1
|
Bafna K, Cioffi CL, Krug RM, Montelione GT. Structural similarities between SARS-CoV2 3CL pro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals. Front Chem 2022; 10:948553. [PMID: 36353143 PMCID: PMC9638714 DOI: 10.3389/fchem.2022.948553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/08/2022] [Indexed: 09/01/2023] Open
Abstract
Considering the significant impact of the recent COVID-19 outbreak, development of broad-spectrum antivirals is a high priority goal to prevent future global pandemics. Antiviral development processes generally emphasize targeting a specific protein from a particular virus. However, some antiviral agents developed for specific viral protein targets may exhibit broad spectrum antiviral activity, or at least provide useful lead molecules for broad spectrum drug development. There is significant potential for repurposing a wide range of existing viral protease inhibitors to inhibit the SARS-CoV2 3C-like protease (3CLpro). If effective even as relatively weak inhibitors of 3CLpro, these molecules can provide a diverse and novel set of scaffolds for new drug discovery campaigns. In this study, we compared the sequence- and structure-based similarity of SARS-CoV2 3CLpro with proteases from other viruses, and identified 22 proteases with similar active-site structures. This structural similarity, characterized by secondary-structure topology diagrams, is evolutionarily divergent within taxonomically related viruses, but appears to result from evolutionary convergence of protease enzymes between virus families. Inhibitors of these proteases that are structurally similar to the SARS-CoV2 3CLpro protease were identified and assessed as potential inhibitors of SARS-CoV2 3CLpro protease by virtual docking. Several of these molecules have docking scores that are significantly better than known SARS-CoV2 3CLpro inhibitors, suggesting that these molecules are also potential inhibitors of the SARS-CoV2 3CLpro protease. Some have been previously reported to inhibit SARS-CoV2 3CLpro. The results also suggest that established inhibitors of SARS-CoV2 3CLpro may be considered as potential inhibitors of other viral 3C-like proteases.
Collapse
Affiliation(s)
- Khushboo Bafna
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Christopher L. Cioffi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert M. Krug
- Department of Molecular Biosciences, John Ring LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
2
|
Andi B, Kumaran D, Kreitler DF, Soares AS, Keereetaweep J, Jakoncic J, Lazo EO, Shi W, Fuchs MR, Sweet RM, Shanklin J, Adams PD, Schmidt JG, Head MS, McSweeney S. Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease. Sci Rep 2022; 12:12197. [PMID: 35842458 PMCID: PMC9287821 DOI: 10.1038/s41598-022-15930-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/01/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), threatens global public health. The world needs rapid development of new antivirals and vaccines to control the current pandemic and to control the spread of the variants. Among the proteins synthesized by the SARS-CoV-2 genome, main protease (Mpro also known as 3CLpro) is a primary drug target, due to its essential role in maturation of the viral polyproteins. In this study, we provide crystallographic evidence, along with some binding assay data, that three clinically approved anti hepatitis C virus drugs and two other drug-like compounds covalently bind to the Mpro Cys145 catalytic residue in the active site. Also, molecular docking studies can provide additional insight for the design of new antiviral inhibitors for SARS-CoV-2 using these drugs as lead compounds. One might consider derivatives of these lead compounds with higher affinity to the Mpro as potential COVID-19 therapeutics for further testing and possibly clinical trials.
Collapse
Affiliation(s)
- Babak Andi
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA.
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA.
| | - Dale F Kreitler
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Alexei S Soares
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | - Jean Jakoncic
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Edwin O Lazo
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Wuxian Shi
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Martin R Fuchs
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Robert M Sweet
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Jurgen G Schmidt
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Martha S Head
- Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Sean McSweeney
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA.
| |
Collapse
|
3
|
Alavizadeh SH, Doagooyan M, Zahedipour F, Torghabe SY, Baharieh B, Soleymani F, Gheybi F. Antisense technology as a potential strategy for the treatment of coronaviruses infection: With focus on COVID-19. IET Nanobiotechnol 2022; 16:67-77. [PMID: 35274474 PMCID: PMC9007150 DOI: 10.1049/nbt2.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
After the outbreak of coronavirus disease 2019 (COVID-19) in December 2019 and the increasing number of SARS-CoV-2 infections all over the world, researchers are struggling to investigate effective therapeutic strategies for the treatment of this infection. Targeting viral small molecules that are involved in the process of infection is a promising strategy. Since many host factors are also used by SARS-CoV-2 during various stages of infection, down-regulating or silencing these factors can serve as an effective therapeutic tool. Several nucleic acid-based technologies including short interfering RNAs, antisense oligonucleotides, aptamers, DNAzymes, and ribozymes have been suggested for the control of SARS-CoV-2 as well as other respiratory viruses. The antisense technology also plays an indispensable role in the treatment of many other diseases including cancer, influenza, and acquired immunodeficiency syndrome. In this review, we summarised the potential applications of antisense technology for the treatment of coronaviruses and specifically COVID-19 infection.
