1
|
Daneshi M, Borowicz PP, Entzie YL, Syring JG, King LE, Safain KS, Anas M, Reynolds LP, Ward AK, Dahlen CR, Crouse MS, Caton JS. Influence of Maternal Nutrition and One-Carbon Metabolites Supplementation during Early Pregnancy on Bovine Fetal Small Intestine Vascularity and Cell Proliferation. Vet Sci 2024; 11:146. [PMID: 38668414 PMCID: PMC11054626 DOI: 10.3390/vetsci11040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
To investigate the effects of nutrient restriction and one-carbon metabolite (OCM) supplementation (folate, vitamin B12, methionine, and choline) on fetal small intestine weight, vascularity, and cell proliferation, 29 (n = 7 ± 1 per treatment) crossbred Angus beef heifers (436 ± 42 kg) were estrous synchronized and conceived by artificial insemination with female sexed semen from a single sire. Then, they were allotted randomly to one of four treatments in a 2 × 2 factorial arrangement with the main factors of nutritional plane [control (CON) vs. restricted feed intake (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers receiving the CON level of intake were fed to target an average daily gain of 0.45 kg/day, which would allow them to reach 80% of mature BW by calving. Heifers receiving the RES level of intake were fed to lose 0.23 kg/heifer daily, which mimics observed production responses in heifers that experience a diet and environment change during early gestation. Targeted heifer gain and OCM treatments were administered from d 0 to 63 of gestation, and then all heifers were fed a common diet targeting 0.45 kg/d gain until d 161 of gestation, when heifers were slaughtered, and fetal jejunum was collected. Gain had no effect (p = 0.17) on the fetal small intestinal weight. However, OCM treatments (p = 0.02) displayed less weight compared to the -OCM groups. Capillary area density was increased in fetal jejunal villi of RES - OCM (p = 0.02). Vascular endothelial growth factor receptor 2 (VEGFR2) positivity ratio tended to be greater (p = 0.08) in villi and was less in the crypts (p = 0.02) of the RES + OCM group. Cell proliferation decreased (p = 0.02) in villi and crypts of fetal jejunal tissue from heifers fed the RES + OCM treatment compared with all groups and CON - OCM, respectively. Spatial cell density increased in RES - OCM compared with CON + OCM (p = 0.05). Combined, these data show OCM supplementation can increase expression of VEGFR2 in jejunal villi, which will promote maintenance of the microvascular beds, while at the same time decreasing small intestine weight and crypt cell proliferation.
Collapse
Affiliation(s)
- Mojtaba Daneshi
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Yssi L. Entzie
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Jessica G. Syring
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Layla E. King
- Department of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, MN 56716, USA;
| | - Kazi Sarjana Safain
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Alison K. Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Matthew S. Crouse
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| |
Collapse
|
2
|
Dahlen CR, Reynolds LP, Caton JS. Selenium supplementation and pregnancy outcomes. Front Nutr 2022; 9:1011850. [PMID: 36386927 PMCID: PMC9659920 DOI: 10.3389/fnut.2022.1011850] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 09/13/2023] Open
Abstract
In vertebrates and invertebrates, selenium (Se) is an essential micronutrient, and Se deficiency or excess is associated with gonadal insufficiency and gamete dysfunction in both males and females, leading to implantation failure, altered embryonic development and, ultimately, infertility. During pregnancy, Se excess or deficiency is associated with miscarriage, pre-eclampsia (hypertension of pregnancy), gestational diabetes, fetal growth restriction and preterm birth. None of this is surprising, as Se is present in high concentrations in the ovary and testes, and work in animal models has shown that addition of Se to culture media improves embryo development and survival in vitro in association with reduced reactive oxygen species and less DNA damage. Selenium also affects uterine function and conceptus growth and gene expression, again in association with its antioxidant properties. Similarly, Se improves testicular function including sperm count, morphology and motility, and fertility. In animal models, supplementation of Se in the maternal diet during early pregnancy improves fetal substrate supply and alters fetal somatic and organ growth. Supplementation of Se throughout pregnancy in cows and sheep that are receiving an inadequate or excess dietary intake affected maternal whole-body and organ growth and vascular development, and also affected expression of angiogenic factors in maternal and fetal organs. Supplemental Se throughout pregnancy also affected placental growth, which may partly explain its effects on fetal growth and development, and also affected mammary gland development, colostrum yield and composition as well as postnatal development of the offspring. In conclusion, Se supplementation in nutritionally compromised pregnancies can potentially improve fertility and pregnancy outcomes, and thereby improve postnatal growth and development. Future research efforts should examine in more detail and more species the potential benefits of Se supplementation to reproductive processes in mammals.
