1
|
Li Y, Pan AP, Ye Y, Shao X, Tu R, Liu Y, Yu AY. FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06744-6. [PMID: 39878886 DOI: 10.1007/s00417-025-06744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
PURPOSE To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation. METHODS Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191. 5.5 mM glucose concentration group (NG) was used as a control. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of FoxO1, NLRC4, and IL-6. Apoptosis, cell viability, and EDU Staining were also assessed. RESULTS HG stimulation induced elevated FoxO1 expression and caused NLRC4/IL-6 activation in a concentration-dependent manner. Whereas knockdown of FoxO1 inhibited the high expression of NLRC4/IL-6 inflammatory mediators in response to HG stimulation. The growth of SRA01/04 was inhibited under HG condition, and the cell proliferation ability was restored and even promoted by knocking out FoxO1. HG incubation of rat lens resulted in lens clouding and cataract formation, which was prevented by AS1842856 treatment and reversed by RO8191. CONCLUSION FoxO1 positively regulates HG-induced SRA01/04 inflammatory activation through the JAK1/STAT1 pathway and promotes DC. This provides a feasible strategy for the treatment of diabetic cataract.
Collapse
Affiliation(s)
- Yike Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - An-Peng Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yishan Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xu Shao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruixue Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - A-Yong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Tsai CH, Huang PJ, Lee IT, Chen CM, Wu MH. Endothelin-1-mediated miR-let-7g-5p triggers interlukin-6 and TNF-α to cause myopathy and chronic adipose inflammation in elderly patients with diabetes mellitus. Aging (Albany NY) 2022; 14:3633-3651. [PMID: 35468098 PMCID: PMC9085227 DOI: 10.18632/aging.204034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background: Diabetes and sarcopenia are verified as mutual relationships, which seriously affect the quality of life of the elderly. Endothelin-1 is well investigated, is elevated in patients with diabetes, and is related to muscle cellular senescence and fibrosis. However, the mechanism of ET-1 between diabetes and myopathy is still unclear. The aim of this study was to evaluate the prevalence of sarcopenia in the elderly with diabetes and to clarify its relationship with ET-1 molecular biological mechanism, progress as well as changes in muscle and fat. Methods: We recruited 157 type 2 diabetes patients over 55 years old and investigated the prevalence of sarcopenia in diabetes patients and examined the association of ET-1 alterations with HbA1c, creatinine, or AMS/ht2. Next, sought to determine how ET-1 regulates inflammation in muscle cells by western blot and qPCR assay. Using XF Seahorse Technology, we directly quantified mitochondrial bioenergetics in 3T3-L1 cells. Results: ET-1 was positively correlated with HbA1c, creatinine levels, and duration of disease, and negatively correlated with AMS/ht2. We found that ET-1 dose-dependently induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6β expression through the PI3K/AKT, and NF-κB signaling pathways in C2C12 cells. Also identified that TNF-α, IL-6β, and visfatin releases were found in co-cultured with conditioned medium of ET-1/C2C12 in 3T3-L1 cells. ET-1 also reduces the energy metabolism of fat and induces micro-environment inflammation which causes myopathy. ET-1 also suppresses miR-let-7g-5p expression in myocytes and adipocytes. Conclusion: We describe a new mechanism of ET-1 triggering chronic inflammation in patients with hyperglycemia.
