1
|
Maynard CJ, Gonzalez JM, Haginouchi T, Ellis OG, Jackson AR, Owens CM. Effects of nicotinamide riboside in ovo feeding on high-yield broiler performance, meat quality, and myopathy incidence. Front Physiol 2024; 15:1397442. [PMID: 38835727 PMCID: PMC11149420 DOI: 10.3389/fphys.2024.1397442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction: The objective of this study was to examine the effects of in ovo nicotinamide riboside (NR) feeding on high-yield broiler growth and meat quality. Methods: Fertilized Cobb 700 by-product eggs (N = 3,240) were randomly assigned to one of four in ovo treatments and injected with 0 (0NR), 250 (250NR), 500 (500NR), or 1,000 (1,000NR) mM NR at incubation-day 10. Chicks were hatched, vent sexed, and randomly placed 18 per pen in one of 32 floor pens. On day 48, birds were processed and deboned. Results: There were dose effects for all part weights (p < 0.05). Pectoralis major weight of 250, 500, and 1,000NR carcasses were heavier than 0NR (p < 0.03) but did not differ from remaining NR doses (p > 0.26). Pectoralis minor weight of 250NR carcasses was greater (p < 0.01) than 0NR and did not differ from other NR tenders (p > 0.21). Pectoralis minor weight of 500 and 1,000NR carcasses was greater than 0NR (p < 0.09), but did not differ (P = 0.82) from each other. There were no dose effects for all Pectoralis major and minor myopathy scores and incidence except incidence of tenders scoring "0" and "1" for woody-like tender. Percentage of NR1,000 tenders scoring 0 and 1 for woody-like tender were less than and greater than all other treatments, respectively (p < 0.05). There were no differences among remaining NR doses and NR0 tenders (p > 0.10). There were dose effects for muscle fiber number (P = 0.03). There tended to be more muscle fibers within 250 and 1,000NR muscles compared to 0NR (p < 0.09). Pectoralis major muscle from 500NR did not differ in muscle fiber number compared to 250 and 1,000NR (p > 0.18), but had more (p < 0.01) fibers than 0NR muscle. There tended to be more fibers in 250 and 1,000NR muscles compared to 0NR muscle (p < 0.09). Discussion: Nicotinamide riboside in ovo feeding caused birds to produce heavier parts; however, myopathy scores and incidence were minimally affected which may have been due greater muscle fiber number.
Collapse
Affiliation(s)
- Clay J Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - John M Gonzalez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | | | - Olivia G Ellis
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | | | - Casey M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
2
|
Leighton PLA, López-Campos Ó, Chabot B, Scott HR, Zawadski S, Barragán-Hernández W, Aalhus JL, Prieto N. Impact of a constant current electrical stimulation (CCES) system and hormonal growth-promoting (HGP) implants on meat quality and palatability of finished steers. Meat Sci 2023; 205:109297. [PMID: 37544261 DOI: 10.1016/j.meatsci.2023.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
This study evaluated the effects of a constant current electrical stimulation (CCES) system and hormonal growth-promoting (HGP) implants on the quality and palatability of the longissimus thoracis et lumborum (LTL) from yearling-finished steers. The experiment used a total of 46 Angus cross steers, which were either non-implanted (n = 20) or implanted with trenbolone acetate and estradiol benzoate (n = 26). The CCES was applied to one side of each carcass during the slaughter process, whereas the other side remained unstimulated. Regardless of the application of HGP implants, the CCES reduced pH at 3 and 72 h post-mortem and shear force at all ageing times (P < 0.05), improved colour at 72 h post-mortem and during the retail display (P < 0.05), increased initial and overall tenderness (P < 0.01), and decreased the amount of perceived connective tissue and the proportion of trained panelists detecting spongy texture (P < 0.05) compared to meat from unstimulated carcass sides. Although CCES increased meat purge losses and reduced moisture content (P < 0.05), this did not affect meat juiciness (P > 0.10). CCES interacted with HGP to prevent increase in drip loss (P > 0.10), increase frequency of panelists detecting bloody/serumy flavour and typical texture, and reduce the proportion of panelists detecting rubbery texture in meat (P < 0.05). Regardless of stimulation treatment, meat from implanted animals had a more pronounced pH decline at 72 h post-mortem (P < 0.05) and a higher proportion of panelists finding no off-flavours (P < 0.05) or bloody/serumy flavour (P < 0.01) than non-implanted cattle. The CCES system tested in this study improved LTL quality and palatability of heavier beef carcasses.
Collapse
Affiliation(s)
- P L A Leighton
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Ó López-Campos
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - B Chabot
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - H R Scott
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - S Zawadski
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - W Barragán-Hernández
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), El Nus Research Centre, San Roque, Antioquía, Colombia
| | - J L Aalhus
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - N Prieto
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada.
| |
Collapse
|
3
|
Roy BC, Bruce HL. Contribution of intramuscular connective tissue and its structural components on meat tenderness-revisited: a review. Crit Rev Food Sci Nutr 2023; 64:9280-9310. [PMID: 37194652 DOI: 10.1080/10408398.2023.2211671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tenderness of meat influences consumers' perceptions of its quality. Meat tenderness is a key quality characteristic that influences consumer satisfaction, repeat purchases, and willingness to pay higher prices for meat. Muscle fibers, connective tissues, and adipocytes are the main structural components of meat that contribute to its tenderness and texture. In the present review, we have focused on the role of connective tissue and its components in meat tenderness, specifically perimysial intramuscular connective tissue (IMCT) and its concept as an immutable "background toughness." The collagen contribution to cooked meat toughness can be altered by animal diet, compensatory growth, slaughter age, aging, and cooking. As well, progressive thickening of the perimysium leads to a progressive increase in shear force values in beef, pork, chicken, and this may occur prior to adipocyte formation as cattle finish in feedlots. Conversely, adipocyte accumulation in the perimysium can decrease cooked meat shear force, suggesting that the contribution of IMCT to meat toughness is complex and driven by both collagen structure and content. This review provides a theoretical foundation of information to modify IMCT components to improve meat tenderness.
