exiting development brought by gene editing and animal cloning in livestock production.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Italy
| | - Sharon Arcuri
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| |
Collapse
|
29
|
Hoang SN, Ho CNQ, Nguyen TTP, Doan CC, Tran DH, Le LT. Evaluation of stemness marker expression in bovine ovarian granulosa cells. Anim Reprod 2019; 16:277-281. [PMID: 33224287 PMCID: PMC7673596 DOI: 10.21451/1984-3143-ar2018-0083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to assess the stemness marker expressions (Oct4, Nanog, and Sox2) of granulosa cells (GCs) collected from bovine ovarian follicles and in vitro expansion. The single bovine ovarian follicles were isolated and categorized into 4 groups according to their diameter including group A (<2 mm), group B (2-3 mm), group C (3-4 mm), and group D (>4 mm). Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and immunostaining were applied to evaluate the stemness marker expression of bovine GCs from ovarian follicles. We also estimated the stemness marker transcript expressions of GCs during in vitro expression by qRT-PCR. qRT-PCR analysis demonstrated that fresh GCs from bovine ovarian follicles expressed the stemness markers (Oct4, Nanog, Sox2). These markers were down-regulated during antral stage follicular development. We also estimated stemness marker transcript expressions of GCs which were isolated and in vitro expanded from ovarian follicles of group A. The qRT-PCR results showed that Oct4 and Sox2 transcript expressions were reduced during in vitro expansion while Nanog transcript was not expressed.
Collapse
Affiliation(s)
- Son Nghia Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Chi Nguyen Quynh Ho
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thao Thi Phuong Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Chung Chinh Doan
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Diem Hong Tran
- Department of Internal Medicine - Cardiology, UT Southwestern Medical Center, Dallas, TX
| | - Long Thanh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
30
|
Rawat N, Singh MK, Sharma T, Vats P, Nagoorvali D, Palta P, Chauhan MS, Manik RS. Media switching at different time periods affects the reprogramming efficiency of buffalo fetal fibroblasts. Anim Biotechnol 2019; 32:155-168. [PMID: 31599201 DOI: 10.1080/10495398.2019.1671435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Many contrasting reports are available on generation of bovine induced pluripotent stem cells (iPSCs) employing different timelines and culture conditions which signifies reprogramming process varies between species and cell types. The present study determines an optimum time period required to re-initiate reprogramming events in buffalo fibroblasts after introduction of exogenous genes (OCT4, SOX2, KLF4 and c-MYC) by lentiviral vector. The reprogramming efficiency is cumulative result of many factors including culture conditions and addition of growth factors in culture media. In our study, we observed when stem cell culture conditions were provided Day 5 post-transduction, it results in maximum reprogramming efficiency in comparison when same conditions were provided too early or on later days. The putative iPSCs were expanded on feeder layer for 15 passages and found positive for alkaline phosphatase and pluripotency markers (OCT4, SOX2, KLF4, c-MYC, UTF, TELOMERASE, FOXD3, REX1, STAT3, NUCLEOSTAMIN and TRA1-81). Also, they produced embryoid bodies showing expression for ectodermal (NF68, MOBP), mesodermal (ASA, BMP4) and endodermal (GATA4, AFP) markers to confirm their pluripotent nature. Our results suggest that reprogramming is accompanied by time dependent events and providing stem cell culture conditions at definite time during reprogramming can help in generation of iPSCs with greater efficiency.
Collapse
Affiliation(s)
- Nidhi Rawat
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj Kumar Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Sharma
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Preeti Vats
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - D Nagoorvali
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manmohan Singh Chauhan
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.,ICAR-Central Institute for Research on Goats, Makhdum, India
| | - Radhey Sham Manik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
31
|
Pessôa LVDF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J Stem Cells 2019; 11:491-505. [PMID: 31523369 PMCID: PMC6716087 DOI: 10.4252/wjsc.v11.i8.491] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Up until the mid 2000s, the capacity to generate every cell of an organism was exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka developed an alternative method of generating embryonic-like stem cells from adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. The possibility of generating “custom-made” pluripotent cells, ideal for patient-specific disease models, alongside their possible applications in regenerative medicine and reproduction, has drawn a lot of attention to the field with numbers of iPSC studies published growing exponentially. IPSCs have now been generated for a wide variety of species, including but not limited to, mouse, human, primate, wild felines, bovines, equines, birds and rodents, some of which still lack well-established embryonic stem cell lines. The paucity of robust characterization of some of these iPSC lines as well as the residual expression of transgenes involved in the reprogramming process still hampers the use of such cells in species preservation or medical research, underscoring the requirement for further investigations. Here, we provide an extensive overview of iPSC generated from a broad range of animal species including their potential applications and limitations.