Collapse
Affiliation(s)
- Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | | | | |
Collapse
|
3
|
Dobrowolski P, Muszyński S, Donaldson J, Jakubczak A, Żmuda A, Taszkun I, Rycerz K, Mielnik-Błaszczak M, Kuc D, Tomaszewska E. The Effects of Prenatal Supplementation with β-Hydroxy-β-Methylbutyrate and/or Alpha-Ketoglutaric Acid on the Development and Maturation of Mink Intestines Are Dependent on the Number of Pregnancies and the Sex of the Offspring. Animals (Basel) 2021; 11:1468. [PMID: 34065327 PMCID: PMC8160670 DOI: 10.3390/ani11051468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prenatal and postnatal supplementation with β-hydroxy-β-methylbutyrate (HMB) and alpha-ketoglutaric acid (AKG) affects the development and maturation of offspring. Both substances have the potential to stimulate cell metabolism via different routes. However, parity affects development and may alter the effects of dietary supplementation. This study aimed to evaluate the effect of gestational supplementation with HMB and/or AKG to primiparous and multiparous minks on the structure and maturation of the offspring's small intestine. Primiparous and multiparous American minks (Neovison vison), of the standard dark brown type, were supplemented daily with HMB (0.02 g/kg b.w.) and/or AKG (0.4 g/kg b.w.) during gestation (n = 7 for each treatment). Supplementation stopped when the minks gave birth. Intestine samples were collected from 8-month-old male and female offspring during autopsy and histology and histomorphometry analysis was conducted (LAEC approval no 64/2015). Gestational supplementation had a long-term effect, improving the structure of the offspring's intestine toward facilitating absorption and passage of intestinal contents. AKG supplementation affected intestinal absorption (enterocytes, villi and absorptive surface), and HMB affected intestinal peristalsis and secretion (crypts and Goblet cells). These effects were strongly dependent on parity and offspring gender. Present findings have important nutritional implications and should be considered in feeding practices and supplementation plans in animal reproduction.
Collapse
Affiliation(s)
- Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Andrzej Jakubczak
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Andrzej Żmuda
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka St. 30, 20-612 Lublin, Poland;
| | - Iwona Taszkun
- Department and Clinic of Internal Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka St. 30, 20-612 Lublin, Poland;
| | - Karol Rycerz
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Chair and Department of Paedodontics, Medical University of Lublin, Karmelicka St. 7, 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Damian Kuc
- Chair and Department of Paedodontics, Medical University of Lublin, Karmelicka St. 7, 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| |
Collapse
|
4
|
Osorio JS. Gut health, stress, and immunity in neonatal dairy calves: the host side of host-pathogen interactions. J Anim Sci Biotechnol 2020; 11:105. [PMID: 33292513 PMCID: PMC7649058 DOI: 10.1186/s40104-020-00509-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
The cumulative evidence that perinatal events have long-lasting ripple effects through the life of livestock animals should impact future nutritional and management recommendations at the farm level. The implications of fetal programming due to malnutrition, including neonatal survival and lower birth weights, have been characterized, particularly during early and mid-gestation, when placental and early fetal stages are being developed. The accelerated fetal growth during late pregnancy has been known for some time, while the impact of maternal stressors during this time on fetal development and by extent its postnatal repercussions on health and performance are still being defined. Maternal stressors during late pregnancy cannot only influence colostrogenesis but also compromise adequate intestinal development in the fetus, thus, that further limits the newborn's ability to absorb nutrients, bioactive compounds, and immunity (i.e., immunoglobulins, cytokines, and immune cells) from colostrum. These negative effects set the newborn calf to a challenging start in life by compromising passive immunity and intestinal maturation needed to establish a mature postnatal mucosal immune system while needing to digest and absorb nutrients in milk or milk replacer. Besides the dense-nutrient content and immunity in colostrum, it contains bioactive compounds such as growth factors, hormones, and cholesterol as well as molecular signals or instructions [e.g., microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)] transferred from mother to offspring with the aim to influence postnatal gut maturation. The recent change in paradigm regarding prenatal materno-fetal microbiota inoculation and likely the presence of microbiota in the developing fetus intestine needs to be addressed in future research in ruminants. There still much to know on what prenatal or postnatal factors may predispose neonates to become susceptible to enteropathogens (e.g., enterotoxigenic Escherichia coli), causing diarrhea. From the host-side of this host-pathogen interaction, molecular data such as fecal RNA could, over time, help fill those gaps in knowledge. In addition, merging this novel fecal RNA approach with more established microbiome techniques can provide a more holistic picture of an enteropathogenesis and potentially uncover control points that can be addressed through management or nutrition at the farm level to minimize preweaning morbidity and mortality.
Collapse
Affiliation(s)
- Johan S Osorio
- Dairy and Food Science Department, South Dakota State University, 113 H Alfred Dairy Science Hall, Brookings, SD, 57007, USA.