Collapse
Affiliation(s)
- Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Reichhardt CC, Cuthbert JM, Motsinger LA, Brady TJ, Briggs RK, Thomas AJ, Thornton KJ. Anabolic implants alter abundance of mRNA involved in muscle growth, metabolism, and inflammation in the longissimus of Angus steers in the feedlot. Domest Anim Endocrinol 2023; 82:106773. [PMID: 36375404 DOI: 10.1016/j.domaniend.2022.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
Abstract
The majority of beef cattle in the United States often receive at least one anabolic implant resulting in improved growth, feed efficiency, and environmental and economic sustainability. However, the physiological and molecular mechanisms through which anabolic implants increase skeletal muscle growth of beef cattle remain elusive. The objective of this study was to identify transcriptional changes occurring in skeletal muscle of steers receiving anabolic implants containing different steroid hormones. Forty-eight steers were stratified by weight into 1 of 4 (n = 12/treatment) implant treatment groups: (1) estradiol (ImpE2; 25.7 mg E2; Compudose, Elanco Animal Health, Greenfield, IN), (2) trenbolone acetate (ImpTBA; 200 mg TBA; Finaplix-H, Merck Animal Health, Madison, NJ), (3) combination (ImpETBA; 120 mg TBA + 24 mg E2; Revalor-S, Merck Animal Health), or (4) no implant (CON). Skeletal muscle biopsies were taken from the longissimus 2 and 10 d post-implantation. The mRNA abundance of 94 genes associated with skeletal muscle growth was examined. At 10 d post-implantation, steers receiving ImpETBA had greater (P = 0.02) myoblast differentiation factor 1 transcript abundance than CON. Citrate synthase abundance was increased (P = 0.04) in ImpETBA steers compared to CON steers. In ImpE2 steers 10 d post-implantation, muscle RING finger protein 1 decreased (P = 0.05) compared to CON steers, and forkhead box protein O4 decreased (P = 0.05) in ImpETBA steers compared to CON steers. Interleukin-6 abundance tended to be increased (P = 0.09) in ImpE2 steers compared to both ImpETBA and CON steers. Furthermore, interleukin-10 mRNA abundance tended to be increased (P = 0.06) in ImpTBA steers compared to ImpETBA steers. Leptin receptor abundance was reduced (P = 0.01) in both ImpE2 and ImpTBA steers when compared to CON steers. Abundance of phosphodiesterase 4B was increased (P = 0.04) in ImpTBA steers compared to CON steers 2 d post-implantation. Taken together, the results of this research demonstrate that estradiol increases skeletal muscle growth via pathways related to nutrient partitioning and mitochondria function, while trenbolone acetate improves steer skeletal muscle growth via pathways related to muscle growth.
Collapse
Affiliation(s)
- C C Reichhardt
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA; Department of Human Nutrition, Food and Animal Sciences, University of Hawai`i at Mānoa, 1955 East-West Rd., Honolulu, HI, 96822, USA
| | - J M Cuthbert
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA; Department of Biology, Westminster College, 1840 South 1300 East, Salt Lake City, UT, 84105, USA
| | - L A Motsinger
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA; Department of Animal and Dairy Sciences, University of Georgia, 425 River Rd., Athens, GA, 30602, USA
| | - T J Brady
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA
| | - R K Briggs
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA
| | - A J Thomas
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA
| | - K J Thornton
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT, 84322, USA.
| |
Collapse
|
5
|
Mao H, Yin Z, Wang M, Zhang W, Raza SHA, Althobaiti F, Qi L, Wang J. Expression of DGAT2 Gene and Its Associations With Intramuscular Fat Content and Breast Muscle Fiber Characteristics in Domestic Pigeons (Columba livia). Front Vet Sci 2022; 9:847363. [PMID: 35754541 PMCID: PMC9227834 DOI: 10.3389/fvets.2022.847363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride synthesis and plays an important role in the synthesis of fat, but the effects of its expression on intramuscular fat (IMF) content and muscle development are still unknown. In this study, we investigated the expression of the DGAT2 gene and its associations with IMF content and breast muscle fiber characteristics in pigeons. The spatiotemporal expression profile of the pigeon DGAT2 gene in breast muscle showed that the mRNA expression level of DGAT2 gene in subcutaneous fat was the highest (p < 0.01) among eight tissues from 0 to 4 weeks of age, and showed an upward trend week by week, followed by liver (p < 0.05). Moreover, both mRNA and protein levels of the DGAT2 gene in breast muscle showed an upward trend from 0 to 4 weeks (p < 0.05), accompanied by the upregulation of MYOD1 and MSTN. In addition, the paraffin section analysis results revealed that the diameter and cross-sectional area of pectoralis muscle fiber significantly increased with age (p < 0.05), and a significant positive correlation was shown between the DGAT2 gene expression level and muscle fiber diameter (p < 0.05). Furthermore, correlation analysis suggested that the mRNA expression level of the pigeon DGAT2 gene was significantly (p < 0.01) correlated with IMF content in breast muscle. These results imply that the DGAT2 gene has a close relationship with IMF content and breast muscle fiber characteristics in pigeons, indicating that the DGAT2 gene might be used as a candidate gene marker-assisted breeding in pigeons.
