1
|
Miao H, Liang J, Lan G, Wu Q, Huang Z. Heat-Killed Lactobacillus acidophilus Promotes Growth by Modulating the Gut Microbiota Composition and Fecal Metabolites of Piglets. Animals (Basel) 2024; 14:2528. [PMID: 39272313 PMCID: PMC11394466 DOI: 10.3390/ani14172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Probiotics can improve animal growth performance and intestinal health. However, understanding the effects of paraprobiotics on the growth performance and gut microbiota of piglets and how the paraprobiotics exert their impact are still limited. The present study was conducted to investigate the effects of heat-killed Lactobacillus acidophilus IFFI 6005 supplementation on the growth performance, intestinal microbiota, and fecal metabolites of piglets. First, a feed-additive sample of heat-killed Lactobacillus acidophilus IFFI 6005 was prepared by culture. Second, 96 (initial BW = 14.38 ± 0.67 kg, weaning age of 40 days) healthy piglets were selected and randomized into four treatment groups. Each treatment group consisted of three replicates (n = 8). Pigs were fed a basal diet (NC), basal diet plus antibiotics (PC), basal diet plus Lactobacillus acidophilus IFFI 6005 at 600 g/t (LA, 1.0 × 1010 cfu/g), and basal diet plus heat-killed Lactobacillus acidophilus IFFI 6005 at 600 g/t (HKLA), respectively; the trial lasted for 30 days. The results showed that the ratios of feed to gain (F:G) and diarrhea rate of both the HKLA and PC groups were significantly lower compared with the NC and LA groups (p < 0.05); however, there was no significant difference between the HKLA and PC group (p > 0.05). In addition, the average daily weight gain (ADG) of the HKLA group was significantly higher (p < 0.05) than that of the other three groups in terms of growth performance. Finally, 16S rRNA sequencing and metabolome analysis based on fecal samples further elaborated that the addition of heat-killed Lactobacillus acidophilus IFFI 6005 to the feed improved the intestinal microbial diversity and abundance (p < 0.05) and reduced the abundance of pathogenic bacteria (p < 0.05), but it did not affect the abundance of Lactobacillus (p > 0.05). Through the comparison of microbial abundance and metabolite content between the two groups (NC_vs_HKLA), the largest differences were found in six microorganisms and 10 metabolites in the intestine (p < 0.05). These differential metabolites were involved in the digestion, absorption and utilization of protein and starch, as well as in oxidative stress. In summary, addition of heat-killed Lactobacillus acidophilus IFFI 6005 as a new feed additive in piglets has beneficial effects on the growth performance, intestinal bacteria and metabolites, and can be used as an alternative to antibiotics.
Collapse
Affiliation(s)
- Huabiao Miao
- School of Life Science, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
| | - Jing Liang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ganqiu Lan
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
| |
Collapse
|
2
|
Tan B, Xiao D, Wang J, Tan B. The Roles of Polyamines in Intestinal Development and Function in Piglets. Animals (Basel) 2024; 14:1228. [PMID: 38672376 PMCID: PMC11047586 DOI: 10.3390/ani14081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The gastrointestinal tract plays crucial roles in the digestion and absorption of nutrients, as well as in maintenance of a functional barrier. The development and maturation of the intestine is important for piglets to maintain optimal growth and health. Polyamines are necessary for the proliferation and growth of enterocytes, which play a key role in differentiation, migration, remodeling and integrity of the intestinal mucosa after injury. This review elaborates the development of the structure and function of the intestine of piglets during embryonic, suckling and weaning periods, the utilization and metabolism of polyamines in the intestine, as well as the role of polyamines in intestinal development and mucosal repair. The nutritional intervention to improve intestinal development and functions by modulating polyamine metabolism in piglets is also put forward. These results may help to promote the adaption to weaning in pigs and provide useful information for the development and health of piglets.