| |
Collapse
|
5
|
Trotta RJ, Keomanivong FE, Peine JL, Caton JS, Swanson KC. Influence of maternal nutrient restriction and rumen-protected arginine supplementation on post-ruminal digestive enzyme activity of lamb offspring. Livest Sci 2020; 241. [PMID: 33282005 DOI: 10.1016/j.livsci.2020.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To determine the influence of maternal nutrient restriction and rumen-protected arginine supplementation on post-ruminal digestive enzyme activity in lambs, 31 multiparous, Rambouillet ewes were allocated to one of three dietary treatments at 54 d of gestation. Dietary treatments were 100% of nutrient requirements (control, CON; n = 11), 60% of control (restricted, RES; n = 10), or RES plus 180 mg rumen-protected arginine•kg BW-1•d-1 (RES-ARG; n = 10). Immediately after parturition, lambs were removed from dams and reared independently. Milk-replacer and alfalfa hay + creep feed were offered for ad libitum intake. At day 54 of age, lambs were slaughtered and the pancreas and small intestine were collected. Pancreatic (α-amylase and trypsin) and jejunal (maltase, glucoamylase, sucrase, isomaltase, and lactase) digestive enzyme activities were assayed. Data were analyzed using the GLM procedure of SAS for effects of treatment. Contrast statements were used to determine differences between means for effects of restriction (CON vs. RES and RES-ARG) and rumen-protected arginine supplementation (RES vs. RES-ARG). There was no influence (P ≥ 0.15) of maternal nutrient restriction or rumen-protected arginine supplementation on pancreatic or jejunal protein concentrations. No treatment effects were observed (P ≥ 0.12) for enzymes involved in starch digestion including pancreatic α-amylase and jejunal maltase, glucoamylase, and isomaltase. Sucrase activity was undetected in the jejunum of lambs across all treatments. Maternal nutrient restriction tended to increase (P = 0.08) pancreatic trypsin activity per gram protein in lambs. Lactase activity per gram protein in the jejunum of lambs tended to decrease (P = 0.09) with maternal nutrient restriction. Rumen-protected arginine supplementation to gestating ewes did not influence (P ≥ 0.19) digestive enzyme activities of lamb offspring. These data suggest that maternal nutrient restriction and rumen-protected arginine supplementation have minimal effects on digestive enzyme activity in offspring.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Faithe E Keomanivong
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Jena L Peine
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Joel S Caton
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108 USA
| |
Collapse
|
6
|
Perinatal maternal undernutrition does not result in offspring capillary rarefaction in the middle-aged male baboon at rest. J Dev Orig Health Dis 2020; 12:349-353. [PMID: 32618548 DOI: 10.1017/s2040174420000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Microvascular health is a main determinant of coronary blood flow reserve and myocardial vascular resistance. Extracardiac capillary abnormality has been reported in subjects at increased coronary heart disease risk, such as prehypertension, hypertension, diabetes, hyperlipidemia, and atherosclerosis. We have reported cardiovascular dysfunction in a cohort of maternal nutrient reduction (MNR)-induced intrauterine growth restriction (IUGR) baboon offspring. Here we test the hypothesis that there is oral capillary rarefaction associated with MNR-induced IUGR. Capillary density was quantified using in vivo high-power capillaroscopy on seven middle-aged (~10.7 yr; human equivalent ~40 yr) male IUGR baboons and seven male age-matched controls in the lateral buccal and inferior labial mucosa. While no difference was found between groups in either area by fraction area or optical density for these vascular beds derived from fetal preductal vessels, further studies are needed on post-ductal vascular beds, retina, and function.
Collapse
|
7
|
Trotta RJ, Vasquez-Hidalgo MA, Vonnahme KA, Swanson KC. Effects of Nutrient Restriction During Midgestation to Late Gestation on Maternal and Fetal Postruminal Carbohydrase Activities in Sheep. J Anim Sci 2020; 98:skz393. [PMID: 31879771 PMCID: PMC6986434 DOI: 10.1093/jas/skz393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
To examine the effects of nutrient restriction during midgestation to late gestation on maternal and fetal digestive enzyme activities, 41 singleton ewes (48.3 ± 0.6 kg of BW) were randomly assigned to dietary treatments: 100% (control; CON; n = 20) or 60% of nutrient requirements (restricted; RES; n = 21) from day 50 until day 90 (midgestation). At day 90, 14 ewes (CON, n = 7; RES, n = 7) were euthanized. The remaining ewes were subjected to treatments of nutrient restriction or remained on a control diet from day 90 until day 130 (late gestation): CON-CON (n = 6), CON-RES (n = 7), RES-CON (n = 7), and RES-RES (n = 7) and were euthanized on day 130. The fetal and maternal pancreas and small intestines were weighed, subsampled, and assayed for digestive enzyme activity. One unit (U) of enzyme activity is equal to 1 µmol of product produced per minute for amylase, glucoamylase, lactase, and trypsin and 0.5 µmol of product produced per minute for maltase and isomaltase. Nutrient restriction during midgestation and late gestation decreased (P < 0.05) maternal pancreatic and small intestinal mass but did not affect fetal pancreatic or small intestinal mass. Maternal nutrient restriction during late gestation decreased (P = 0.03) fetal pancreatic trypsin content (U/pancreas) and tended to decrease (P < 0.08) fetal pancreatic trypsin concentration (U/g), specific activity (U/g protein), and content relative to BW (U/kg of BW). Nutrient restriction of gestating ewes decreased the total content of α-amylase (P = 0.04) and tended to decrease total content of trypsin (P = 0.06) and protein (P = 0.06) in the maternal pancreas on day 90. Nutrient restriction during midgestation on day 90 and during late gestation on day 130 decreased (P = 0.04) maternal pancreatic α-amylase-specific activity. Sucrase activity was undetected in the fetal and maternal small intestine. Nutrient restriction during late gestation increased (P = 0.01) maternal small intestinal maltase and lactase concentration and tended to increase (P = 0.06) isomaltase concentration. Realimentation during late gestation after nutrient restriction during midgestation increased lactase concentration (P = 0.04) and specific activity (P = 0.05) in the fetal small intestine. Fetal small intestinal maltase, isomaltase, and glucoamylase did not respond to maternal nutrient restriction. These data indicate that some maternal and fetal digestive enzyme activities may change in response to maternal nutrient restriction.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | | | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
