1
|
Fu Y, Liu H, Long M, Song L, Meng Z, Lin S, Zhang Y, Qin J. Icariin attenuates the tumor growth by targeting miR-1-3p/TNKS2/Wnt/β-catenin signaling axis in ovarian cancer. Front Oncol 2022; 12:940926. [PMID: 36185280 PMCID: PMC9516086 DOI: 10.3389/fonc.2022.940926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Despite various therapy advances, ovarian cancer remains an incurable disease for which survival rates have only modestly improved. Natural products are important sources of anti-cancer lead compounds. Icariin exhibited broad anti-cancer efficacy. However, the mechanism of icariin against ovarian cancer is poorly elucidated. Methods Cell viability was detected to evaluate the effect of icariin on SKOV-3 cells. The cell cycle and apoptosis were analyzed. The transcript of SKOV-3 cells was profiled by RNA-seq. GSEA and DEGs analyses were performed to interpret gene expression data. Western blot and TOP/FOP flash assay were applied to detect Wnt/β-catenin signaling. MiRDB database and dual-luciferase reporter assay was applied to study the regulation of miR-1-3p on TNKS2. Anti-tumor efficacy of icariin was evaluated by xenograft mouse model. Immunohistochemistry was performed with antibodies against Ki67. Results Icariin significantly suppressed the proliferation of SKOV-3 cells. Furthermore, icariin stalled cell cycle and induced apoptosis by blocking TNKS2/Wnt/β-catenin pathway through upregulating the level of miR-1-3p. Finally, icariin dramatically suppressed tumor growth in vivo. Conclusions In this study, we demonstrated for the first time that icariin significantly attenuated the growth of ovarian tumor in xenograft mouse model. Furthermore, we systematically revealed that icariin attenuates the tumor progression by suppressing TNKS2/Wnt/β-catenin signaling via upregulating the level of miR-1-3p in ovarian cancer with transcriptome analysis.
Collapse
Affiliation(s)
- Yanjin Fu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Haiquan Liu
- Huizhou Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Huizhou, Guangdong, China
| | - Mengsha Long
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Linliang Song
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zuyu Meng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shaozi Lin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yiyao Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - JiaJia Qin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: JiaJia Qin,
| |
Collapse
|
2
|
Jiang ZH, Shen X, Wei Y, Chen Y, Chai H, Xia L, Leng W. A Pan-Cancer Analysis Reveals the Prognostic and Immunotherapeutic Value of Stanniocalcin-2 (STC2). Front Genet 2022; 13:927046. [PMID: 35937984 PMCID: PMC9354991 DOI: 10.3389/fgene.2022.927046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Stanniocalcin-2 (STC2) is a secreted glycoprotein which plays an important role in regulating the homeostasis of calcium, glucose homeostasis, and phosphorus metastasis. Accumulating evidence suggests that STC2 is implicated in cancer mechanisms. However, the effects of STC2 on cancer development and progression across pan-cancer are not yet completely known.Methods: Data were downloaded from The Cancer Genome Atlas database to obtain differentially expressed genes significantly associated with prognosis (key genes). A gene was selected for subsequent correlation studies by integrating the significance of prognosis and the time-dependent ROC curve. Gene expression of different tumor types was analyzed based on the UCSC XENA website. Furthermore, our study investigated the correlation of STC2 expression between prognosis, immune cell infiltration, immune checkpoint genes (ICGs), mismatch repair genes (MMRs), tumor mutation burden (TMB), microsatellite instability (MSI), and drug sensitivity in various malignant tumors. Gene set enrichment analysis (GSEA) was conducted for correlated genes of STC2 to explore potential mechanisms.Results: A total of 3,429 differentially expressed genes and 397 prognosis-related genes were identified from the TCGA database. Twenty-six key genes were found by crossing the former and