Collapse
Affiliation(s)
- Laís Vicari de Figueiredo Pessôa
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-000, São Paulo, Brazil
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| |
Collapse
|
32
|
Pillai VV, Kei TG, Reddy SE, Das M, Abratte C, Cheong SH, Selvaraj V. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim Sci J 2019; 90:1149-1160. [PMID: 31322312 DOI: 10.1111/asj.13272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Mechanisms that direct reprogramming of differentiated somatic cells to induced pluripotent stem cells (iPSCs), albeit incomplete in understanding, are highly conserved across all mammalian species studied. Equally, proof of principle that iPSCs can be derived from domestic cattle has been reported in several publications. In our efforts to derive and study bovine iPSCs, we encountered inadequacy of methods to generate, sustain, and characterize these cells. Our results suggest that iPSC protocols optimized for mouse and human somatic cells do not effectively translate to bovine somatic cells, which show some refractoriness to reprogramming that also affects sustenance. Moreover, methods that enhance reprogramming efficiency in mouse and human cells had no effect on improving bovine cell reprogramming. Although use of retroviral vectors coding for bovine OCT4, SOX2, KLF4, cMYC, and NANOG appeared to produce consistent iPSC-like cells from both fibroblasts and cells from the Wharton's jelly, these colonies could not be sustained. Use of bovine genes could successfully reprogram both mouse and human cells. These findings indicated either incomplete reprogramming and/or discordant/inadequate culture conditions for bovine pluripotent stem cells. Therefore, additional studies that advance core knowledge of bovine pluripotency are necessary before any anticipated iPSC-driven bovine technologies can be realized.
Collapse
Affiliation(s)
- Viju V Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Shannon E Reddy
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Christian Abratte
- iPSC Core Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Soon H Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Samiec M, Romanek J, Lipiński D, Opiela J. Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim Sci J 2019; 90:1127-1141. [PMID: 31298467 DOI: 10.1111/asj.13260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
The present study sought to examine whether trichostatin A (TSA)-assisted epigenetic transformation of porcine bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) affects the transcriptional activities of pluripotency-related genes (Oct4, Nanog, c-Myc, Sox2 and Rex1), multipotent stemness-related gene (Nestin) and anti-apoptotic/anti-senescence-related gene (Survivin). Epigenetically transformed or non-transformed BM-MSCs that had been transcriptionally profiled by qRT-PCR and had been analysed for different stages of apoptosis progression provided a source of nuclear donor cells for the in vitro production of cloned pig embryos. TSA-mediated epigenomic modulation has been found to enhance the multipotency extent, stemness and intracellular anti-ageing properties of porcine BM-MSCs. This has been confirmed by the relative abundances for Nanog, c-Myc Rex1, Sox2 and Survivin mRNAs in TSA-exposed BM-MSCs that turned out to be significantly higher than those of TSA-unexposed BM-MSCs. Additionally, TSA-assisted epigenomic modulation of BM-MSCs did not impact the caspase-8 activity, Bax protein expression and the incidence of TUNEL-positive cells. In conclusion, the considerably elevated quantitative profiles of Sox2, Rex1, c-Myc, Nanog and Survivin mRNA transcripts seem to trigger improved reprogrammability of TSA-treated BM-MSC nuclei in cloned pig embryos that thereby displayed remarkably increased blastocyst formation rates as compared to those noticed for embryos derived from TSA-untreated BM-MSCs.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Joanna Romanek
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Opiela
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| |
Collapse
|
34
|
Sanguinet EDO, Siqueira NM, Menezes FDC, Rasia GM, Lothhammer N, Soares RMD, Meirelles FV, Bressan FF, Bos-Mikich A. Interaction of fibroblasts and induced pluripotent stem cells with poly(vinyl alcohol)-based hydrogel substrates. J Biomed Mater Res B Appl Biomater 2019; 108:857-867. [PMID: 31251451 DOI: 10.1002/jbm.b.34439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/17/2019] [Accepted: 06/13/2019] [Indexed: 11/07/2022]
Abstract
Induced pluripotent stem cells (iPSCs) provide a promising means of creating custom-tailored cell lines for cellular therapies. Their application in regenerative medicine, however, depends on the possibility that the maintenance and differentiation of cells and organs occur under defined conditions. One major component of stem cell culture systems is the substrate, where the cells must attach and proliferate. The present study aimed to investigate the putative cytotoxic effects of poly(vinyl alcohol) (PVA)-based matrices on the in vitro culture of mouse fetal fibroblasts. In addition, the PVA-based hydrogels were used to determine the capacity of bovine induced pluripotent stem cells (biPSCs) to adhere and proliferate on synthetic substrates. Our results show that both cell types interacted with the substrate and presented proliferation during culture. The biPSCs formed new colonies when cell suspensions were placed onto the hydrogel surface for culture. These results may represent a new characterized xeno-free clinical grade culture system to be widely applied in cell-based therapies.