8
|
Caton JS, Crouse MS, Reynolds LP, Neville TL, Dahlen CR, Ward AK, Swanson KC. Maternal nutrition and programming of offspring energy requirements. Transl Anim Sci 2019; 3:976-990. [PMID: 32704862 PMCID: PMC7200455 DOI: 10.1093/tas/txy127] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/19/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Joel S Caton
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Matthew S Crouse
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Tammi L Neville
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Carl R Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
9
|
Apperson KD, Vorachek WR, Dolan BP, Bobe G, Pirelli GJ, Hall JA. Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on passive transfer of ovalbumin in their newborn calves. J Trace Elem Med Biol 2018; 50:640-645. [PMID: 29929926 PMCID: PMC7127647 DOI: 10.1016/j.jtemb.2018.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/02/2022]
Abstract
Intestinal absorption of immunoglobulins is critical for health and survival of newborn calves because there is no transfer of immunoglobulins in utero. The objective of this study was to determine if feeding beef cows Se-enriched alfalfa hay during the last trimester of gestation improves passive transfer of ovalbumin (OVA), a surrogate protein marker for IgG absorption. Control cows (n = 15) were fed non-Se-fortified alfalfa hay (5.3 mg Se/head daily) plus a mineral supplement containing inorganic Se (3 mg Se/head daily). Med-Se (n = 15) and High-Se cows (n = 15) were fed Se-biofortified alfalfa hay (27.6 and 57.5 mg Se/head daily, respectively); both groups received mineral supplement without added Se. Calves were randomly assigned to receive orally administered OVA at 12, 24, or 36 h of age. Calves that received their oral dose of OVA at 12 h of age had higher serum OVA concentrations across the first 48 h of life if born to High-Se cows compared to calves born to Control cows (P = 0.05), with intermediate values for calves born to Med-Se cows. Our results, using OVA as a model for passive transfer, suggest that if calves do not receive adequate colostrum to reach maximum pinocytosis, then supranutritional Se supplementation in beef cattle may improve passive transfer in their calves, if calves receive colostrum within the first 12 h of age.
Collapse
Affiliation(s)
- K Denise Apperson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| | - William R Vorachek
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| | - Brian P Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| | - Gerd Bobe
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
| | - Gene J Pirelli
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Jean A Hall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
10
|
Peine JL, Jia G, Van Emon ML, Neville TL, Kirsch JD, Hammer CJ, O’Rourke ST, Reynolds LP, Caton JS. Effects of maternal nutrition and rumen-protected arginine supplementation on ewe performance and postnatal lamb growth and internal organ mass. J Anim Sci 2018; 96:3471-3481. [PMID: 29893847 PMCID: PMC6095351 DOI: 10.1093/jas/sky221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The hypothesis of this study was that arginine supplementation would overcome negative effects of restricted maternal feed intake during the last two-thirds of gestation on ewe performance and positively affect postnatal lamb growth and development. Multiparous, Rambouillet ewes (n = 32) were allocated to 3 treatments in a completely random design at 54 ± 3.9 d of gestation. Dietary treatments were 100% of nutrient requirements (control, CON), 60% of control (restricted, RES), or RES plus a rumen-protected arginine supplement dosed at 180 mg/kg BW once daily (RES-ARG). Ewes were penned individually in a temperature-controlled facility. At parturition, lambs were immediately removed from dams and reared independently. At day 54 ± 3 of age, lambs were stunned using captive bolt, exsanguinated, and organs were collected and weighed. Ewe BW from day 68 of gestation through parturition was greater (P ≤ 0.03) in CON compared with RES or RES-ARG. Similarly, ewe BCS from day 68 of gestation through parturition was greater (P ≤ 0.03) in CON than either RES or RES-ARG. Total ewe colostrum mass (g) at 3 h after parturition was greater (P ≤ 0.001) in CON than RES or RES-ARG. Lamb birth weight was greater (P = 0.04) in CON than RES ewes and tended (P = 0.10) to be greater in CON vs. RES-ARG. Lambs born to CON ewes had greater (P ≤ 0.03) BW than lambs from RES ewes at 7, 14, and 33 d postpartum. On day 19, lambs from CON and RES-ARG ewes both had greater (P ≤ 0.04) BW than lambs from RES ewes (12.0 and 11.5 vs. 10.3 ± 0.41 kg, respectively). Lambs born to CON and RES-ARG ewes had greater (P ≤ 0.04) ADG than lambs from RES ewes on day 19 (355.0 and 354.0 vs. 306.4 ± 15.77 g, respectively). Lambs from CON and RES-ARG ewes also had greater (P ≤ 0.02) girth circumference than lambs from RES ewes on day 19 (55.4 and 54.6 vs. 51.3 ± 0.97 cm, respectively). On day 54, lambs from RES-ARG ewes had greater (P = 0.003) curved crown rump length than lambs from RES ewes (99.8 vs. 93.9 ± 1.28 cm, respectively). Adrenal glands in lambs from CON dams had greater (P = 0.01) mass than adrenal glands in lambs from RES dams. Livers from lambs born to RES-ARG ewes weighed more (P = 0.05) than livers from lambs born to RES ewes. These results confirm our hypothesis that arginine supplementation during the last two-thirds of gestation can mitigate offspring, but not maternal negative consequences associated with restricted maternal nutrition.