the latter, and the highest risk gene, STC2, was selected for subsequent correlation studies. STC2 had good diagnostic performance for HNSCC, and was closely related to the survival status and clinicopathological stage of HNSCC patients. In pan-cancer analysis, STC2 was upregulated in 20 cancers and downregulated in seven cancers. STC2 overexpression was overall negatively correlated with overall survival, disease-free survival, disease-specific survival, and progress-free survival. STC2 was profoundly correlated with the tumor immune microenvironment, including immune cell infiltration, ICGs, MMRs, TMB, and MSI. Moreover, STC2 was significantly negatively correlated with the sensitivity or resistance of multiple drugs.Conclusion: STC2 was a potential prognostic biomarker for pan-cancer and a new immunotherapy target.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingyun Xia
- *Correspondence: Lingyun Xia, ; Weidong Leng,
| | | |
Collapse
|
3
|
Di S, Bai R, Lu D, Chen C, Ma T, Zou Z, Zhang Z. Long non-coding RNA MAFG-AS1 promotes proliferation and metastasis of breast cancer by modulating STC2 pathway. Cell Death Discov 2022; 8:249. [PMID: 35513366 PMCID: PMC9072673 DOI: 10.1038/s41420-022-01043-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common cancer worldwide. A number of studies proposed that long non-coding RNA plays an essential role in the regulation of invasion and metastasis of various forms of malignancy, including lung cancer, gastric cancer, and bladder cancer. In this study, a long non-coding RNA(LncRNA) MAFG-AS1 was explored in detail to understand the significance in the etiology of breast cancer. The results indicated that expression of LncRNA MAFG-AS1 in the breast cancer tissues was significantly higher than the adjacent normal breast tissues and elevated expression level of LncRNA MAFG-AS1 was correlated to the larger tumor size, negative expression of ER, PR and lymph node metastasis. The potency of breast cancer proliferation, invasion, and metastasis was inhibited in the absence of LncRNA MAFG-AS1. Mechanically, LncRNA MAFG-AS1 was mainly located in the cytoplasm. The downstream target gene of LncRNA MAFG-AS1 was STC2 which might promote cell proliferation and metastasis in breast cancer and this study provides a new potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shihao Di
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
| | - Rumeng Bai
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
| | - Die Lu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, 215006, Suzhou, China
| | - Chunni Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), 157 West 5th Road, 710004, Xi'an, China
| | - Tianshi Ma
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, Zhejiang Provincial People's Hospital & People's Hospital of Hangzhou Medical College, 158 Shangtang Road, 310014, Hangzhou, China
| | - Zigui Zou
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, 215006, Suzhou, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, 210029, Nanjing, China.
| |
Collapse
|
4
|
Zhou S, Han H, Yang L, Lin H. MiR-1-3p targets CENPF to repress tumor-relevant functions of gastric cancer cells. BMC Gastroenterol 2022; 22:145. [PMID: 35346060 PMCID: PMC8961954 DOI: 10.1186/s12876-022-02203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Here we noted significantly downregulated miR-1-3p in gastric cancer (GC) tissue compared with adjacent normal tissue through qRT-PCR. Lowly expressed miR-1-3p correlated GC progression. Overexpressing miR-1-3p could restrain tumor-relevant cell behaviors in GC, while miR-1-3p inhibitor treatment triggered the opposite results. Moreover, dual-luciferase reporter gene detection identified specific binding sites of miR-1-3p in CENPF 3’untranslated region. Upregulating miR-1-3p constrained cell progression of GC via CENPF downregulation. Western blot, qRT-PCR and dual-luciferase detections manifested that miR-1-3p negatively mediated CENPF expression in GC cells. Thus, we demonstrated that miR-1-3p negatively mediated CENPF to hamper GC progression. CENPF may be an underlying target for GC therapy.