Collapse
Affiliation(s)
- Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Wenwen Zhang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | | | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
- *Correspondence: Lili Qi
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
- Jinbo Wang
| |
Collapse
|
6
|
Small genetic variation affecting mRNA isoforms associated with marbling and meat color in beef cattle. Funct Integr Genomics 2022; 22:451-466. [PMID: 35305194 DOI: 10.1007/s10142-022-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
Abstract
The aim of this study was to identify mRNA isoforms and small genetic variants that may be affecting marbling and beef color in Nellore cattle. Longissimus thoracis muscle samples from 20 bulls with different phenotypes (out of 80 bulls set) for marbling (moderate (n = 10) and low (n = 10) groups) and beef color (desirable (n = 10) and undesirable (n = 9) group) traits were used to perform transcriptomic analysis using RNA sequencing. Fourteen and 15 mRNA isoforms were detected as differentially expressed (DE) (P-value ≤ 0.001) between divergent groups for marbling and meat color traits, respectively. Some of those DE mRNA isoforms have shown sites of splicing modified by small structural variants as single nucleotide variant (SNV), insertion, and/or deletion. Enrichment analysis identified metabolic pathways, such as O2/CO2 exchange in erythrocytes, tyrosine biosynthesis, and phenylalanine degradation. The results obtained suggest potential key regulatory genes associated with these economically important traits for the beef industry and for the consumer.
Collapse
|
7
|
Matney MJ, Gravely ME, O'Quinn TG, Drouillard JS, Phelps-Ronningen KJ, Houser TA, Hobson AW, Alcocer HM, Gonzalez JM. Effects of extended postmortem aging and intramuscular location on protein degradation, muscle fiber morphometrics, and tenderness of beef longissimus lumborum and semitendinosus steaks. J Anim Sci 2021; 99:6369559. [PMID: 34516626 DOI: 10.1093/jas/skab263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
The objective of this study was to determine effects of extended aging and intramuscular location on Warner-Bratzler shear force (WBSF), muscle fiber cross-sectional area (CSA), and protein degradation of semitendinosus (ST) and longissimus lumborum (LL) steaks. Left ST and LL were removed from 40 carcasses at 6 d postmortem. The ST was fabricated into five locations (LOC), with LOC 1 being most proximal and LOC 5 being most distal. The posterior LL was fabricated into 3 LOC, with LOC 1 being most anterior. Vacuum sealed ST steaks were aged 7, 14, 28, 56, or 112 d postmortem, while LL steaks were aged 7, 28, or 112 d postmortem at 2 ± 1 °C. A steak from each LOC was assigned to WBSF or laboratory analyses. There were no Day of Aging (DOA) × LOC interactions for all dependent variables (P > 0.06). There were DOA effects for ST and LL WBSF values and degraded 38-kDa desmin (DES; P < 0.01). Day-7 ST-steak WBSF value was greater than all other days (P < 0.01) and day-14 steaks had greater WBSF value than remaining days (P < 0.05). Day-28 ST-steak WBSF values were greater than day 56 and 112 (P < 0.01), which did not differ (P = 0.53). In the LL, day-7 steaks had greater WBSF values than the other two timepoints (P < 0.01) and day-28 steaks had greater (P < 0.01) WBSF values than day-112 steaks. Degraded ST 38-kDa DES content was less on day 7 and 14 compared to all other days (P < 0.03), but did not differ (P = 0.79) from each other. Days 28 and 56 38-kDa DES content was less than day 112 (P < 0.01), but did not differ (P = 0.34) from each other. Degraded LL 38-kDa DES content was less on day 7 than day 28 and 112 (P < 0.02), which did not differ (P = 0.67). There were LOC effects for only ST WBSF and muscle fiber CSA (P < 0.05). Semitendinosus steak LOC 1 and 2 had greater WBSF values than all other locations (P < 0.01), but did not differ (P = 0.32) from each other. Semitendinosus steak LOC 3 and 5 had greater WBSF values than LOC 4 (P < 0.01), but did not differ (P = 0.85) from each other. The CSA of all ST fiber types were largest in LOC 1 compared to all other fiber types (P < 0.01). The CSA of all LOC 2 and 3 fiber types was greater than LOC 4 and 5 (P < 0.01), but were not different from each other (P > 0.81), and LOC 4 had greater CSA than LOC 5 (P < 0.01). Steak aging WBSF value improvements seemed proteolysis catalyzed, while the ST intramuscular tenderness gradient was more likely due to muscle fiber CSA.