Collapse
Affiliation(s)
- Eduardo de O Sanguinet
- Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nataly M Siqueira
- Institute of Chemistry, Department of Organic Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe de C Menezes
- Institute of Chemistry, Department of Organic Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele M Rasia
- Post-Graduate Program of Materials Science, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nívia Lothhammer
- Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosane M D Soares
- Institute of Chemistry, Department of Organic Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Flávio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), Pirassununga, São Paulo, Brazil
| | - Fabiana F Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), Pirassununga, São Paulo, Brazil
| | - Adriana Bos-Mikich
- Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Son HN, Chi HNQ, Chung DC, Long LT. Morphological changes during replicative senescence in bovine ovarian granulosa cells. Cell Cycle 2019; 18:1490-1497. [PMID: 31131697 DOI: 10.1080/15384101.2019.1624108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The objective of this study was to evaluate replicative senescence of bovine granulosa cells (bGCs) during in vitro long-term culture. WST-1 assay analysis showed that bGCs proliferation was reduced from primary culture to 14th passage. The several bGCs from the 3rd passage and 7th passage exposed the weak activity of beta-galactosidase, while a strongly positive staining of beta-galactosidase was observed in bGCs from 14th passage. Flow cytometry analysis showed that bGCs were induced to cell cycle arrest at G0/G1 phase through in vitro expansion. TERT transcript expression of bGCs was downregulated from primary culture to 14th passage. The cell and nuclear area of bGCs were dramatically increased from 14th passage to 25th passage. The nucleocytoplasmic ratio of bGCs was dramatically reduced in 22th passage (4.32%) and 25th passage (2.45%), comparing to previous passages: primary culture (10.67%), 7th passage (9.21%), or 14th passage (10.33%). The number of microfilament bundle of bGCs was increased in 22nd passage (67.42 ± 17.76) and 25th passage (56.31 ± 22.45). The diameter of microfilament bundle of bGCs in 25th passage was dramatically increased to 1.88 ± 0.32 µm comparing to the primary culture (1.15 ± 0.03 µm). In this study, we also assessed the nuclear form factor which illustrates the level of nuclear circular form. A reduction of nuclear form factor was observed in bGCs during long-term in vitro expansion. The changes of nuclear form factor were correlated to other senescent characteristics, especially the nucleocytoplasmic ratio.
Collapse
Affiliation(s)
- Hoang Nghia Son
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Ho Nguyen Quynh Chi
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Doan Chinh Chung
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| | - Le Thanh Long
- a Animal Biotechnology Department , Institute of Tropical Biology, Vietnam Academy of Science and Technology , Ho Chi Minh City , Vietnam.,b Biotechnology Department , Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Ha Noi , Vietnam
| |
Collapse
|
36
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
37
|
Kumar D, Anand T, Vijayalakshmy K, Sharma P, Rajendran R, Selokar NL, Yadav PS, Kumar D. Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Res Vet Sci 2019; 123:252-260. [PMID: 30703616 DOI: 10.1016/j.rvsc.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Commonly, induced pluripotent stem (iPS) cells are generated by viral transduction of four core reprogramming genes, but recent evidences suggest that slightly different combination of transcription factors improve the efficiency and quality of generated iPS cells. However, vectors like retro- and lentiviral may cause insertional mutagenesis due to its integrating ability. Hence, alternate methods with safety concerns are needed to be investigated. Therefore, the present study was undertaken to reprogram buffalo fibroblasts using non-viral piggyBac (PB) transposon mediated transfer of six transcription factors. To generate buffalo iPS cells, fibroblasts were isolated from buffalo fetus at passage 2. The cells were co-electroporated with a PB transposon having CAGGS promoter driven cassette of Oct4, Sox2, Klf4, cMyc, Nanog, and Lin28 transcription factors separated by self-cleaving 2A peptide and a helper plasmid pCMV-PB transposase. After 12-14 days post electroporation, fibroblast cells morphology was observed to change to round structures which formed loose aggregates of cells on day 18. Putative iPS cell colonies were propagated in feeder free system and characterized through expression of pluripotency markers such as alkaline phosphatase, SSEA-1, SSEA-4, SSEA-5, TRA-1-81, Oct4, Nanog and Sox2 and endogenous genes supported the stemness property of the generated cells. These cells differentiated in vitro to form embryoid bodies and were found to express three germ layers markers. In conclusion, generation of buffalo iPS cells using transposon system provides insights into viral-free iPS technology which will facilitate genetic modification of the buffalo genome and help in the production of transgenic animals using genetically modified iPS cells.