Collapse
Affiliation(s)
- Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou City, People's Republic of China.,School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Hui Han
- School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Department of General Surgery, The Second Affiliated Hospital of Shantou Medical College, Shantou City, Guangdong Province, People's Republic of China
| | - Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou City, Zhejiang Province, People's Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou City, 310016, Zhejiang Province, People's Republic of China.
| |
Collapse
|
5
|
LncRNA H19 Regulates Proliferation, Apoptosis and ECM Degradation of Aortic Smooth Muscle Cells Via miR-1-3p/ADAM10 Axis in Thoracic Aortic Aneurysm. Biochem Genet 2021; 60:790-806. [PMID: 34478010 DOI: 10.1007/s10528-021-10118-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023]
Abstract
Thoracic aortic aneurysm (TAA) is a prevalent health problem worldwide. Long non-coding RNA H19was highly expressed in TAA patients, but the function and mechanism of H19 in TAA remain unknown. The expression levels of H19, microRNA-1-3p (miR-1-3p), and a disintegrin and metalloproteinase 10 (ADAM10) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROS) cure was performed to evaluate the diagnostic value of H19 on TAA patients. Proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry. Protein levels of proliferating cell nuclear antigen (PCNA), Cleaved-caspase 3 (Cleaved-cas3), Cleaved-caspase 9 (Cleaved-cas9), Collagen I, Collagen III, and ADAM10 were tested by western blot assay. The binding relationship between miR-1-3p and H19 or ADAM10 was predicted by LncBase Predicted v.2 or Starbase, and verified by the dual-luciferase reporter, RNA pull-down assay, and RNA Immunoprecipitation (RIP) assays. H19 was increased in TAA aorta tissues and serum and vascular smooth muscle cell (VSMC), and hindered proliferation as well as promoted apoptosis and extracellular matrix (ECM) degradation of VSMC. Moreover, miR-1-3p was decreased, and ADAM10 was upregulated in TAA aorta tissues and VSMC. The mechanical analysis confirmed that H19 affected ADAM10 expression by targeting miR-1-3p. Our results indicated that H19 inhibited proliferation, and accelerated apoptosis and ECM degradation of VSMC, providing an underlying lncRNA-targeted therapy for TAA treatment.
Collapse
|
6
|
Ding R, Liu X, Zhang J, Yuan J, Zheng S, Cheng X, Jia J. Downregulation of miR-1-3p expression inhibits the hypertrophy and mineralization of chondrocytes in DDH. J Orthop Surg Res 2021; 16:512. [PMID: 34407854 PMCID: PMC8371903 DOI: 10.1186/s13018-021-02666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a highly prevalent hip disease among children. However, its pathogenesis remains unclear. MicroRNAs (miRNA) are important regulators of cartilage development. In a previous study, high-throughput miRNA sequencing of tissue samples from an animal model of DDH showed a low level of miR-1-3p in the cartilage of the acetabular roof (ARC), but its role in DDH pathogenesis was not addressed. Therefore, our aim here was to investigate the effects of miR-1-3p in the ARC. METHODS The diagnosis of acetabular dysplasia was confirmed with X-ray examination, while imaging and HE staining were conducted to further evaluate the ARC thickness in each animal model. FISH was employed to verify miR-1-3p expression in the ARC and chondrocytes. The miR-1-3p target genes were predicted by a bioinformatics database. A dual-luciferase reporter assay was used to confirm the targeting relationship between miR-1-3p and SOX9. The gene expression of miR-1-3p, SOX9, RUNX2 and collagen type X was evaluated by qPCR analysis. The protein expression of SOX9, RUNX2 and collagen type X was detected by western blot analysis. The levels of SOX9, RUNX2, and collagen type X in the ARC were further assessed via immunohistochemistry analysis. Finally, Alizarin Red S staining was used to observe the mineralized nodules produced by the chondrocytes. RESULTS We observed low expression of miR-1-3p in the ARC of animals with DDH. SOX9 is a miR-1-3p target gene. Using miR-1-3p silencing technology in vitro, we demonstrated significantly reduced chondrocyte-generated mineralized nodules compared to those of the control. We also confirmed that with miR-1-3p silencing, SOX9 expression was upregulated, whereas the expression of genes associated with endochondral osteogenesis such as RUNX2 and collagen type X was downregulated. To confirm the involvement of miR-1-3p silencing in abnormal ossification through SOX9, we also performed a rescue experiment in which SOX9 silencing restored the low expression of RUNX2 and collagen type X produced by downregulated miR-1-3p expression. Finally, the elevated SOX9 levels and reduced RUNX2 and collagen type X levels in the ARC of rabbits with DDH were also verified using immunohistochemistry, RT-PCR, and western blots. CONCLUSION The relatively low expression of miR-1-3p in the ARC may be the cause of abnormal endochondral ossification in the acetabular roof of animals with DDH.