Collapse
Affiliation(s)
- Bihui Tan
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Dingfu Xiao
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Bi’e Tan
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
- Hunan Linxi Biological Technology Co., Ltd. Expert Workstation, Changsha 410202, China
| |
Collapse
|
3
|
Hu N, Mao P, Xiong X, Ma Z, Xie Z, Gao M, Wu Q, Ma W. Effect of N-Carbamylglutamate Supplementation on Growth Performance, Jejunal Morphology, Amino Acid Transporters, and Antioxidant Ability of Weaned Pigs. Animals (Basel) 2023; 13:3183. [PMID: 37893907 PMCID: PMC10603668 DOI: 10.3390/ani13203183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Weaning is an important period that affects the performance of piglets. However, the regulation of dietary amino acid levels is considered to be an effective way to alleviate the weaning stress of piglets. N-carbamylglutamate (NCG) plays an important role in improving the growth performance and antioxidant capacity of animals. A total of 36 weaned piglets were randomly assigned to two treatment groups, a control group (CON) and a 500 mg/kg NCG group (NCG), and the experiment lasted for 28 days. The results show that the NCG treatment group showed an increased 0-28 days average weight gain and average daily feed intake, and also increased contents of GLU and HDL, and lower SUN in serum, and an upregulation of the expression of the amino acid transporters SNAT2, EAAC1, SLC3A1, and SLC3A2 mRNA in the jejunum (p < 0.05), as well as an increased villus length and VH:CD ratio, and claudin-1, occludin, and ZO-1 mRNA expression in the jejunum (p < 0.05). The NCG treatment group showed an increased content of GSH-Px in serum and T-AOC and SOD in the jejunum, and a lower content of MDA (p < 0.05); and the upregulation of the mRNA expression related to antioxidant enzymes (CAT, SOD1, Gpx4, GCLC, GCLM and Nrf2, AhR, CYP1A1) in the jejunal mucosa (p < 0.05). In addition, compared with the control group, the NCG treatment group saw an upregulation in the mRNA expression of IL-10 and a decrease in the expression of IL-1β and IL-4 in the jejunal mucosa (p < 0.05). In summary, the results of this study suggest that NCG improved growth performance and jejunal morphology, improved the jejunal transport of amino acids related to the ornithine cycle, and improved the antioxidant capacity in weaned pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (N.H.); (P.M.); (X.X.); (Z.M.); (Z.X.); (M.G.); (Q.W.)
| |
Collapse
|
4
|
Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. Biomolecules 2023; 13:biom13030437. [PMID: 36979372 PMCID: PMC10046512 DOI: 10.3390/biom13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production.
Collapse
|
5
|
Wang J, Wang N, Qi M, Li J, Tan B. Glutamine, glutamate, and aspartate differently modulate energy homeostasis of small intestine under normal or low energy status in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:216-226. [PMID: 34977390 PMCID: PMC8685906 DOI: 10.1016/j.aninu.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 06/14/2023]
Abstract
Weaning stress may cause reduced energy intake for maintenance of mucosal structure. Gln, Glu, and Asp are major energy sources for the small intestine. This study investigated whether Gln, Glu, and Asp improve the intestinal morphology via regulating the energy metabolism in weaning piglets. A total of 198 weaned piglets were assigned to 3 treatments: Control (Basal diet + 1.59% L-Ala); T1 (Basal diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp); T2 (Low energy diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp). Jejunum and ileum were obtained on d 5 or 21 post-weaning. T1 enhanced growth performance. T1 and T2 treatments improved small intestinal morphology by increasing villus height, goblet cell number and decreasing crypt depth. Days post-weaning affected the efficacy of T2, but not T1, on energy metabolism. At normal energy supplementation, Gln, Glu, and Asp restored small intestinal energy homeostasis via replenishing the Krebs' cycle and down-regulating the AMPK (adenosine monophosphate activated protein kinase) pathway. As these are not sufficient to maintain the intestinal energy-balance of piglets fed with a low energy diet on d 5 post-weaning, the AMPK, glycolysis, beta-oxidation, and mitochondrial biogenesis are activated to meet the high energy demand of enterocytes. These data indicated that Gln, Glu, and Asp could restore the energy homeostasis of intestinal mucosa of weaning piglets under normal energy fed. Low energy feeding may increase the susceptibility of piglets to stress, which may decrease the efficacy of Gln, Glu, and Asp on the restoration of energy balance. These findings provide new information on nutritional intervention for insufficient energy intake in weaning piglets.