Collapse
Affiliation(s)
- Deepak Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Kennady Vijayalakshmy
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Papori Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Rasika Rajendran
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India.
| |
Collapse
|
38
|
Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF. Stem cells on regenerative and reproductive science in domestic animals. Vet Res Commun 2019; 43:7-16. [PMID: 30656543 DOI: 10.1007/s11259-019-9744-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Stem cells are undifferentiated and self-renewable cells that present new possibilities for both regenerative medicine and the understanding of early mammalian development. Adult multipotent stem cells are already widely used worldwide in human and veterinary medicine, and their therapeutic signalling, particularly with respect to immunomodulation, and their trophic properties have been intensively studied. The derivation of embryonic stem cells (ESCs) from domestic species, however, has been challenging, and the poor results do not reflect the successes obtained in mouse and human experiments. More recently, the generation of induced pluripotent stem cells (iPSCs) via the forced expression of specific transcription factors has been demonstrated in domestic species and has introduced new potentials in regenerative medicine and reproductive science based upon the ability of these cells to differentiate into a variety of cells types in vitro. For example, iPSCs have been differentiated into primordial germ-like cells (PGC-like cells, PGCLs) and functional gametes in mice. The possibility of using iPSCs from domestic species for this purpose would contribute significantly to reproductive technologies, offering unprecedented opportunities to restore fertility, to preserve endangered species and to generate transgenic animals for biomedical applications. Therefore, this review aims to provide an updated overview of adult multipotent stem cells and to discuss new possibilities introduced by the generation of iPSCs in domestic animals, highlighting the possibility of generating gametes in vitro via PGCL induction.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Lucas Simões Machado
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Flavio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil.
| |
Collapse
|
39
|
Moro LN, Amin G, Furmento V, Waisman A, Garate X, Neiman G, La Greca A, Santín Velazque NL, Luzzani C, Sevlever GE, Vichera G, Miriuka SG. MicroRNA characterization in equine induced pluripotent stem cells. PLoS One 2018; 13:e0207074. [PMID: 30507934 PMCID: PMC6277106 DOI: 10.1371/journal.pone.0207074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022] Open
Abstract
Cell reprogramming has been well described in mouse and human cells. The expression of specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell differentiation, but not much information is available in domestic species. We aim to generate horse iPSCs, characterize them and evaluate the expression of different microRNAs (miR-302a,b,c,d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296). Two equine iPSC lines (L2 and L3) were characterized after the reprogramming of equine fibroblasts with the four human Yamanaka‘s factors (OCT-4/SOX-2/c-MYC/KLF4). The pluripotency of both lines was assessed by phosphatase alkaline activity, expression of OCT-4, NANOG and REX1 by RT-PCR, and by immunofluorescence of OCT-4, SOX-2 and c-MYC. In vitro differentiation to embryo bodies (EBs) showed the capacity of the iPSCs to differentiate into ectodermal, endodermal and mesodermal phenotypes. MicroRNA analyses resulted in higher expression of the miR-302 family, miR-9 and miR-96 in L2 and L3 vs. fibroblasts (p<0.05), as previously shown in human pluripotent cells. Moreover, downregulation of miR-145 and miR-205 was observed. After differentiation to EBs, higher expression of miR-96 was observed in the EBs respect to the iPSCs, and also the expression of miR-205 was induced but only in the EB-L2. In addition, in silico alignments of the equine microRNAs with mRNA targets suggested the ability of miR-302 family to regulate cell cycle and epithelial mesenchymal transition genes, miR-9 and miR-96 to regulate neural determinant genes and miR-145 to regulate pluripotent genes, similarly as in humans. In conclusion, we could obtain equine iPSCs, characterize them and determine for the first time the expression level of microRNAs in equine pluripotent cells.