Collapse
Affiliation(s)
- Jena L Peine
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - Guangquiang Jia
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - Megan L Van Emon
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| | - Tammi L Neville
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | - James D Kirsch
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Stephen T O’Rourke
- Departments of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| | | | - Joel S Caton
- Departments of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
11
|
Wallace LG, Bobe G, Vorachek WR, Dolan BP, Estill CT, Pirelli GJ, Hall JA. Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on selenium status and antibody titers in their newborn calves. J Anim Sci 2018; 95:2408-2420. [PMID: 28727057 PMCID: PMC7114777 DOI: 10.2527/jas.2017.1377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In newborn dairy calves, it has been demonstrated that supranutritional maternal and colostral Se supplementation using Se yeast or sodium selenite, respectively, improves passive transfer of IgG. In beef cattle, agronomic biofortification with Se is a more practical alternative for Se supplementation, whereby the Se concentration of hay is increased through the use of Se-containing fertilizer amendments. It has been previously demonstrated that agronomic Se biofortification is an effective strategy to improve immunity and performance in Se-replete weaned beef calves. The objective of this experiment was to determine the effects of feeding beef cows Se-enriched alfalfa (Medicago sativa) hay during the last 8 to 12 wk of gestation on passive transfer of antibodies to calves. At 10 wk ± 16 d before calving, 45 cows were assigned to 1 of 3 treatment groups with 3 pens (5 cows/pen) per treatment: Control cows were fed non-Se-fortified alfalfa hay plus a mineral supplement containing 120 mg/kg Se from sodium selenite, Med-Se cows were fed alfalfa hay fertilized with 45.0 g Se/ha as sodium selenate, and High-Se cows were fed alfalfa hay fertilized with 89.9 g Se/ha as sodium selenate; both the Med-Se and the High-Se groups received mineral supplement without added Se. Colostrum and whole blood (WB) were collected from cows at calving, and WB was collected from calves within 2 h of calving and at 12, 24, 36, and 48 h of age. Concentrations of IgG1 and J-5 Escherichia coli antibody in cow colostrum and calf serum were quantified using ELISA procedures. Selenium concentrations linearly increased in WB (P < 0.001) and colostrum (P < 0.001) of cows and in WB of newborn calves (P < 0.001) with increasing Se concentration in alfalfa hay. Colostrum concentrations of IgG1 (P = 0.03) were increased in cows fed Se-biofortified alfalfa hay, but J-5 E. coli antibody (P = 0.43) concentrations were not. Calf serum IgG1 (P = 0.43) and J-5 E. coli antibody (P = 0.44) concentrations during the first 48 h of age were not affected by prior Se treatment of cows. These data suggest that feeding Se-biofortified alfalfa hay promotes the accumulation of Se and antibodies in colostrum but does not affect short-term serum antibody concentrations in calves.