Collapse
Affiliation(s)
- MaryAnn J Matney
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Morgan E Gravely
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Travis G O'Quinn
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - James S Drouillard
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Terry A Houser
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA
| | - Allison W Hobson
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Hanna M Alcocer
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - John M Gonzalez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
López-Baca MÁ, Avendaño-Reyes L, Macías-Cruz U, Muhlia-Almazán A, Valenzuela-Melendres M, Peña-Ramos EA, Islava-Lagarda TY, González-Rios H. Muscle fiber morphometry and physicochemical characteristics of the Longissimus thoracis muscle of hair male lambs fed zilpaterol hydrochloride and implanted with steroids. Meat Sci 2021; 177:108490. [PMID: 33744607 DOI: 10.1016/j.meatsci.2021.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/22/2022]
Abstract
Muscle fiber morphometry and physicochemical characteristics were evaluated in LT muscles obtained from entire male lambs treated with zilpaterol hydrochloride (ZH, 0 and 0.15 mg/kg body weight) and/or steroidal implant (SI, with and without trenbolone acetate/estradiol). ZH and SI acted synergistically to increase LT area, type-IIb fiber cross-sectional area and soluble collagen content, likewise to decrease metmyoglobin concentration and insoluble collagen content. Ash content and ultimate pH showed a decrease due to an antagonistic effect between ZH and SI. Content of total collagen, protein, fat, moisture, oxidized lipids and water-holding capacity were unaffected by ZH and SI. Supplemental ZH, but not SI, decreased all color parameters and tended to increase shear force. Overall, the SI implantation of male lambs followed by a ZH supplementation promoted greater LT hypertrophy, without affecting protein and fat content, and physicochemical characteristics in their meat.
Collapse
Affiliation(s)
- M Ángeles López-Baca
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Leonel Avendaño-Reyes
- Universidad Autónoma de Baja california, Instituto de Ciencias Agrícolas, Valle de Mexicali, Baja California 21705, Mexico
| | - Ulises Macías-Cruz
- Universidad Autónoma de Baja california, Instituto de Ciencias Agrícolas, Valle de Mexicali, Baja California 21705, Mexico
| | - Adriana Muhlia-Almazán
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Etna Aida Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Thalia Y Islava-Lagarda
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Humberto González-Rios
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
9
|
Therkildsen M, Greenwood PL, Starkey CP, McPhee M, Walmsley B, Siddell J, Geesink G. Collagen, intramuscular fat and proteolysis affect Warner-Bratzler shear-force of muscles from Bos taurus breed types differently at weaning, after backgrounding on pasture, and after feedlotting. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
The texture of beef is highly important for the eating experience, and there is a continued interest in understanding the biochemical basis for the variation in texture between cattle and their meat cuts in order to improve and minimise variation in tenderness due to production and processing factors.
Aims
The present study aimed to investigate the impact of characteristics of meat on Warner-Bratzler shear-force (WBSF) as an indicator of texture of beef as affected by breed type, age/feeding phase, and muscle.
Methods
Seventy-five steers of three breed types (Angus, Hereford and Wagyu × Angus) were slaughtered after weaning 6 months old (n = 15), after backgrounding 17 months old (n = 30) and after feedlotting 25 months old (n = 30). At slaughter three muscles (M. supraspinatus, M. semitendinosus and M. longissimus lumborum) were sampled from each steer, and pH, intramuscular fat and collagen content, sarcomere length, and proteolysis (desmin degradation) were measured and used to explain the variation in WBSF after 7 and 14 days of aging.
Key results
Meat from Hereford and Angus steers had higher WBSF after 7 days of aging compared with Wagyu × Angus steers, but after 14 days of aging there was only a difference between Hereford and Wagyu × Angus in the M. supraspinatus and M. semitendinosus. The WBSF of the young weaned steers and steers slaughtered after backgrounding were dependent on the degree of proteolysis in the muscles, whereas for steers slaughtered after feedlotting the content of collagen was more important for the WBSF. The amount of intramuscular fat had a significant impact on the differences in WBSF within the specific muscle studied. In contrast to the general dogma that WBSF increase with age, WBSF decreased in M. semitendinosus and M. longissimus lumborum from the weaned 6-month-old steers to the 25-month-old steers finished in feed-lot, whereas in M. supraspinatus the older feed-lot finished steers had a higher WBSF.
Conclusion
The factors contributing to the Warner-Bratzler shear force of beef depends on the age/feeding phase of the animal and the muscle and less on the breed type.
Implications
Optimisation of texture in beef through breeding and production should address different traits dependent on the age/feeding phase of the slaughter animal.
Collapse
|
10
|
Roy BC, Das C, Aalhus JL, Bruce HL. Relationship between meat quality and intramuscular collagen characteristics of muscles from calf-fed, yearling-fed and mature crossbred beef cattle. Meat Sci 2020; 173:108375. [PMID: 33248740 DOI: 10.1016/j.meatsci.2020.108375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
Intramuscular Ehrlich Chromogen (EC) and pyridinoline (Pyr) concentrations in the gluteus medius (GM) and semitendinosus (ST) from crossbred Angus calf- (n = 14) and yearling-fed (n = 14) steer and mature cow (MC, n = 12) carcasses were related to collagen and intramuscular connective tissue (IMCT) thermal stability and peak Warner-Bratzler shear force (WBSF). In both muscles, Pyr density was greater in MC, while EC concentrations were comparable in calf- and yearling-fed steer muscles and lowest in MC muscles. Thermal denaturation temperature and enthalpy of IMCT were highest in both muscles when from MC, although only total collagen was correlated with WBSF in calf fed-yearling fed steer data. Results confirmed that EC concentration contributed to collagen thermal stability in steer muscles, but decreased it in MC muscles, while Pyr was consistently associated with collagen thermal stability.