Collapse
Affiliation(s)
| | | | | | - Ariel Waisman
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
| | - Ximena Garate
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Li D, Secher J, Hyttel P, Ivask M, Kolko M, Hall VJ, Freude KK. Generation of transgene-free porcine intermediate type induced pluripotent stem cells. Cell Cycle 2018; 17:2547-2563. [PMID: 30457474 DOI: 10.1080/15384101.2018.1548790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Physiologically and anatomically, humans and pigs share many similarities, which make porcine induced pluripotent stem cells (piPSCs) very attractive for modeling human cell therapy as well as for testing safety of iPSC based cell replacement therapies. To date, several integrative and non-integrative strategies have been reported to successfully generate piPSCs, but all resulting piPSCs had integration of transgenes. The use of integrative methods has the disadvantage of potential lack of silencing or inappropriate re-activation of these genes during differentiation, as well as uncertainty regarding disruption of important genomic regions caused by integration. In our study, we performed a non-integrative vector based reprogramming approach using porcine fetal fibroblasts. The resulting four piPSC lines were positive for pluripotency marker and when subjected to in vitro and in vivo differentiation assays, all four lines formed embryoid bodies, capable to differentiate into all three germ layers, and three out of the four cell lines formed teratomas. PCR analysis on genomic and plasmid DNA revealed that the episomal vectors were undetectable in six out of eight subclones derived from one of the piPSC lines (piPSC1) above passage 20. These piPSCs could potentially be ideal cell lines for the generation of porcine in vitro and in vivo models. Furthermore, subsequent analyses of our new transgene independent piPSCs could provide novel insights on the genetic and epigenetic necessities to achieve and maintain piPSCs.
Collapse
Affiliation(s)
- Dong Li
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Jan Secher
- b Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Taastrup , Denmark
| | - Poul Hyttel
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Marilin Ivask
- c Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia.,d Institute of Veterinary Medicine and Animal Sciences , Estonian University of Life Sciences , Tartu , Estonia
| | - Miriam Kolko
- e Department of Drug Design and Pharmacology , University of Copenhagen , Copenhagen O , Denmark.,f Department of Ophthalmology , Rigshospital-Glostrup , Glostrup , Denmark
| | - Vanessa Jane Hall
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| | - Kristine K Freude
- a Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Frederiksberg C , Denmark
| |
Collapse
|
41
|
NANOG Is Required for the Long-Term Establishment of Avian Somatic Reprogrammed Cells. Stem Cell Reports 2018; 11:1272-1286. [PMID: 30318291 PMCID: PMC6235669 DOI: 10.1016/j.stemcr.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/16/2023] Open
Abstract
Somatic reprogramming, which was first identified in rodents, remains poorly described in non-mammalian species. Here, we generated avian reprogrammed cells by reprogramming of chicken and duck primary embryonic fibroblasts. The efficient generation of long-term proliferating cells depends on the method of delivery of reprogramming factors and the addition of NANOG and LIN28 to the canonical OCT4, SOX2, KLF4, and c-MYC gene combination. The reprogrammed cells were positive for several key pluripotency-associated markers including alkaline phosphatase activity, telomerase activity, SSEA1 expression, and specific cell cycle and epigenetic markers. Upregulated endogenous pluripotency-associated genes included POU5F3 (POUV) and KLF4, whereas cells failed to upregulate NANOG and LIN28A. However, cells showed a tumorigenic propensity when injected into recipient embryos. In conclusion, although the somatic reprogramming process is active in avian primary cells, it needs to be optimized to obtain fully reprogrammed cells with similar properties to those of chicken embryonic stem cells. NANOG is required for avian somatic reprogramming NANOG is necessary for long-term establishment of avian reprogrammed cells Avian reprogrammed cells express pluripotency markers Avian cells are only partially reprogrammed
Collapse
|
42
|
Analyzing bovine OCT4 and NANOG enhancer activity in pluripotent stem cells using fluorescent protein reporters. PLoS One 2018; 13:e0203923. [PMID: 30289916 PMCID: PMC6173392 DOI: 10.1371/journal.pone.0203923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/30/2018] [Indexed: 11/24/2022] Open
Abstract
Green fluorescent protein (GFP) reporters controlled by the regulatory region of OCT4 and NANOG—two master regulators for pluripotency are widely used in studies of pluripotent stem cell establishment and embryo development. Alongside the challenge in establishing bovine pluripotent stem cells, the application of bovine-specific gene reporters has rarely been explored. Using lentivirus-based GFP reporter, we investigated the upstream regulatory regions of bovine OCT4 and NANOG. These reporters show activity in both naïve- and primed-state pluripotency when infected into mouse and human embryonic stem cells (ESCs), respectively. Consistent with what is found in humans and mice, the bovine OCT4-distal enhancer (bOCT4-DE) but not the proximal enhancer (bOCT4-PE) region is preferentially activated in naïve-state pluripotency. Furthermore, the bOCT4-DE region is silenced upon conversion of naive-state ESCs into primed-state epiblast stem cells (EpiSCs). Co-infection of mouse fibroblasts with the reprograming factors for induced pluripotent stem cell (iPSC) induction leads to the generation of GFP positive colonies, demonstrating that these GFP reporters can serve as live indicators for induced pluripotent cell establishment. We further proved that the bovine OCT4 distal enhancer is active in bovine blastocysts. We established the lentiviral-based fluorescent reporters controlled by bovine OCT4 and NANOG enhancer sequences. These reporter constructs show activity in naïve- and primed-pluripotent states. These reporters may serve as versatile tools for bovine ESC/iPSC generation and identification, as well as for developmental studies of bovine embryos.