Collapse
Affiliation(s)
- L. G. Wallace
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - G. Bobe
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis 97331
- Linus Pauling Institute, Oregon State University, Corvallis 97331
| | - W. R. Vorachek
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - B. P. Dolan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - C. T. Estill
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis 97331
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - G. J. Pirelli
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis 97331
| | - J. A. Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
- Corresponding author:
| |
Collapse
|
12
|
Pillai SM, Jones AK, Hoffman ML, McFadden KK, Reed SA, Zinn SA, Govoni KE. Fetal and organ development at gestational days 45, 90, 135 and at birth of lambs exposed to under- or over-nutrition during gestation ,. Transl Anim Sci 2017; 1:16-25. [PMID: 32704626 PMCID: PMC7235467 DOI: 10.2527/tas2016.0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
To determine the effects of poor maternal nutrition on offspring body and organ growth during gestation, pregnant Western White-faced ewes (n = 82) were randomly assigned into a 3 × 4 factorial treatment structure at d 30.2 ± 0.2 of gestation (n = 5 to 7 ewes per treatment). Ewes were individually fed 100% (control), 60% (restricted) or 140% (over) of NRC requirements for TDN. Ewes were euthanized at d 45, 90 or 135 of gestation or underwent parturition (birth) and tissues were collected from the offspring (n = 10 to 15 offspring per treatment). Offspring from control, restricted and overfed ewes are referred to as CON, RES and OVER, respectively. Ewe data were analyzed as a completely randomized design and offspring data were analyzed as a split-plot design using PROC MIXED. Ewe BW did not differ at d 30 (P ≥ 0.43), however restricted ewes weighed less than overfed and overfed were heavier than controls at d 45, and restricted weighed less and overfed were heavier than controls at d 90 and 135 and birth (P ≤ 0.05). Ewe BCS was similar at d 30, 45 and 90 (P ≤ 0.07), however restricted ewes scored lower than control at d 135 and birth (P ≤ 0.05) and over ewes scored higher than control at d 135 (P ≤ 0.05) but not at birth (P = 0.06). A maternal diet by day of gestation interaction indicated that at birth the body weight (BW) of RES offspring was less than CON and OVER (P ≤ 0.04) and heart girth of RES was smaller than CON and OVER (P ≤ 0.004). There was no interaction of maternal diet and day of gestation on crown-rump, fetal, or nose occipital length, or orbit or umbilical diam. (P ≥ 0.31). A main effect of maternal diet indicated that the RES crown-rump length was shorter than CON and OVER (P ≤ 0.05). An interaction was observed for liver, kidney and renal fat (P ≤ 0.02). At d 45 the liver of RES offspring was larger than CON and OVER (P ≤ 0.002), but no differences observed at d 90, 135 or birth (P ≥ 0.07). At d 45, the kidneys of OVER offspring were larger than CON and RES (P ≤ 0.04), but no differences observed at d 90, 135 or birth (P ≥ 0.60). At d 135, OVER had more perirenal fat than CON and RES (P ≤ 0.03), and at birth RES had more perirenal fat than CON and OVER (P ≤ 0.04). There was no interaction observed for offspring heart weight, length or width, kidney length, adrenal gland weight, loin eye area or rib width (P ≥ 0.09). In conclusion, poor maternal nutrition differentially alters offspring body size and organ growth depending on the stage of gestation.
Collapse
Affiliation(s)
- S M Pillai
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - A K Jones
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - M L Hoffman
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - K K McFadden
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - S A Reed
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - S A Zinn
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - K E Govoni
- Department of Animal Science, University of Connecticut, Storrs 06269
| |
Collapse
|
13
|
Liu P, Che L, Yang Z, Feng B, Che L, Xu S, Lin Y, Fang Z, Li J, Wu D. A Maternal High-Energy Diet Promotes Intestinal Development and Intrauterine Growth of Offspring. Nutrients 2016; 8:nu8050258. [PMID: 27164130 PMCID: PMC4882671 DOI: 10.3390/nu8050258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
It has been suggested that maternal nutrition during gestation is involved in an offspring’s intestinal development. The aim of this study was therefore to evaluate the effects of maternal energy on the growth and small intestine development of offspring. After mating, twenty gilts (Large White (LW) breeding, body weight (BW) at 135.54 ± 0.66 kg) were randomly allocated to two dietary treatments: a control diet (CON) group and a high-energy diet (HED) group, respectively. The nutrient levels of the CON were referred to meet the nutrient recommendations by the National Research Council (NRC, 2012), while the HED was designed by adding an amount of soybean oil that was 4.6% of the total diet weight to the CON. The dietary treatments were introduced from day 1 of gestation to farrowing. At day 90 of gestation, day 1 post-birth, and day 28 post-birth, the weights of fetuses and piglets, intestinal morphology, enzyme activities, and gene and protein expressions of intestinal growth factors were determined. The results indicated that the maternal HED markedly increased the BW, small intestinal weight, and villus height of fetuses and piglets. Moreover, the activities of lactase in fetal intestine, sucrase in piglet intestine were markedly increased by the maternal HED. In addition, the maternal HED tended to increase the protein expression of insulin-like growth factor 1 receptor (IGF-1R) in fetal intestine, associated with significantly increased the gene expression of IGF-1R. In conclusion, increasing energy intake could promote fetal growth and birth weight, with greater intestinal morphology and enzyme activities.
Collapse
Affiliation(s)
- Peilin Liu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Long Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Zhenguo Yang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Hoffman ML, Peck KN, Forella ME, Fox AR, Govoni KE, Zinn SA. The effects of poor maternal nutrition during gestation on postnatal growth and development of lambs12. J Anim Sci 2016; 94:789-99. [DOI: 10.2527/jas.2015-9933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Meyer AM, Caton JS. Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring. Adv Nutr 2016; 7:169-78. [PMID: 27180380 PMCID: PMC4717893 DOI: 10.3945/an.115.010405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small-intestinal growth and function are critical for optimal animal growth and health and play a major role in nutrient digestion and absorption, energy and nutrient expenditure, and immunological competence. During fetal and perinatal development, the small intestine is affected by the maternal environment and nutrient intake. In ruminants, altered small-intestinal mass, villi morphology, hypertrophy, hyperplasia, vascularity, and gene expression have been observed as a result of poor gestational nutrition or intrauterine growth restriction. Although many of these data come from fetal stages, data have also demonstrated that nutrition during mid- and late gestation affects lamb small-intestinal growth, vascularity, digestive enzyme activity, and gene expression at 20 and 180 d of age as well. The small intestine is known to be a highly plastic tissue, changing with nutrient intake and physiological state even in adulthood, and the maternal small intestine adapts to pregnancy and advancing gestation. In ruminants, the growth, vascularity, and gene expression of the maternal small intestine also adapt to the nutritional plane and specific nutrient intake such as high selenium during pregnancy. These changes likely alter both pre- and postnatal nutrient delivery to offspring. More research is necessary to better understand the role of the offspring and maternal small intestines in whole-animal responses to developmental programming, but programming of this plastic tissue seems to play a dynamic role in gestational nutrition impacts on the whole animal.