Collapse
Affiliation(s)
- Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Sikuan Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China.,Institute of Minimally Invasive Orthopedics of Nanchang University, Nanchang, Jiangxi, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Chen H, Bao L, Hu J, Wu D, Tong X. ORC6, Negatively Regulated by miR-1-3p, Promotes Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells. Front Cell Dev Biol 2021; 9:652292. [PMID: 34395415 PMCID: PMC8358308 DOI: 10.3389/fcell.2021.652292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background In recent years, microRNA-1-3p (miR-1-3p) has been linked to the progression of multiple cancers, whereas little is known about its role in hepatocellular carcinoma (HCC). Herein, we investigated the function of miR-1-3p in HCC, and its regulatory function on origin recognition complex subunit 6 (ORC6). Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting the expression levels of miR-1-3p and ORC6 mRNA in HCC samples and cell lines. ORC6 expression at the protein level was quantified by Western blot. After gain-of-function and loss-of-function models were established, cell counting kit-8 (CCK-8) assays, Transwell assays, flow cytometry, and 5-Ethynyl-2′-deoxyuridine (EdU) assay were performed for examining cell proliferation, migration, invasion, cell cycle, and apoptosis. The targeting relationship between miR-1-3p and ORC6 was confirmed with bioinformatic analysis and dual-luciferase reporter assays. Results The expression of miR-1-3p was reduced in HCC samples and cell lines. Overexpression of miR-1-3p suppressed the proliferation, migration, and invasion, and induced cell-cycle arrest and apoptosis of HCC cells, whereas the opposite effects were induced by miR-1-3p inhibition. ORC6 is identified as a novel target of miR-1-3p, the expression of which is negatively correlated with miR-1-3p expression in HCC tissues. ORC6 overexpression facilitated the proliferation, migration, invasion, and cell cycle progression, and reduced apoptosis of HCC cells, whereas the opposite effects were induced by ORC6 knockdown. What is more, ORC6 overexpression counteracted the biological functions of miR-1-3p in HCC cells. Conclusion MiR-1-3p targets ORC6 to suppress the proliferation, migration, invasion, and cell cycle progression, and promote apoptosis of HCC cells.