Collapse
|
43
|
Canizo JR, Vazquez Echegaray C, Klisch D, Aller JF, Paz DA, Alberio RH, Alberio R, Guberman AS. Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system. BMC Res Notes 2018; 11:509. [PMID: 30053877 PMCID: PMC6062933 DOI: 10.1186/s13104-018-3627-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The use of induced pluripotent stem (iPS) cells as an alternative to embryonic stem cells to produce transgenic animals requires the development of a biotechnological platform for their generation. In this study, different strategies for the generation of bovine and porcine iPS cells were evaluated. Lentiviral vectors were used to deliver human factors OCT4, SOX2, KLF4 and c-MYC (OKSM) into bovine and porcine embryonic fibroblasts and different culture conditions were evaluated. RESULTS Protocols based on the integrative lentiviral vector STEMCCA produced porcine iPS-like cells more efficiently than in bovine cells. The iPS-like cells generated displayed stem cell features; however, expression of exogenous factors was maintained along at least 12 passages. Since inactivation of the exogenous factors is still a major bottleneck for establishing fully reprogrammed iPS cells, defining culture conditions that support endogenous OKSM expression is critical for the efficient generation of farm animals' iPS cells.
Collapse
Affiliation(s)
- Jesica R Canizo
- Departamento de Producción Animal, INTA EEA Balcarce, Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Juan F Aller
- Departamento de Producción Animal, INTA EEA Balcarce, Buenos Aires, Argentina
| | - Dante A Paz
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Ricardo H Alberio
- Departamento de Producción Animal, INTA EEA Balcarce, Buenos Aires, Argentina.,Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Alejandra S Guberman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina. .,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Kim YM, Park YH, Lim JM, Jung H, Han JY. Technical note: Induction of pluripotent stem cell-like cells from chicken feather follicle cells. J Anim Sci 2018; 95:3479-3486. [PMID: 28805906 DOI: 10.2527/jas.2017.1418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pluripotent stem cells including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are regarded as representative tools for conservation of animal genetic resources. Although ESC have been established from chicken, it is very difficult to obtain enough embryos for isolation of stem cells for avian conservation in most wild birds. Therefore, the high feasibility of obtaining the pluripotent cell is most important in avian conservation studies. In this study, we generated induced pluripotent stem cell-like cells (iPSLC) from avian Feather Follicular cells (FFC). Avian FFC are one of the most easily accessible cell sources in most avian species, and their reprogramming into pluripotent stem cells can be an alternative system for preservation of avian species. Intriguingly, FFC had mesenchymal stromal cells (MSC)-like characteristics with regard to gene expression, protein expression, and adipocyte differentiation. Subsequently, we attempted to generate iPSLC from FFC using retroviral vectors. The FFC-iPSLC can proliferate with the stem pluripotent property and differentiate into several types of cells in vitro. Our results suggest that chicken FFC are an alternative cell source for avian cell reprogramming into pluripotent stem cells. This experimental strategy should be useful for conservation and restoration of endangered or high-value avian species without sacrificing embryos.
Collapse
|
45
|
Lee EM, Kim AY, Lee EJ, Park JK, Park SI, Cho SG, Kim HK, Kim SY, Jeong KS. Generation of Equine-Induced Pluripotent Stem Cells and Analysis of Their Therapeutic Potential for Muscle Injuries. Cell Transplant 2018; 25:2003-2016. [PMID: 27226077 DOI: 10.3727/096368916x691691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Horse health has become a major concern with the expansion of horse-related industries and sports; the importance of healthy muscles for horse performance and daily activities is undisputed. Here we generated equine-induced pluripotent stem cells (E-iPSCs) by reprogramming equine adipose-derived stem cells (E-ADSCs) into iPSCs using a polycistronic lentiviral vector encoding four transcription factors (i.e., Oct4, Sox2, Klf4, and c-Myc) and then examined their pluripotent characteristics. Subsequently, established E-iPSCs were transplanted into muscle-injured Rag/ mdx mice. The histopathology results showed that E-iPSC-transplanted mice exhibited enhanced muscle regeneration compared to controls. In addition, E-iPSC-derived myofibers were observed in the injured muscles. In conclusion, we show that E-iPSCs could be successfully generated from equine ADSCs and transplanted into injured muscles and that E-iPSCs have the capacity to induce regeneration of injured muscles.