Collapse
Affiliation(s)
- Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO; and
| | - Joel S Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
16
|
Barnett MP, Bermingham EN, Young W, Bassett SA, Hesketh JE, Maciel-Dominguez A, McNabb WC, Roy NC. Low folate and selenium in the mouse maternal diet alters liver gene expression patterns in the offspring after weaning. Nutrients 2015; 7:3370-86. [PMID: 26007332 PMCID: PMC4446756 DOI: 10.3390/nu7053370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.
Collapse
Affiliation(s)
- Matthew P.G. Barnett
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand; E-Mails: (E.N.B.); (W.Y.); (S.A.B.); (N.C.R.)
- Nutrigenomics New Zealand; Private Bag 92019, Auckland 1142, New Zealand
- Gravida: National Centre for Growth and Development, Private Bag 92019, Auckland 1142, New Zealand
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +64-21-938-549; Fax: +64-6-351-8032
| | - Emma N. Bermingham
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand; E-Mails: (E.N.B.); (W.Y.); (S.A.B.); (N.C.R.)
- Nutrigenomics New Zealand; Private Bag 92019, Auckland 1142, New Zealand
| | - Wayne Young
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand; E-Mails: (E.N.B.); (W.Y.); (S.A.B.); (N.C.R.)
- Nutrigenomics New Zealand; Private Bag 92019, Auckland 1142, New Zealand
| | - Shalome A. Bassett
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand; E-Mails: (E.N.B.); (W.Y.); (S.A.B.); (N.C.R.)
- Nutrigenomics New Zealand; Private Bag 92019, Auckland 1142, New Zealand
| | - John E. Hesketh
- Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; E-Mails: (J.E.H.); (A.M.-D.)
| | - Anabel Maciel-Dominguez
- Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; E-Mails: (J.E.H.); (A.M.-D.)
| | - Warren C. McNabb
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand; E-Mail:
- Riddet Institute, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Nicole C. Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand; E-Mails: (E.N.B.); (W.Y.); (S.A.B.); (N.C.R.)
- Nutrigenomics New Zealand; Private Bag 92019, Auckland 1142, New Zealand
- Gravida: National Centre for Growth and Development, Private Bag 92019, Auckland 1142, New Zealand
- Riddet Institute, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| |
Collapse
|
17
|
Du M, Wang B, Fu X, Yang Q, Zhu MJ. Fetal programming in meat production. Meat Sci 2015; 109:40-7. [PMID: 25953215 DOI: 10.1016/j.meatsci.2015.04.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/23/2022]
Abstract
Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies.
Collapse
Affiliation(s)
- Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States.
| | - Bo Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Qiyuan Yang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
18
|
Intestinal gene expression profiles of piglets benefit from maternal supplementation with a yeast mannan-rich fraction during gestation and lactation. Animal 2014; 9:622-8. [PMID: 25482612 DOI: 10.1017/s1751731114002961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The objective was to study the effect of maternal supplementation with a yeast cell wall-based product containing a mannan-rich fraction (MRF) during gestation and lactation on piglet intestinal gene expression. First parity sows were fed experimental gestation and lactation diets with or without MRF (900 mg/kg). After farrowing, piglets were fostered within treatment, as necessary. Sow and litter production performance data were collected until weaning. On day 10 post farrowing, jejunum samples from piglets were collected for gene expression analysis using the Affymetrix Porcine GeneChip array. Most performance parameters did not differ between the treatments. However, protein (P<0.01), total solids less fat (P<0.03) and the concentration of immunoglobulin G (IgG) in milk were greater (P<0.05) in the MRF-supplemented group. Gene expression results using hierarchical clustering revealed an overall dietary effect. Further analysis elucidated activation of pathways involved in tissue development, functioning and immunity, as well as greater cell proliferation and less migration of cells in the jejunum tissue. In conclusion, feeding the sow MRF during pregnancy and lactation was an effective nutritional strategy to bolster colostrum and milk IgG that are essential for development of piglet immune system and gut. In addition, the gene expression patterns affected by the passive immunity transfer showed indicators that could benefit animal performance long term.
