1
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Tang M, Su Q, Duan Y, Fu Y, Liang M, Pan Y, Yuan J, Wang M, Pang X, Ma J, Laher I, Li S. The role of MOTS-c-mediated antioxidant defense in aerobic exercise alleviating diabetic myocardial injury. Sci Rep 2023; 13:19781. [PMID: 37957221 PMCID: PMC10643467 DOI: 10.1038/s41598-023-47073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Myocardial remodeling and dysfunction are commonly observed in type 2 diabetes mellitus (T2DM). Aerobic exercise can partly alleviate diabetes-induced myocardial dysfunction through its antioxidant actions. MOTS-c is a potential exercise mimic. This study aimed to investigate the effects of MOTS-c on improving diabetic heart function and its mechanism and to identify whether MOTS-c improved antioxidant defenses due to aerobic exercise. Herein, we established a rat model of T2DM induced by high-fat diet combined with a low-dose streptozotocin injection. Interventions were performed using intraperitoneal injections of MOTS-c (i.p. 0.5 mg/kg/day, 7 days/week) or aerobic exercise training (treadmill, 20 m/min, 60 min/day, 5 days/week) for 8 weeks. Myocardial ultrastructure was assessed using transmission electron microscopy (TEM), myocardial lipid peroxidation levels (MDA), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) levels were assessed using colorimetric methods, and molecular analyses including MOTS-c, Kelch-like ECH-associated protein 1 (Keap1), Nuclear factor E2-related factor 2 (Nrf2), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)and phospho-AMPK (p-AMPK) were examined using Western blot. The results showed that MOTS-c, with or without exercise, reduced myocardial ultrastructural damage and improved glucolipid metabolism and cardiac function in T2DM. Furthermore, MOTS-c increased antioxidant markers such as SOD, CAT, and the protein expression of myocardial MOTS-c, Keap1, Nrf2, and p-AMPK. MOTS-c with exercise treatment reduced myocardial MDA and increased p-AMPK significantly comparing to only exercise or MOTS-c alone. Our findings suggest that MOTS-c may be a helpful supplement for overcoming exercise insufficiency and improving myocardial structure and function in diabetes.
Collapse
Affiliation(s)
- Mi Tang
- School of Physical Education, Xihua University, Chengdu, 610039, China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Quansheng Su
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yimei Duan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Min Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Hassel KR, Brito-Estrada O, Makarewich CA. Microproteins: Overlooked regulators of physiology and disease. iScience 2023; 26:106781. [PMID: 37213226 PMCID: PMC10199267 DOI: 10.1016/j.isci.2023.106781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Ongoing efforts to generate a complete and accurate annotation of the genome have revealed a significant blind spot for small proteins (<100 amino acids) originating from short open reading frames (sORFs). The recent discovery of numerous sORF-encoded proteins, termed microproteins, that play diverse roles in critical cellular processes has ignited the field of microprotein biology. Large-scale efforts are currently underway to identify sORF-encoded microproteins in diverse cell-types and tissues and specialized methods and tools have been developed to aid in their discovery, validation, and functional characterization. Microproteins that have been identified thus far play important roles in fundamental processes including ion transport, oxidative phosphorylation, and stress signaling. In this review, we discuss the optimized tools available for microprotein discovery and validation, summarize the biological functions of numerous microproteins, outline the promise for developing microproteins as therapeutic targets, and look forward to the future of the field of microprotein biology.
Collapse
Affiliation(s)
- Keira R. Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Catherine A. Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Yi X, Hu G, Yang Y, Li J, Jin J, Chang B. Role of MOTS-c in the regulation of bone metabolism. Front Physiol 2023; 14:1149120. [PMID: 37200834 PMCID: PMC10185875 DOI: 10.3389/fphys.2023.1149120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
MOTS-c, a mitochondrial-derived peptide (MDP), is an essential regulatory mediator of cell protection and energy metabolism and is involved in the development of specific diseases. Recent studies have revealed that MOTS-c promotes osteoblast proliferation, differentiation, and mineralization. Furthermore, it inhibits osteoclast production and mediates the regulation of bone metabolism and bone remodeling. Exercise effectively upregulates the expression of MOTS-c, but the specific mechanism of MOTS-c regulation in bone by exercise remains unclear. Therefore, this article reviewed the distribution and function of MOTS-c in the tissue, discussed the latest research developments in the regulation of osteoblasts and osteoclasts, and proposed potential molecular mechanisms for the effect of exercise on the regulation of bone metabolism. This review provides a theoretical reference for establishing methods to prevent and treat skeletal metabolic diseases.