Collapse
Affiliation(s)
- Eun-Mi Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ah-Young Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Joo Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Se-Il Park
- Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
46
|
Hayashi M, Kawaguchi T, Durcova-Hills G, Imai H. Generation of germ cells from pluripotent stem cells in mammals. Reprod Med Biol 2017; 17:107-114. [PMID: 29692667 PMCID: PMC5902460 DOI: 10.1002/rmb2.12077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
Background The germ cell lineage transmits genetic and epigenetic information to the next generation. Primordial germ cells (PGCs), the early embryonic precursors of sperm or eggs, have been studied extensively. Recently, in vitro models of PGC induction have been established in the mouse. Many attempts are reported to enhance our understanding of PGC development in other mammals, including human. Methods Here, original and review articles that have been published on PubMed are reviewed in order to give an overview of the literature that is focused on PGC development, including the specification of in vivo and in vitro in mice, human, porcine, and bovine. Results Mammalian PGC development, in vivo and in vitro, have been studied primarily by using the mouse model as a template to study PGC specification in other mammals, including human, porcine, and bovine. Conclusion The growing body of published works reveals similarities, as well as differences, in PGC establishment in and between mouse and human.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Takamasa Kawaguchi
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan.,The Fukui Research Institute Ono Pharmaceutical Companyy, Ltd. Fukui Japan
| | - Gabriela Durcova-Hills
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
47
|
Yu M, Xue T, Chen T, Fang J, Pan Q, Deng Y, Li L, Chen K, Wang Y. Maternal inheritance of Nanog ortholog in blunt-snout bream. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:749-759. [PMID: 28834149 DOI: 10.1002/jez.b.22760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022]
Abstract
The homeodomain transcription factor Nanog plays an essential role in maintaining pluripotency and self-renewal of embryonic stem cells in mammals. However, the evolutionary conservation of its ortholog in teleosts remains elusive. Here we isolated and characterized a Nanog homolog named as Ma-Nanog in blunt-snout bream (Megalobrama amblycephala). The full-length genomic sequence is 3,326 bp in length and consists of four exons encoding a homeodomain protein of 386 amino acid residues. Comparison of protein sequences revealed that Ma-Nanog is highly homologous to those in other teleosts, particularly in the homeodomain region. During embryogenesis, RNA expression of Nanog was only detected in early developmental embryos, predominantly at the blastula stage, which suggested the transcripts were mainly present in pluripotent stem cells. RNA fluorescence in situ hybridization verified that the signal of the transcripts is present in the germ cells. RNA expression was observed in the oogonia and early stage of oocytes in the ovary, or in the spermatogonia, spermatocytes, and spermatids in the testis. Surprisingly, the transcripts were also detected in adult tissues such as in liver by RT-PCR or qRT-PCR. Subcellular localization of the Nanog protein was also verified in nuclei. Taken together, these results suggested that Ma-Nanog is maternally inherited with conserved features, thus can be potentially used as a marker for stem cells in blunt-snout bream.
Collapse
Affiliation(s)
- Miao Yu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China.,College of Fishery, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, People's Republic of China
| | - Ting Xue
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Tiansheng Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China.,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, People's Republic of China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People's Republic of China.,Engineering Laboratory of Pond Aquaculture in Hubei Province, Wuhan, People's Republic of China
| | - Jian Fang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qihua Pan
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yu Deng
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lingyu Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kai Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yizhou Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
48
|
Zhang G, Wang W, Yao C, Zhang S, Liang L, Han M, Ren J, Qi X, Zhang X, Wang S, Li L. Radiation-resistant cancer stem-like cell properties are regulated by PTEN through the activity of nuclear β-catenin in nasopharyngeal carcinoma. Oncotarget 2017; 8:74661-74672. [PMID: 29088815 PMCID: PMC5650370 DOI: 10.18632/oncotarget.20339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Radiotherapy is the primary and most important treatment for nasopharyngeal carcinoma (NPC). Cancer stem-like cells (CSCs) have been shown to be resistant to radiation. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene has been suggested to play a role in stem cell self-renewal. In the present study, we sorted PTEN−/+ cells using a flow cytometer. The clone formation assay showed that PTEN− cells were more radioresistant than PTEN+ NPC cells. We found that PTEN− cells demonstrated a significant increase in tumorsphere formation and CSCs markers compared with PTEN+ cells. Silencing the expression of PTEN with siRNA resulted in increased expression of p-AKT, active β-catenin and Nanog. siPTEN cells irradiated showed more radioresistant and DNA damage than parental cells. We also confirmed that down-regulation of β-catenin expression with shRNA resulted in a reduced percentage of side population cells and expression of Nanog. shβ-catenin cells significantly decreased survivin expression at 4 Gy irradiation in PTEN− cells compared with PTEN+ cells. In siPTEN cells, β-catenin staining shifted from the cytoplasmic membrane to the nucleus. Furthermore, immunofluorescence showed that following irradiation of PTEN− cells, at 4 Gy, active β-catenin was mainly found in the nucleus. Immunohistochemistry analysis also demonstrated that the PTEN−/p-AKT+/β-catenin+/Nanog+ axis may indicate poor prognosis and radioresistance in clinical NPC specimens. Thus, our findings strongly suggest that PTEN− cells have CSCs properties that are resistant to radiation in NPC. PTEN exerts these effects through the downstream effector PI3K/AKT/β-catenin/Nanog axis which depends on nuclear β-catenin accumulation.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Wenjun Wang
- Research Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Chunxiao Yao
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Shuping Zhang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Lili Liang
- Department of Dermatology of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Muyuan Han
- Department of Ophthalmology of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Jinjin Ren
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Xiurong Qi
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Xiaofeng Zhang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Shuye Wang
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| | - Lei Li
- Department of Radiotherapy of People's Hospital of Shanxi Province, Taiyuan 030012, PR China
| |
Collapse
|
49
|
Characterization of the single-cell derived bovine induced pluripotent stem cells. Tissue Cell 2017; 49:521-527. [PMID: 28720304 DOI: 10.1016/j.tice.2017.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 12/12/2022]
Abstract
Single-cell derived bovine induced pluripotent stem cells (iPSCs) were generated by the introduction of piggyBac transposons with CAG promoting transcription factors (Oct3/4, Sox2, Klf4 and cMyc). In the study, the bovine iPSCs colony from single cell could passage more than 50 passages after enzymatic dissociation into single cells. These bovine iPSCs cells kept the normal karyotype and displayed dome shaped clones similar to mouse embryonic stem cells. They showed pluripotency in many ways, including their expression of pluripotency markers, such as OCT3/4, NANOG, SOX2, SSEA1, SSEA4, and AP in immunofluorescence assay, Oct4, Nanog, Sox2, Klf4 and cMyc in RT-PCR. Additionally, single-cell derived bovine iPSCs formed embryoid bodies and teratomas that all subsequently gave rise to differentiated cells from all three embryonic germ layers. The results showed that our reprogramming method could obtain high efficiency single-cell cloning bovine iPSCs, and the efficiency of single cell cloning is 40%.
Collapse
|
50
|
Talbot NC, Sparks WO, Phillips CE, Ealy AD, Powell AM, Caperna TJ, Garrett WM, Donovan DM, Blomberg LA. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors. Mol Reprod Dev 2017; 84:468-485. [PMID: 28332752 DOI: 10.1002/mrd.22797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Thirteen independent induced bovine trophectroderm (iBT) cell lines were established by reprogramming bovine fetal liver-derived fibroblasts after viral-vector transduction with either six or eight factors, including POU5F1 (OCT4), KLF4, SOX2, MYC, NANOG, LIN28, SV40 large T antigen, and hTERT. Light- and electron-microscopy analysis showed that the iBT cells had epithelial cell morphology typical of bovine trophectoderm cells. Reverse-transcription-PCR assays indicated that all of the cell lines expressed interferon-tau (IFNT) at passages 1 or 2. At later passages (≥ passage 8), however, immunoblot and antiviral activity assays revealed that more than half of the iBT cell lines had stopped expressing IFNT. Messenger RNAs specific to trophectoderm differentiation and function were found in the iBT cell lines, and 2-dimensional-gel analysis for cellular proteins showed an expression pattern similar to that of trophectoderm cell lines derived from bovine blastocysts. Integration of some of the human reprogramming factors, including POU5F1, KLF4, SOX2, MYC, NANOG, and LIN28, were detected by PCR, but their transcription was mostly absent in the iBT cell lines. Gene expression assessment of endogenous bovine reprogramming factor orthologs revealed endogenous bLIN28 and bMYC transcripts in all; bSOX2 and bNANOG in none; and bKLF4 and bPOU5F1 in less than half of the iBT cell lines. These results demonstrate that bovine trophectoderm can be induced via reprogramming factor expression from bovine liver-derived fibroblasts, although other fibroblast populations-e.g., derived from fetal thigh tissue-may produce similar results, albeit at lower frequencies.
Collapse
Affiliation(s)
- Neil C Talbot
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Wendy O Sparks
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Caitlin E Phillips
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Anne M Powell
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Thomas J Caperna
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Wesley M Garrett
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - David M Donovan
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Le Ann Blomberg
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| |
Collapse
|