Collapse
Affiliation(s)
- Chung-Huang Tsai
- Department of Family Medicine, Chung-Kang Branch, Cheng Ching Hospital, Taichung, Taiwan.,Center for General Education, Tunghai University, Taiwan.,Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan
| | - Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - I T Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Traditional Chinese Medical, Sinying Hospital, Tainan, Taiwan
| | - Min Huan Wu
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan.,Senior Life and Innovation Technology Center, Tunghai University, Taiwan.,Life Science Research Center, Tunghai University, Taiwan
| |
Collapse
|
3
|
Li H, Xu L, Song H. MiR-29a Alleviates High Glucose-induced Inflammation and Mitochondrial Dysfunction via Modulation of IL-6/STAT3 in Diabetic Cataracts. Curr Eye Res 2021; 46:1325-1332. [PMID: 33615922 DOI: 10.1080/02713683.2021.1887272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: This in vitro study was designed to reveal the role of miR-29a in high glucose-induced cellular injury through the modulation of IL-6/STAT3 in diabetic cataracts.Methods: The expression of miR-29a and STAT3 in the lens capsules of patients with or without diabetes was determined by RT-PCR. The levels of the IL-6 proinflammatory cytokine in the aqueous humor were detected by ELISA. HLE B-3 cells were cultured in normal glucose (NG; 5 mM) or high glucose (HG; 40 mM). After transfection with miR-29a, si-STAT3, or a negative control vector, the levels of IL-6 and STAT3 were detected. A CCK-8 assay was used to determine cell viability. We used flow cytometry to assess changes in reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and apoptosis induced by oxidative stress. Western blotting was used to determine the expression of the oxidative injury markers superoxide dismutase (SOD) and malondialdehyde (MDA) and the apoptosis markers Bcl-2 and Bax.Results: Reduced miR-29a, increased STAT3 expression, and IL-6 release were demonstrated in the lens capsules and aqueous humor of patients with diabetes. The stimulation of apoptosis and the loss of MMP induced by HG were attenuated by transfection with a miR-29a mimic and si-STAT3. ROS production, increased MDA content, decreased SOD activity, and upregulation of the apoptotic proteins Bcl-2/Bax were also partially alleviated by miR-29a overexpression, which shows their roles in oxidative injury. Furthermore, transfection with a STAT3 overexpression vector reversed the effects of miR-29a.Conclusions: In conclusion, miR-29a mitigated HG-induced oxidative injury and exerted protective effects via IL-6/STAT3 signaling. Thus, miR-29a may be a potential therapeutic agent for diabetic cataracts.
Collapse
Affiliation(s)
- Hua Li
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Lingxiao Xu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Hui Song
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| |
Collapse
|
4
|
Cvitkovic K, Sesar A, Sesar I, Pusic-Sesar A, Pejic R, Kelava T, Sucur A, Cavar I. Concentrations of Selected Cytokines and Vascular Endothelial Growth Factor in Aqueous Humor and Serum of Diabetic Patients. Semin Ophthalmol 2020; 35:126-133. [PMID: 32310727 DOI: 10.1080/08820538.2020.1755320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose: To investigate the aqueous humor and serum levels of selected cytokines and vascular endothelial growth factor (VEGF) in diabetic patients, implicating their role in the pathogenesis of diabetic eye complications.Materials and methods: Atotal of 65 patients (27 males and 38 females) who underwent cataract surgery were recruited into the study. The study group consisted of 30 cataract patients with type 2 diabetes mellitus, and this group was divided into two subgroups: 14 patients with diabetic retinopathy (DR group) and 16 patients without DR (NDR group). The control group consisted of 35 non-diabetic cataract subjects.Results: Patients in the DR group had significantly higher aqueous humor concentrations of interleukin (IL)-1β, IL-6, IL-8, IL-10, monocyte chemotactic protein (MCP-1) and VEGF. Likewise, serum concentrations of IL-1β, IL-6, IL-8, IL-12, TNF-α and IFN-γ were significantly higher in the DR group as compared to the controls. Aqueous humor concentrations of IL-1β, IL-8, MCP-1 and VEGF were significantly higher in the DR group as compared with the NDR group.Conclusion: Our findings support the hypothesis that chronic inflammation and a disturbance of the immune system play important roles in the pathogenesis of diabetic cataract and DR.
Collapse
Affiliation(s)
- Katarina Cvitkovic
- Department of Immunology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.,Department of Ophthalmology, University Hospital Center, Mostar, Bosnia and Herzegovina
| | - Antonio Sesar
- Department of Ophthalmology, University Hospital Center, Mostar, Bosnia and Herzegovina
| | - Irena Sesar
- Department of Ophthalmology, University Hospital Center, Mostar, Bosnia and Herzegovina
| | - Anita Pusic-Sesar
- Department of Ophthalmology, University Hospital Center, Mostar, Bosnia and Herzegovina
| | - Renato Pejic
- Department of Ophthalmology, University Hospital Center, Mostar, Bosnia and Herzegovina
| | - Tomislav Kelava
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Sucur
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Cavar
- Department of Immunology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.,Department of Ophthalmology, University Hospital Center, Mostar, Bosnia and Herzegovina
| |
Collapse
|