Collapse
|
19
|
Effects of maternal over- and undernutrition on intestinal morphology, enzyme activity, and gene expression of nutrient transporters in newborn and weaned pigs. Nutrition 2014; 30:1442-7. [DOI: 10.1016/j.nut.2014.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 02/04/2023]
|
20
|
Reed SA, Raja JS, Hoffman ML, Zinn SA, Govoni KE. Poor maternal nutrition inhibits muscle development in ovine offspring. J Anim Sci Biotechnol 2014; 5:43. [PMID: 25247074 PMCID: PMC4170199 DOI: 10.1186/2049-1891-5-43] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maternal over and restricted nutrition has negative consequences on the muscle of offspring by reducing muscle fiber number and altering regulators of muscle growth. To determine if over and restricted maternal nutrition affected muscle growth and gene and protein expression in offspring, 36 pregnant ewes were fed 60%, 100% or 140% of National Research Council requirements from d 31 ± 1.3 of gestation until parturition. Lambs from control-fed (CON), restricted-fed (RES) or over-fed (OVER) ewes were necropsied within 1 d of birth (n = 18) or maintained on a control diet for 3 mo (n = 15). Semitendinosus muscle was collected for immunohistochemistry, and protein and gene expression analysis. RESULTS Compared with CON, muscle fiber cross-sectional area (CSA) increased in RES (58%) and OVER (47%) lambs at 1 d of age (P < 0.01); however at 3 mo, CSA decreased 15% and 17% compared with CON, respectively (P < 0.01). Compared with CON, muscle lipid content was increased in OVER (212.4%) and RES (92.5%) at d 1 (P < 0.0001). Muscle lipid content was increased 36.1% in OVER and decreased 23.6% in RES compared with CON at 3 mo (P < 0.0001). At d 1, myostatin mRNA abundance in whole muscle tended to be greater in OVER (P = 0.07) than CON. Follistatin mRNA abundance increased in OVER (P = 0.04) and tended to increase in RES (P = 0.06) compared with CON at d 1. However, there was no difference in myostatin or follistatin protein expression (P > 0.3). Phosphorylated Akt (ser473) was increased in RES at 3 mo compared with CON (P = 0.006). CONCLUSIONS In conclusion, maternal over and restricted nutrient intake alters muscle lipid content and growth of offspring, possibly through altered gene and protein expression.
Collapse
Affiliation(s)
- Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Joseline S Raja
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Maria L Hoffman
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Meyer AM, Hess BW, Paisley SI, Du M, Caton JS. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation. J Anim Sci 2014; 92:3855-67. [PMID: 25057033 DOI: 10.2527/jas.2014-7646] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We hypothesized that gestational nutrition would affect calf feed efficiency and small intestinal biology, which would be correlated with feed efficiency. Multiparous beef cows (n = 36) were individually fed 1 of 3 diets from d 45 to 185 of gestation: native grass hay and supplement to meet NRC recommendations (control [CON]), 70% of CON NEm (nutrient restricted [NR]), or a NR diet with a RUP supplement (NR+RUP) to provide similar essential AA as CON. After d 185 of gestation, cows were managed as a single group, and calf individual feed intake was measured with the GrowSafe System during finishing. At slaughter, the small intestine was dissected and sampled. Data were analyzed with calf sex as a block. There was no effect (P ≥ 0.33) of maternal treatment on residual feed intake, G:F, DMI, ADG, or final BW. Small intestinal mass did not differ (P ≥ 0.38) among treatments, although calf small intestinal length tended (P = 0.07) to be greater for NR than NR+RUP. There were no differences (P ≥ 0.20) in calf small intestinal density or jejunal cellularity, proliferation, or vascularity among treatments. Jejunal soluble guanylate cyclase mRNA was greater (P < 0.03) for NR+RUP than CON and NR. Residual feed intake was positively correlated (P ≤ 0.09) with small intestinal mass and relative mass and jejunal RNA content but was negatively correlated (P ≤ 0.09) with jejunal mucosal density and DNA concentration. Gain:feed was positively correlated (P ≤ 0.09) with jejunal mucosal density, DNA, protein, and total cells and was negatively correlated (P ≤ 0.05) with small intestinal relative mass, jejunal RNA, and RNA:DNA. Dry matter intake was positively correlated (P ≤ 0.09) with small intestinal mass, relative mass, length, and density as well as jejunal DNA and protein content, total cells, total vascularity, and kinase insert domain receptor and endothelial nitric oxide synthase 3 mRNA and was negatively correlated (P = 0.02) with relative small intestinal length. In this study, calf performance and efficiency during finishing as well as most measures of small intestinal growth were not affected by maternal nutrient restriction during early and midgestation. Results indicate that offspring small intestinal gene expression may be affected by gestational nutrition even when apparent tissue growth is unchanged. Furthermore, small intestinal size and growth may explain some variation in efficiency of nutrient utilization in feedlot cattle.
Collapse
Affiliation(s)
- A M Meyer
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - B W Hess
- Department of Animal Science, University of Wyoming, Laramie 82071
| | - S I Paisley
- Department of Animal Science, University of Wyoming, Laramie 82071
| | - M Du
- Department of Animal Science, University of Wyoming, Laramie 82071
| | - J S Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo 58108
| |
Collapse
|