Collapse
Affiliation(s)
- Xuejie Yi
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Junjie Jin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- *Correspondence: Bo Chang,
| |
Collapse
|
5
|
Research on the Mechanism of Liuwei Dihuang Decoction for Osteoporosis Based on Systematic Biological Strategies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7017610. [PMID: 36185080 PMCID: PMC9522519 DOI: 10.1155/2022/7017610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Background Osteoporosis is an important health problem worldwide. Liuwei Dihuang Decoction (LDD) and its main ingredients may have a good clinical effect on osteoporosis. Meanwhile, its mechanism for treating osteoporosis needs to be further revealed in order to provide a basis for future drug development. Methods A systematic biological methodology was utilized to construct and analyze the LDD-osteoporosis network. After that, the human transcription data of LDD intervention in patients with osteoporosis and protein arrays data of LDD intervention in osteoporosis rats were collected. The human transcription data analysis, protein arrays data analysis, and molecular docking were performed to validate the findings of the prediction network (LDD-osteoporosis PPI network). Finally, animal experiments were conducted to verify the prediction results of systematic pharmacology. Results (1) LDD-osteoporosis PPI network shows the potential compounds, potential targets (such as ALB, IGF1, SRC, and ESR1), clusters, biological processes (such as positive regulation of calmodulin 1-monooxygenase activity, estrogen metabolism, and endothelial cell proliferation), and signaling and Reactome pathways (such as JAK-STAT signaling pathway, osteoclast differentiation, and degradation of the extracellular matrix) of LDD intervention in osteoporosis. (2) Human transcriptomics data and protein arrays data validated the findings of the LDD-osteoporosis PPI network. (3) The animal experiments showed that LDD can improve bone mineral density (BMD), increase serum estradiol (E2) and alkaline phosphatase (ALP) levels, and upregulate Wnt3a and β-catenin mRNA expression (P < 0.05). (4) Molecular docking results showed that alisol A, dioscin, loganin, oleanolic acid, pachymic acid, and ursolic acid may stably bind to JAK2, ESR1, and CTNNB1. Conclusion LDD may have a therapeutic effect on osteoporosis through regulating the targets (such as ALB, IGF1, SRC, and ESR1), biological processes (such as positive regulation of calmodulin 1-monooxygenase activity, estrogen metabolism, and endothelial cell proliferation), and pathways (such as JAK-STAT signaling pathway, osteoclast differentiation, and degradation of the extracellular matrix) found in this research.
Collapse
|
6
|
Zhang R, Yan K, Wu Y, Yao X, Li G, Ge L, Chen Z. Quantitative proteomics reveals the effect of Yigu decoction (YGD) on protein expression in bone tissue. Clin Proteomics 2021; 18:24. [PMID: 34641785 PMCID: PMC8513338 DOI: 10.1186/s12014-021-09330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 08/30/2023] Open
Abstract
Background Osteoporosis (OP) is a systemic bone disease characterized by decreased bone mass, destruction of the bone tissue microstructure, increased bone brittleness and an increased risk of fracture. OP has a high incidence rate and long disease course and is associated with serious complications. Yigu decoction (YGD) is a compound prescription in traditional Chinese medicine that is used to treat OP. However, its mechanism in OP is not clear. This study used a tandem mass tag (TMT)quantitative proteomics method to explore the potential bone-protective mechanism of YGD in an osteoporotic rat model. Materials and methods A rat model of OP was established by ovariectomy. Eighteen 12-week-old specific-pathogen-free female Wistar rats weighing 220 ± 10 g were selected. The eighteen rats were randomly divided into 3 groups (n = 6 in each group): the normal, model and YGD groups. The right femurs from each group were subjected to quantitative biological analysis. TMT quantitative proteomics was used to analyze the proteins extracted from the bone tissue of rats in the model and YGD groups, and the differentially expressed proteins after intervention with YGD were identified as biologically relevant proteins of interest. Functional annotation correlation analysis was also performed to explore the biological function and mechanism of YGD. Result Compared with the model group, the YGD group showed significant upregulation of 26 proteins (FC > 1.2, P < 0.05) and significant downregulation of 39 proteins (FC < 0.833, P < 0.05). Four important targets involved in OP and 5 important signaling pathways involved in bone metabolism were identified. Conclusions YGD can significantly increase the bone mineral density (BMD) of osteoporotic rats and may play a therapeutic role by regulating target proteins involved in multiple signaling pathways. Therefore, these results improve the understanding of the OP mechanism and provide an experimental basis for the clinical application of YGD in OP treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09330-0.