Collapse
Affiliation(s)
- Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Chamali Das
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jennifer L Aalhus
- Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
11
|
Morey A, Johnson ML, Kataria J, Gonzalez JM. Studying the Effects of Collagenase (Type 1) on the Collagen in Woody Breast Meat. Animals (Basel) 2020; 10:ani10091602. [PMID: 32916830 PMCID: PMC7552197 DOI: 10.3390/ani10091602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Abnormal collagen infiltration in the Pectoralis major, breast muscle, of fast-growing big broilers has led to woody breast (WB) myopathy resulting in meat quality issues. Mechanisms to degrade the collagen were investigated to potentially improve WB texture. Freshly deboned WB fillets (n = 5 per trial; 3 trials) were ground and divided in to 25 g portions. Aqueous collagenase Type I solution (1 mL) from concentrations of 2.5, 5, and 10 mg/mL were incorporated in ground WB samples (n = 3 samples/treatment × 3 trials). Ground WB with 1 mL water acted as a control. All the samples were placed at 4 °C for 24 h and frozen at -80 °C. Control samples without any treatment or water addition (n = 3/trial) were frozen immediately upon grinding. Data collected on total (TC), soluble (SC), and insoluble collagen (IC) content was analyzed using one-way ANOVA with Tukey's honestly significant difference (HSD) (p ≤ 0.05). Fresh WB fillets had TC, SC, and IC content of 19.5, 4.9, and 14.6 mg/g, respectively. The addition of collagenase decreased (p ≤ 0.05) the IC to 5.8 mg/g in the 10 mg/mL treatment after 24 h. Converting IC to SC using collagenase can potentially help the poultry industry to reduce WB toughness.
Collapse
Affiliation(s)
- Amit Morey
- Department of Poultry Science, 201 Poultry Science Bldg, 260 Lem Morrison Dr., Auburn University, Auburn, AL 36849, USA; (M.L.J.); (J.K.)
- Correspondence:
| | - Meredith Lane Johnson
- Department of Poultry Science, 201 Poultry Science Bldg, 260 Lem Morrison Dr., Auburn University, Auburn, AL 36849, USA; (M.L.J.); (J.K.)
| | - Jasmine Kataria
- Department of Poultry Science, 201 Poultry Science Bldg, 260 Lem Morrison Dr., Auburn University, Auburn, AL 36849, USA; (M.L.J.); (J.K.)
| | - John Michael Gonzalez
- Department of Animal and Dairy Science, 425 River Road, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
12
|
Chun CKY, Wu W, Welter AA, O'Quinn TG, Magnin-Bissel G, Boyle DL, Chao MD. A preliminary investigation of the contribution of different tenderness factors to beef loin, tri-tip and heel tenderness. Meat Sci 2020; 170:108247. [PMID: 32736289 DOI: 10.1016/j.meatsci.2020.108247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
The objective of this study was to identify the relative contribution of tenderness factors for three beef muscles with similar tenderness ratings. Longissimus lumborum (LL), tensor fascia latae (TF) and gastrocnemius (GC) were collected from 10 USDA low Choice beef carcasses and assigned to a 5 or 21 days aging period (n = 60). Sarcomere length, troponin-T degradation, collagen content, mature collagen crosslink density, intramuscular lipid content and trained panel analysis were measured. Correlation and multivariate regression analysis indicated each muscle has a specific tenderness factor that contributed to the overall tenderness evaluated by trained panelists. The equations indicated LL tenderness was driven by lipid content (P < .05); TF tenderness was driven by collagen content (P < .05). GC tenderness was driven by proteolysis (P < .01), and only collagen content can be casually used as an overall tenderness predictor for all three cuts.
Collapse
Affiliation(s)
- C K Y Chun
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, United States
| | - W Wu
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, United States
| | - A A Welter
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, United States
| | - T G O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, United States
| | - G Magnin-Bissel
- Kansas State University, Department of Anatomy and Physiology, Manhattan, Kansas 66506, United States
| | - D L Boyle
- Kansas State University, Division of Biology, Manhattan, Kansas 66506, United States
| | - M D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, United States.
| |
Collapse
|
13
|
Bruce HL, Roy BC. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: BIOLOGICAL INFLUENCERS OF MEAT PALATABILITY: Production factors affecting the contribution of collagen to beef toughness1,2. J Anim Sci 2019; 97:2270-2278. [PMID: 30950490 DOI: 10.1093/jas/skz097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Intramuscular collagen may affect the value of meat by limiting its tenderness and cooking convenience. Production factors such as age of animal at slaughter, the use of steroids and beta-adrenergic agonists as growth promotants, and cattle breed may affect the contribution of collagen to beef quality. Recent research has indicated that concentrations of the mature collagen cross-link pyridinoline (PYR) are positively correlated with Warner-Bratzler shear force (WBSF) and animal age at slaughter, while contribution of the concentration of a second mature collagen cross-link Ehrlich's Chromogen (EC) to beef toughness declines with cattle age. Cattle breed influences total collagen content of muscle due to differing rates of maturation among breeds. Growth promoting technologies do not appear to affect collagen solubility, but do influence PYR and EC densities and concentrations in some beef muscles. Concentrations of PYR and EC do not account for all the variation in collagen heat solubility in beef muscles, nor do advanced glycation end products given the relative immaturity of cattle at slaughter. In light of this, other collagen cross-links such as heat-stable divalent cross-links may warrant reconsideration with regard to their contribution to cooked beef toughness.