Collapse
Affiliation(s)
- Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Animal Nutrition and Human Health Laboratory, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing 10008, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
6
|
Wang J, Xiao Y, Li J, Qi M, Tan B. Serum biochemical parameters and amino acids metabolism are altered in piglets by early-weaning and proline and putrescine supplementations. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:334-345. [PMID: 34258421 PMCID: PMC8245818 DOI: 10.1016/j.aninu.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/14/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022]
Abstract
The study was to investigate the effect of early-weaning stress and proline (Pro) and putrescine (Put) supplementations on serum biochemical parameters and amino acids (AA) metabolism in suckling and post-weaning pigs. Blood and small intestinal mucosa were harvested from suckling piglets at 1, 7, 14, and 21 d of age and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age, as well as from piglets received oral administration of Pro and Put from 1 to 14 d old. In suckling piglets, the serum glucose, albumin and total cholesterol levels were increased (P < 0.05) with increasing age, whereas the serum globulin, urea nitrogen (BUN), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) levels were lowered (P < 0.05). The concentrations of most serum AA and the AA transporters related gene expressions were highest in 7-d-old piglets (P < 0.05), whereas the phosphorylation status of the mammalian target of the rapamycin (mTOR) signaling pathway in the small intestine increased in piglets from 1 to 21 d old (P < 0.05). Weaning at 14 d old increased (P < 0.05) the BUN and triglycerides levels in serum, as well as jejunal solute carrier family 7 member 6 (SLC7A6), ileal SLC36A1 and SLC1A1 mRNA abundances at d 1 or 3 post-weaning. Weaning also inhibited (P < 0.05) the phosphorylation levels of mTOR and its downstream ribosomal protein S6 kinase 1 (S6K1) and 4E-binding protein-1 (4EBP1) in the small intestine of weanling pigs. Oral administration of Put and Pro decreased (P < 0.05) serum ALP levels and increased (P < 0.05) intestinal SLC36A1 and SLC1A1 mRNA abundances and mTOR pathway phosphorylation levels in post-weaning pigs. Pro but not Put treatment enhanced (P < 0.05) serum Pro, arginine (Arg) and glutamine (Gln) concentrations of weaning-pigs. These findings indicated that early-weaning dramatically altered the biochemical blood metabolites, AA profile and intestinal mTOR pathway activity, and Pro and Put supplementations improved the AA metabolism and transportation as well as activated the intestinal mTOR pathway in weanling-pigs. Our study has an important implication for the broad application of Pro and Put in the weaning transition of piglets.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Yuxin Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing 10008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
7
|
Wang J, Tan B, Li J, Kong X, Tan M, Wu G. Regulatory role of l-proline in fetal pig growth and intestinal epithelial cell proliferation. ACTA ACUST UNITED AC 2020; 6:438-446. [PMID: 33364460 PMCID: PMC7750805 DOI: 10.1016/j.aninu.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
l-proline (Pro) is a precursor of ornithine, which is converted into polyamines via ornithine decarboxylase (ODC). Polyamines plays a key role in the proliferation of intestinal epithelial cells. The study investigated the effect of Pro on polyamine metabolism and cell proliferation on porcine enterocytes in vivo and in vitro. Twenty-four Huanjiang mini-pigs were randomly assigned into 1 of 3 groups and fed a basal diet that contained 0.77% alanine (Ala, iso-nitrogenous control), 1% Pro or 1% Pro + 0.0167% α-difluoromethylornithine (DFMO) from d 15 to 70 of gestation. The fetal body weight and number of fetuses per litter were determined, and the small and large intestines were obtained on d 70 ± 1.78 of gestation. The in vitro study was performed in intestinal porcine epithelial (IPEC-J2) cells cultured in Dulbecco's modified Eagle medium-high glucose (DMEM-H) containing 0 μmol/L Pro, 400 μmol/L Pro, or 400 μmol/L Pro + 10 mmol/L DFMO for 4 d. The results showed that maternal dietary supplementation with 1% Pro increased fetal weight; the protein and DNA concentrations of the fetal small intestine; and mRNA levels for potassium voltage-gated channel, shaker-related subfamily, member 1 (Kv1.1) in the fetal small and large intestines (P < 0.05). Supplementing Pro to either gilts or IPEC-J2 cells increased ODC protein abundances and polyamine concentrations in the fetal intestines and IPEC-J2 cells (P < 0.05). In comparison with the Pro group, the combined administration of Pro and DFMO reduced the expression of ODC protein and spermine concentration in the fetal intestine, as well as the concentrations of putrescine, spermidine and spermine in IPEC-J2 cells (P < 0.05). Meanwhile, the percentage of cells in the S-phase and the mRNA levels of proto-oncogenes c-fos and c-myc were increased in response to Pro supplementation, whereas depletion of cellular polyamines with DFMO increased tumor protein p53 (p53) mRNA levels (P < 0.05). Taken together, dietary supplementation with Pro improved fetal pig growth and intestinal epithelial cell proliferation via enhancing polyamine synthesis.