Collapse
Affiliation(s)
- Ruikun Zhang
- The Third Clinical Medical College of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310053, China.,Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Kun Yan
- The Third Clinical Medical College of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310053, China.,Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Yulun Wu
- Rehabilitation Medicine Center of Zhejiang Provincial People's Hospital, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinmiao Yao
- The Third Clinical Medical College of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310053, China.,Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Guijin Li
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Linpu Ge
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China
| | - Zhineng Chen
- Department of Orthopedics, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhejiang, Hangzhou, 310005, China.
| |
Collapse
|
7
|
Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. CircPVT1 up-regulation attenuates steroid-induced osteonecrosis of the femoral head through regulating miR-21-5p-mediated Smad7/TGFβ signalling pathway. J Cell Mol Med 2021; 25:4608-4622. [PMID: 33733589 PMCID: PMC8107079 DOI: 10.1111/jcmm.16294] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Steroid‐induced osteonecrosis of the femoral head (SIONFH) has been a common disease following corticosteroid therapy. Presently, we aim to explore the functions of circular RNA (circ) PVT1 in SIONFH rats and the underlying mechanism. Glucocorticoid (GC) was used to treat SD rats and bone marrow‐derived mesenchymal stem cells (BMSCs) to construct SIONFH model in vitro and in vivo, respectively. The pathological injury of the femoral head in the SIONFH rats was detected via haematoxylin‐eosin (HE) staining and immunohistochemistry (IHC). The osteogenic differentiation, proliferation and apoptosis of BMSCs were detected. Western blot was used to detect Smad7, Bax, Bcl2 and Smad2/3. The potential targets of circPVT1 and miR‐21‐5p were validated through luciferase reporter gene assay and RNA pull‐down assay, respectively. We found that CircPVT1 was decreased in the femoral head of SIONFH rats and GC‐treated BMSCs, while miR‐21‐5p was markedly up‐regulated. Overexpressed circPVT1 attenuated the apoptosis and cell viability inhibition of BMSCs induced by GC, while miR‐21‐5p up‐regulation had the opposite effects. What's more, the in vivo experiments confirmed that up‐regulating circPVT1 repressed osteonecrosis in SIONFH rats through repressing apoptosis. Mechanistically, circPVT1 functioned as a ceRNA of miR‐21‐5p, which targeted at the 3'untranslated region of Smad7. CircPVT1 enhancing Smad7 and mitigating GC activated TGFβ/Smad2/3 pathway through inhibiting miR‐21‐5p. In conclusion, CircPVT1 exerts protective effects against SIONFH via modulating miR‐21‐5p‐mediated Smad7/TGFβ pathway.
Collapse
Affiliation(s)
- Yangquan Hao
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chao Lu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baogang Zhang
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhaochen Xu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao Guo
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gaokui Zhang
- Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
8
|
Benayoun BA, Lee C. MOTS-c: A Mitochondrial-Encoded Regulator of the Nucleus. Bioessays 2019; 41:e1900046. [PMID: 31378979 PMCID: PMC8224472 DOI: 10.1002/bies.201900046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/25/2022]
Abstract
Mitochondria are increasingly being recognized as information hubs that sense cellular changes and transmit messages to other cellular components, such as the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes. Nonetheless, the interaction between mitochondria and the nucleus is of special interest because they both host part of the cellular genome. Thus, the communication between genome-bearing organelles would likely include gene expression regulation. Multiple nuclear-encoded proteins have been known to regulate mitochondrial gene expression. On the contrary, no mitochondrial-encoded factors are known to actively regulate nuclear gene expression. MOTS-c (mitochondrial open reading frame of the 12S ribosomal RNA type-c) is a recently identified peptide encoded within the mitochondrial 12S ribosomal RNA gene that has metabolic functions. Notably, MOTS-c can translocate to the nucleus upon metabolic stress (e.g., glucose restriction and oxidative stress) and directly regulate adaptive nuclear gene expression to promote cellular homeostasis. It is hypothesized that cellular fitness requires the coevolved mitonuclear genomes to coordinate adaptive responses using gene-encoded factors that cross-regulate the opposite genome. This suggests that cellular gene expression requires the bipartite split genomes to operate as a unified system, rather than the nucleus being the sole master regulator.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|