Collapse
Affiliation(s)
- Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Lean IJ, Golder HM, Lees NM, McGilchrist P, Santos JEP. Effects of hormonal growth promotants on beef quality: a meta-analysis. J Anim Sci 2018; 96:2675-2697. [PMID: 29659862 DOI: 10.1093/jas/sky123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/02/2018] [Indexed: 11/14/2022] Open
Abstract
Benefits of hormonal growth promotants (HGPs) include production efficiency, profit, and reduced environmental effects for beef cattle. Questions remain about effects of HGP on beef quality, particularly on measures of toughness such as Warner-Bratzler shear force (WBSF), tenderness, and other taste-panel attributes of beef. The objective of this meta-analysis was to assess the effects of HGP on beef quality using the results of randomized controlled trials identified from 3 searched databases. Thirty-one experiments with 181 treatment comparisons were used to evaluate the effects of HGP on WBSF and sensory measures of beef quality. Experiments varied in design, used many different hormonal treatments and combinations, which were single or repeated, in different breeds and sex groups of cattle, with or without electrical stimulation, and with different lengths of time on feed and beef aging. The effects of multiple treatment comparisons in experiments were evaluated using robust regression models and compared to Knapp-Hartung and permutation meta-analytical methods. Increased WBSF was associated with HGP treatment. Use of multiple HGP implants was associated with an increase in WBSF of 0.248 kg (95% CI = 0.203 to 0.292). Effects of a single implant only increased WBSF by 0.176 kg (95% CI = 0.109 to 0.242). Aging of beef did not alter the association of HGP with increased WBSF (P = 0.105); however, the point direction was toward a reduced effect with aging (standardized mean difference [SMD] = -0.005 per day aged). While aging lowered WBSF, it did not reduce the SMD between HGP treatment and reference groups. Comparisons using trenbolone acetate did not differ in WBSF from those using other implants (P > 0.15). The findings on sensory panel tenderness differ from those using WBSF as HGP treatment was not associated with reduced tenderness (P > 0.3) and multiple HGP treatments improved tenderness (SMD = 0.468) compared to a single implant. Further, juiciness, flavor, and connective tissue were not associated with HGP use, whereas there was a marked 5.5-point decrease in the Meat Standards Australia meat quality 4 score, albeit with limited experiments. In general, the true variance of experiments, tau2 (τ2) was low (<0.1), but heterogeneity, I2 was high (>50%) indicating that much of the variance was due to factors other than measurement error. More targeted studies on the role of HGP in influencing beef quality are needed.
Collapse
Affiliation(s)
- Ian J Lean
- Scibus, Camden, NSW, Australia.,Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | | | | | - Peter McGilchrist
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Jose E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Koch BM, Pavan E, Andrae JG, Duckett SK. Timing of Exposure to High-Concentrates versus High-Quality Forages on Growth and Marbling Deposition in Steers. MEAT AND MUSCLE BIOLOGY 2018. [DOI: 10.22175/mmb2018.06.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Forty Angus-cross steers (280 ± 21.4 kg BW, 8 mo.) were used to examine the effects of exposure to 2 diets [high concentrate diets (CONC) versus high quality forages (FOR)] during 2 time periods [early (EARLY; at 30-d post weaning) or late (LATE; just prior to slaughter)] on animal growth, marbling deposition and tenderness. Steers were blocked by weight and randomly assigned to four dietary treatments: 1) CONC-FOR, 2) CONC-CONC, 3) FOR-CONC, or 4) FOR-FOR. Exposure to CONC during the EARLY or LATE period increased (P < 0.05) growth and fat deposition compared to FOR-FOR. Hot carcass weight was greater (P < 0.05) for CONC-CONC and FOR-CONC steers than FOR-FOR and CONC-FOR due to changes in dressing percent. Marbling score was greater (P < 0.05) for CONC-CONC and CONC-FOR compared to FOR-FOR. Exposure to CONC during the EARLY period (CONC-FOR and CONC-CONC) increased (P < 0.05) n-6 polyunsaturated fatty acids (PUFA) deposition in longissimus muscle (LM) and subcutaneous adipose tissue (SQ); whereas, exposure to CONC during the LATE period (CONC-CONC and FOR-CONC) reduced (P < 0.05) n-3 PUFA, trans-11 octadecenoic acid and cis-9 trans-11 isomer of conjugated linoleic acid (CLA). Warner-Bratzler shear force at d 2 and 7 of postmortem aging in ribeye steaks from CONC-CONC and FOR-CONC was greater (P < 0.05) than FOR-FOR and CONC-FOR. Lipogenic gene expression was up-regulated (P < 0.05) and lipolytic gene expression was downregulated (P < 0.06) in SQ from CONC-CONC and FOR-CONC compared to FOR-FOR. Overall, exposure to CONC in both periods increased growth rate and marbling deposition but LATE exposure had the greatest impact on adipose lipogenesis and lipolysis, fatty acid composition, and tenderness.