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Minjie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Xiong X, Tan B, Song M, Ji P, Kim K, Yin Y, Liu Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front Vet Sci 2019; 6:46. [PMID: 30847348 PMCID: PMC6393345 DOI: 10.3389/fvets.2019.00046] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 01/20/2023] Open
Abstract
Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal development and health is critically important for enhancing nutrient digestibility capacity and disease resistance of weaned pigs, therefore, increasing their survival rate at this most vulnerable stage, and overall productive performance during later stages. A healthy gut may include but not limited several important features: a healthy proliferation of intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence suggested nutritional intervention are one of promising measures to enhance intestinal health of weaned pigs, although the exact protective mechanisms may vary and are still not completely understood. Previous research indicated that functional amino acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression of tight junction protein) of weaned pigs. A number of feed additives are marketed to assist in boosting intestinal immunity and regulating gut microbiota, therefore, reducing the negative impacts of weaning, and other environmental challenges on piglets. The promising results have been demonstrated in antimicrobial peptides, clays, direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids, phytochemicals, and many other feed additives. This review summarizes our current understanding of nutritional intervention on intestinal health and development of weaned pigs and the importance of mechanistic studies focusing on this research area.
Collapse
Affiliation(s)
- Xia Xiong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
The Evaluation of Antioxidant and Anti-Inflammatory Effects of Eucommia ulmoides Flavones Using Diquat-Challenged Piglet Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8140962. [PMID: 28894511 PMCID: PMC5574320 DOI: 10.1155/2017/8140962] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
This study was designed to evaluate the antioxidant and anti-inflammatory effects of Eucommia ulmoides flavones (EUF) using diquat-challenged piglet models. A total of 96 weaned piglets were randomly allotted to 1 of 3 treatments with 8 replication pens per treatment and 4 piglets per pen. The treatments were basal diet, basal diet + diquat, and 100 mg/kg EUF diet + diquat. On day 7 after the initiation of treatment, the piglets were injected intraperitoneally with diquat at 8 mg/kg BW or the same amount of sterilized saline. The experiment was conducted for 21 days. EUF supplementation improved the growth performance of diquat-treated piglets from day 14 to 21. Diquat also induced oxidative stress and inflammatory responses and then impaired intestinal morphology. But EUF addition alleviated these negative effects induced by diquat that showed decreasing serum concentrations of proinflammatory cytokines but increasing antioxidant indexes and anti-inflammatory cytokines on day 14. Supplementation of EUF also increased villi height and villous height, crypt depth, but decreased the histopathological score and MPO activity compared with those of diquat-challenged pigs fed with the basal diet on day 14. Results indicated that EUF attenuated the inflammation and oxidative stress of piglets caused by diquat injection.
Collapse
|
10
|
Cao W, Xu X, Jia G, Zhao H, Chen X, Wu C, Tang J, Wang J, Cai J, Liu G. Roles of spermine in modulating the antioxidant status and Nrf2 signalling molecules expression in the thymus and spleen of suckling piglets-new insight. J Anim Physiol Anim Nutr (Berl) 2017; 102:e183-e192. [DOI: 10.1111/jpn.12726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- W. Cao
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - X. Xu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - G. Jia
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - H. Zhao
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - X. Chen
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - C. Wu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - J. Tang
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - J. Wang
- Maize Research Institute; Sichuan Agricultural University; Chengdu China
| | - J. Cai
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| | - G. Liu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education; Chengdu China
| |
Collapse
|