Collapse
Affiliation(s)
- Hu Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Lequn Bao
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Jianhua Hu
- Department of Laboratory, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongde Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Xianli Tong
- Department of Laboratory, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Bonilla DA, Moreno Y, Rawson ES, Forero DA, Stout JR, Kerksick CM, Roberts MD, Kreider RB. A Convergent Functional Genomics Analysis to Identify Biological Regulators Mediating Effects of Creatine Supplementation. Nutrients 2021; 13:2521. [PMID: 34444681 PMCID: PMC8397972 DOI: 10.3390/nu13082521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
9
|
Zhu J, Wang S, Bai H, Wang K, Hao J, Zhang J, Li J. Identification of Five Glycolysis-Related Gene Signature and Risk Score Model for Colorectal Cancer. Front Oncol 2021; 11:588811. [PMID: 33747908 PMCID: PMC7969881 DOI: 10.3389/fonc.2021.588811] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic changes, especially in glucose metabolism, are widely established during the occurrence and development of tumors and regarded as biological markers of pan-cancer. The well-known ‘Warburg effect’ demonstrates that cancer cells prefer aerobic glycolysis even if there is sufficient ambient oxygen. Accumulating evidence suggests that aerobic glycolysis plays a pivotal role in colorectal cancer (CRC) development. However, few studies have examined the relationship of glycolytic gene clusters with prognosis of CRC patients. Here, our aim is to build a glycolysis-associated gene signature as a biomarker for colorectal cancer. The mRNA sequencing and corresponding clinical data were downloaded from TCGA and GEO databases. Gene set enrichment analysis (GSEA) was performed, indicating that four gene clusters were significantly enriched, which revealed the inextricable relationship of CRC with glycolysis. By comparing gene expression of cancer and adjacent samples, 236 genes were identified. Univariate, multivariate, and LASSO Cox regression analyses screened out five prognostic-related genes (ENO3, GPC1, P4HA1, SPAG4, and STC2). Kaplan–Meier curves and receiver operating characteristic curves (ROC, AUC = 0.766) showed that the risk model could become an effective prognostic indicator (P < 0.001). Multivariate Cox analysis also revealed that this risk model is independent of age and TNM stages. We further validated this risk model in external cohorts (GES38832 and GSE39582), showing these five glycolytic genes could emerge as reliable predictors for CRC patients’ outcomes. Lastly, based on five genes and risk score, we construct a nomogram model assessed by C-index (0.7905) and calibration plot. In conclusion, we highlighted the clinical significance of glycolysis in CRC and constructed a glycolysis-related prognostic model, providing a promising target for glycolysis regulation in CRC.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Han Bai
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Deng P, Li K, Gu F, Zhang T, Zhao W, Sun M, Hou B. LINC00242/miR-1-3p/G6PD axis regulates Warburg effect and affects gastric cancer proliferation and apoptosis. Mol Med 2021; 27:9. [PMID: 33514309 PMCID: PMC7845121 DOI: 10.1186/s10020-020-00259-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Reprogrammed glucose metabolism of enhanced Warburg effect (or aerobic glycolysis) is considered as a hallmark of cancer. Long non-coding RNAs (lncRNAs) have been certified to play a crucial role in tumor progression. The current study aims to inquire into the potential regulatory mechanism of long intergenic non-protein coding RNA 242 (LINC00242) on aerobic glycolysis in gastric cancer. METHOD LINC00242, miR-1-3p and G6PD expression levels in gastric cancer tissues and cells were determined by qRT-PCR. Cell apoptosis or viability were examined by Flow cytometry or MTT assay. Western blot was utilized to investigate G6PD protein expression levels. Immunohistochemical (IHC) and hematoxylin and eosin (H&E) staining were used for histopathological detection. The targeted relationship between LINC00242 or G6PD and miR-1-3p was verified by luciferase reporter gene assay. Nude mouse xenograft was utilized to detect tumor formation in vivo. RESULT LINC00242 and G6PD was high-expressed in gastric cancer tissues and cells, and LINC00242 is positively correlated with G6PD. Silencing of LINC00242 or G6PD within gastric cancer cells prominently inhibited cell proliferation and aerobic glycolysis in vitro and relieved the tumorigenesis of gastric cancer in vivo. miR-1-3p was predicted to directly target both LINC00242 and G6PD. Overexpression of miR-1-3p suppressed gastric cancer cells proliferation and aerobic glycolysis. LINC00242 competitively combined miR-1-3p, therefore relieving miR-1-3p-mediated suppression on G6PD. CONCLUSION LINC00242 plays a stimulative role in gastric cancer aerobic glycolysis via regulation of miR-1-3p/ G6PD axis, therefore affecting gastric cancer cell proliferation.