Collapse
Affiliation(s)
- Brandon M. Koch
- Clemson University Department of Animal and Veterinary Sciences
| | | | - John G. Andrae
- Clemson University Simpson Research and Education Center
| | | |
Collapse
|
16
|
Lean IJ, Golder HM, Lees NM, McGilchrist P, Santos JEP. Effects of hormonal growth promotants on beef quality: a meta-analysis. J Anim Sci 2018. [PMID: 29659862 DOI: 10.1093/jas/sky123/4962501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Benefits of hormonal growth promotants (HGPs) include production efficiency, profit, and reduced environmental effects for beef cattle. Questions remain about effects of HGP on beef quality, particularly on measures of toughness such as Warner-Bratzler shear force (WBSF), tenderness, and other taste-panel attributes of beef. The objective of this meta-analysis was to assess the effects of HGP on beef quality using the results of randomized controlled trials identified from 3 searched databases. Thirty-one experiments with 181 treatment comparisons were used to evaluate the effects of HGP on WBSF and sensory measures of beef quality. Experiments varied in design, used many different hormonal treatments and combinations, which were single or repeated, in different breeds and sex groups of cattle, with or without electrical stimulation, and with different lengths of time on feed and beef aging. The effects of multiple treatment comparisons in experiments were evaluated using robust regression models and compared to Knapp-Hartung and permutation meta-analytical methods. Increased WBSF was associated with HGP treatment. Use of multiple HGP implants was associated with an increase in WBSF of 0.248 kg (95% CI = 0.203 to 0.292). Effects of a single implant only increased WBSF by 0.176 kg (95% CI = 0.109 to 0.242). Aging of beef did not alter the association of HGP with increased WBSF (P = 0.105); however, the point direction was toward a reduced effect with aging (standardized mean difference [SMD] = -0.005 per day aged). While aging lowered WBSF, it did not reduce the SMD between HGP treatment and reference groups. Comparisons using trenbolone acetate did not differ in WBSF from those using other implants (P > 0.15). The findings on sensory panel tenderness differ from those using WBSF as HGP treatment was not associated with reduced tenderness (P > 0.3) and multiple HGP treatments improved tenderness (SMD = 0.468) compared to a single implant. Further, juiciness, flavor, and connective tissue were not associated with HGP use, whereas there was a marked 5.5-point decrease in the Meat Standards Australia meat quality 4 score, albeit with limited experiments. In general, the true variance of experiments, tau2 (τ2) was low (<0.1), but heterogeneity, I2 was high (>50%) indicating that much of the variance was due to factors other than measurement error. More targeted studies on the role of HGP in influencing beef quality are needed.
Collapse
Affiliation(s)
- Ian J Lean
- Scibus, Camden, NSW, Australia.,Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | | | | | - Peter McGilchrist
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Jose E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
17
|
Phelps KJ, Johnson DD, Elzo MA, Paulk CB, Gonzalez JM. Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and tenderness of the longissimus lumborum. J Anim Sci 2018; 95:5397-5406. [PMID: 29293748 DOI: 10.2527/jas2017.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to examine the effect of percent Brahman genetics on Warner-Bratzler shear force (WBSF), desmin and troponin-T (TnT) degradation, hydroxylysyl pyridinoline (HP) crosslink content, and perimysial collagen melting temperature. Steers ( = 131) produced in 2012 and 2013 were harvested at 1.27 cm of visual s.c. back fat thickness. Steers were divided into 4 genetic categories consisting of steers that contained 6/32 or less Brahman genetics, 12/32 Brahman genetics, 14/32 to 18/32 Brahman genetics, and 23/32 to 32/32 Brahman genetics. Twenty-four hours after harvest, a 7.62-cm piece of the longissimus lumborum beginning at the 13th rib was collected and aged for 14 d. Following aging, three 2.54-cm steaks were cut for WBSF, trained sensory panel, and laboratory analyses. Laboratory analyses steaks were used to determine protein degradation, HP crosslink analysis, and perimysial collagen melting temperature. Data were analyzed using a polynomial regression for unequally spaced treatments. As the percent Brahman genetics increased, WBSF increased (linear, = 0.01). As percent Brahman genetics increased, tenderness score decreased (less tender) and connective tissue score increased (more connective tissue; linear, = 0.01). As the percentage of Brahman genetics increased, the amount of degraded desmin (38 kDa) and TnT (34 and 30 kDa) decreased (linear, < 0.03) whereas the amount of immunoreactive 36 kDa TnT increased (linear, = 0.04). Percent Brahman genetics had no effect ( = 0.14) on HP crosslink content but did tend to increase ( = 0.07) perimysial collagen melting temperature as the percent Brahman increased. The percentage of Brahman genetic influence was positively correlated to WBSF ( = 0.25), 36 kDa immunoreactive TnT ( = 0.26), and perimysial collagen melting temperature ( = 0.25, = 0.01). Sensory panel tenderness ( = -0.44), juiciness ( = -0.26), and connective tissue scores ( = -0.63); 38 kDa degraded desmin ( = -0.34), 34 ( = -0.36) and 30 kDa degraded TnT ( = -0.29); and HP collagen crosslinks ( = -0.20) were negatively correlated to percent Brahman genetic influence ( < 0.03). Increasing Brahman genetic influence in steers negatively affects tenderness, partially through a reduction in degradation of desmin and TnT. Although HP collagen crosslinks are unaffected by Brahman genetics, a tendency for increased perimysium melting temperature indicates that other collagen-stabilizing crosslinks may be affected.