Collapse
Affiliation(s)
- Peng Deng
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Feng Gu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110001, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bin Hou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
11
|
Chen JQ, Huang ZP, Li HF, Ou YL, Huo F, Hu LK. MicroRNA-520f-3p inhibits proliferation of gastric cancer cells via targeting SOX9 and thereby inactivating Wnt signaling. Sci Rep 2020; 10:6197. [PMID: 32277152 PMCID: PMC7148374 DOI: 10.1038/s41598-020-63279-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are known to be important in a variety of cancer types. The specific expression and roles of miR-520f-3p in the context of gastric cancer (GC), however, remains unknown. Herein we determined miR-520f-3p expression to be significantly reduced in human GC cells compared to cells of the gastric epithelium, with comparable down-regulation also being evident in gastric cancer tissue samples and the low expression of this miRNA was positively correlated with features of more aggressive large tumor size (p = 0.019), depth of invasion (p = 0.008), and distant metastasis (p = 0.037). We further found that lower levels of miR-520f-3p corresponded with poorer GC patient overall (p = 0.003) and disease-free (p = 0.036) survival. When over-expressed in GC cells, miR-520f-3p was able to impair their growth, proliferation, and survival, instead leading to the induction of apoptosis. We further found that miR-520f-3p was able to bind the SOX9 3'-UTR, thereby negatively regulating its expression in GC cells. Consistent with this model, SOX9 and miR-520f-3p expression were negatively correlated with one another in GC tissues. When SOX9 was upregulated, this was also able to abrogate miR-520f-3p-mediated inactivation of Wnt/β-catenin signaling. Together our findings thus suggest that miR-520f-3p can act to suppress GC progression, at least in part via suppressing SOX9 expression and thus disrupting Wnt/β-catenin signaling. Our results thus highlight potential novel therapeutic targets in GC worthy of future investigation.
Collapse
Affiliation(s)
- Jian-Qing Chen
- Department of Gastroenterology, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China
| | - Zhi-Ping Huang
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command, 111 Liuhua Road, Guangzhou, 510010, China
- Department of Interventional, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Hui-Fen Li
- Department of Interventional, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Yang-Liu Ou
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Feng Huo
- Department of Hepatobiliary Surgery, General Hospital of Southern Theatre Command, 111 Liuhua Road, Guangzhou, 510010, China.
| | - Liang-Kai Hu
- Department of Gastroenterology, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China.
| |
Collapse
|
12
|
Chen X, Li X, Peng X, Zhang C, Liu K, Huang G, Lai Y. Use of a Four-miRNA Panel as a Biomarker for the Diagnosis of Stomach Adenocarcinoma. DISEASE MARKERS 2020; 2020:8880937. [PMID: 33224315 PMCID: PMC7670587 DOI: 10.1155/2020/8880937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been applied to cancer diagnosis taking into account their role in tumorigenesis. The main purpose of our study was to confirm the possibility of using miRNAs as noninvasive biomarkers for stomach adenocarcinoma (STAD) diagnosis. METHODS A total of 246 participants (130 STAD patients and 116 healthy controls (HCs)) were enrolled in this 3-phase study. Five STAD pools and 3 HC pools (with 4 participants in each pool) were used for the screening of the 28 miRNAs using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The training phase (30 STAD patients vs. 24 HCs) and validation phase (80 STAD patients vs. 80 HCs) were used to further verify the identity of these miRNAs. Kaplan-Meier survival analysis and bioinformatics analysis were also used. RESULTS The expression levels of miR-125b-5p and miR-196a-5p were upregulated in STAD serum, compared with the HCs, while miR-1-3p and miR-149-5p showed the opposite result. A four-serum miRNA panel was constructed, and the area under the receiver operating characteristic curve (AUC) was found to be 0.892 (95% CI: 0.834 to 0.936, sensitivity = 86.25%, specificity = 78.75%). Only miR-125b-5p expression showed a significant difference between STAD patients and NCs in the survival analysis. The neurotrophin signaling pathway was associated with 4 miRNAs identified in STAD patients. CONCLUSION The four-serum miRNA panel has great potential to be used as a noninvasive biomarker for STAD diagnosis.
Collapse
Affiliation(s)
- Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xinji Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Anhui Medical University, Hefei, Anhui 230032, China
| | - Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, China
| |
Collapse
|