Collapse
|
18
|
Vierck KR, O’Quinn TG, Noel JA, Houser TA, Boyle EAE, Gonzalez JM. Effects of Marbling Texture on Muscle Fiber and Collagen Characteristics. MEAT AND MUSCLE BIOLOGY 2018. [DOI: 10.22175/mmb2017.10.0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of this study was to evaluate the effects of marbling texture on muscle fiber morphometrics, adipocyte cross-sectional area, perimysial thickness, collagen solubility, and thermal transition temperature of perimysial collagen of beef strip loin steaks from 3 marbling scores. Beef strip loins (n = 117) were selected from three marbling scores [Top Choice (Modest00 – Moderate100 marbling), Low Choice (Small marbling), and Select (Slight marbling)] to equally represent 3 different marbling texture groups: fine, medium, and coarse, via visual appraisal. There were no marbling texture × marbling score interactions for all traits evaluated. Marbling texture impacted (P < 0.05) adipocyte cross-sectional area, where coarse steaks displayed larger adipocytes in comparison to fine marbled steaks, but medium marbled steaks were similar (P > 0.05) to both coarse and fine marbled steaks for the same trait. However, marbling texture did not impact (P > 0.05) perimysial thickness. Marbling texture did not affect collagen traits, as no differences (P > 0.05) were found among marbling texture treatments for soluble collagen, insoluble collagen, and total collagen concentrations. Furthermore, all marbling texture groups (fine, medium, and coarse) were similar (P > 0.05) for the peak thermal transition phase of the perimysial fraction of collagen. Marbling score affected adipocyte size, as Top Choice and Low Choice possessed larger (P < 0.05) adipocytes than Select steaks. There were no differences (P > 0.05) among marbling scores for fiber type; nor were differences found among marbling textures or marbling scores for fiber cross-sectional area. These results indicate that marbling texture does not contribute to differences in collagen characteristics or fiber cross-sectional area that may impact eating quality of beef strip loin steaks.
Collapse
Affiliation(s)
- Kelly R. Vierck
- Kansas State University Department of Animal Sciences and Industry
| | | | - Jere A. Noel
- Kansas State University Department of Animal Sciences and Industry
| | - Terry A. Houser
- Kansas State University Department of Animal Sciences and Industry
| | | | - John M. Gonzalez
- Kansas State University Department of Animal Sciences and Industry
| |
Collapse
|
19
|
Phelps KJ, Drouillard JS, O'Quinn TG, Burnett DD, Blackmon TL, Axman JE, Van Bibber-Krueger CL, Gonzalez JM. Feeding microalgae meal (All-G Rich; CCAP 4087/2) to beef heifers. I: Effects on longissimus lumborum steak color and palatibility. J Anim Sci 2017; 94:4016-4029. [PMID: 27898904 DOI: 10.2527/jas.2016-0487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to examine effects of 4 levels of microalgae meal (All-G Rich, CCAP 4087/2; Alltech Inc., Nicholasville, KY) supplementation to the diet of finishing heifers on longissimus lumborum (LL) steak PUFA content, beef palatability, and color stability. Crossbred heifers ( = 288; 452 ± 23 kg initial BW) were allocated to pens (36 pens and 8 heifers/pen), stratified by initial pen BW (3,612 ± 177 kg), and randomly assigned within strata to 1 of 4 treatments: 0, 50, 100, and 150 g·heifer·d of microalgae meal. After 89 d of feeding, cattle were harvested and LL were collected for determination of fatty acid composition and Warner-Bratzler shear force (WBSF), trained sensory panel evaluation, and 7-d retail color stability and lipid oxidation analyses. Feeding microalgae meal to heifers increased (quadratic, < 0.01) the content of 22:6-3 and increased (linear, < 0.01) the content of 20:5-3. Feeding increasing levels of microalgae meal did not impact total SFA or MUFA ( > 0.25) but tended ( = 0.10) to increase total PUFA in a quadratic manner ( = 0.03). Total omega-6 PUFA decreased (linear, = 0.01) and total omega-3 PUFA increased (quadratic, < 0.01) as microalgae meal level increased in the diet, which caused a decrease (quadratic, < 0.01) in the omega-6:omega-3 fatty acid ratio. Feeding microalgae meal did not affect WBSF values or sensory panel evaluation of tenderness, juiciness, or beef flavor scores ( > 0.16); however, off-flavor intensity increased with increasing concentration of microalgae meal in the diet (quadratic, < 0.01). From d 5 through 7 of retail display, steaks from heifers fed microalgae meal had a reduced a* value and oxymyoglobin surface percentage, with simultaneous increased surface metmyoglobin formation (quadratic, < 0.01). Lipid oxidation analysis indicated that at d 0 and 7 of display, as the concentration of microalgae meal increased in the diet, the level of oxidation increased (quadratic, < 0.01). Muscle fiber type percentage or size was not influenced by the inclusion of microalgae meal in diets ( > 0.19); therefore, the negative effects of microalgae on color stability were not due to fiber metabolism differences. Feeding microalgae meal to finishing heifers improves PUFA content of beef within the LL, but there are adverse effects on flavor and color stability.
Collapse
|
20
|
Ebarb SM, Phelps KJ, Drouillard JS, Maddock-Carlin KR, Vaughn MA, Burnett DD, Noel JA, Van Bibber- Krueger CL, Paulk CB, Grieger DM, Gonzalez JM. Effects of anabolic implants and ractopamine-HCl on muscle fiber morphometrics, collagen solubility, and tenderness of beef longissimus lumborum steaks1,2. J Anim Sci 2017; 95:1219-1231. [DOI: 10.2527/jas.2016.1263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|