Collapse
Affiliation(s)
- Seyedeh Hoda Alavizadeh
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical NanotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Maham Doagooyan
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Molecular MedicineBiotechnology Research CenterPasteur Institute of IranTehranIran
| | - Fatemeh Zahedipour
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research CommitteeFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shima Yahoo Torghabe
- Department of Basic SciencesSari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Bahare Baharieh
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Firooze Soleymani
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Fatemeh Gheybi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Dwivedi V, Gupta RK, Gupta A, Chaudhary VK, Gupta S, Gupta V. Repurposing Novel Antagonists to p7 Viroporin of HCV Using in silico Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220124112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Background: P7 viroporin in HCV is a cation-selective ion channel-forming protein, functional in the oligomeric form. It is considered to be a potential target for anti-HCV compounds due to its crucial role in viral entry, assembly and release.
Method:
Conserved crucial residues present in HCV p7 protein were delineated with a specific focus on the genotypes 3a &1b prevalent in India from the available literature. Using the Flex-X docking tool, a library of FDA-approved drugs was docked on the receptor sites prepared around crucial residues. In the present study, we propose drug repurposing to target viroporin p7, which may help in the rapid development of effective anti-HCV therapies.
Results:
With our approach of poly-pharmacology, a variety of drugs currently identified classified as antibiotics, anti-parasitic, antiemetic, anti-retroviral, and anti-neoplastic were found to dock successfully with the p7 viroporin. Noteworthy among these are general-purpose cephalosporin antibiotics, leucal, phthalylsulfathiazole, and granisetron, which may be useful in acute HCV infection and anti-neoplastic sorafenib and nilotinib, which may be valuable in advanced HCV-HCC cases.
Conclusion:
This study could pave the way for quick repurposing of these compounds as anti-HCV therapeutics.
Collapse
Affiliation(s)
- Varsha Dwivedi
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Amita Gupta
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Vijay K Chaudhary
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Sanjay Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| |
Collapse
|
5
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
6
|
Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for Treatment of SARS-CoV-2 In Vitro. Antimicrob Agents Chemother 2021; 65:e0268020. [PMID: 34097489 PMCID: PMC8370243 DOI: 10.1128/aac.02680-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antivirals targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could improve treatment of COVID-19. We evaluated the efficacy of clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PIs) against SARS-CoV-2 and their interactions with remdesivir, the only direct-acting antiviral approved for COVID-19 treatment. HCV PIs showed differential potency in short-term treatment assays based on the detection of SARS-CoV-2 spike protein in Vero E6 cells. Linear PIs boceprevir, telaprevir, and narlaprevir had 50% effective concentrations (EC50) of ∼40 μM. Among the macrocyclic PIs, simeprevir had the highest (EC50, 15 μM) and glecaprevir the lowest (EC50, >178 μM) potency, with paritaprevir, grazoprevir, voxilaprevir, vaniprevir, danoprevir, and deldeprevir in between. Acyclic PIs asunaprevir and faldaprevir had EC50s of 72 and 23 μM, respectively. ACH-806, inhibiting the HCV NS4A protease cofactor, had an EC50 of 46 μM. Similar and slightly increased PI potencies were found in human hepatoma Huh7.5 cells and human lung carcinoma A549-hACE2 cells, respectively. Selectivity indexes based on antiviral and cell viability assays were highest for linear PIs. In short-term treatments, combination of macrocyclic but not linear PIs with remdesivir showed synergism in Vero E6 and A549-hACE2 cells. Longer-term treatment of infected Vero E6 and A549-hACE2 cells with 1-fold EC50 PI revealed minor differences in the barrier to SARS-CoV-2 escape. Viral suppression was achieved with 3- to 8-fold EC50 boceprevir or 1-fold EC50 simeprevir or grazoprevir, but not boceprevir, in combination with 0.4- to 0.8-fold EC50 remdesivir; these concentrations did not lead to viral suppression in single treatments. This study could inform the development and application of protease inhibitors for optimized antiviral treatments of COVID-19.
Collapse
|
7
|
Migliorini F, Torsiello E, Spiezia F, Oliva F, Tingart M, Maffulli N. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res 2021; 26:84. [PMID: 34344463 PMCID: PMC8329616 DOI: 10.1186/s40001-021-00563-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has markedly impacted on cultural, political, and economic structures all over the world. Several aspects of its pathogenesis and related clinical consequences have not yet been elucidated. Infection rates, as well morbidity and mortality differed within countries. It is intriguing for scientists to understand how patient genetics may influence the outcome of the condition, to clarify which aspects could be related the clinical variability of SARS-CoV-2 disease. We reviewed the studies exploring the role of human leukocyte antigens (HLA) genotypes on individual responses to SARS-CoV-2 infection and/or progression, discussing also the contribution of the immunological patterns MHC-related. In March 2021, the main online databases were accessed. All the articles that investigated the possible association between the HLA genotypes and related polymorphisms with susceptibility, severity and progression of COVID-19 were considered. Although both genetic and environmental factors are certainly expected to influence the susceptibility to or protection of individuals, the HLA and related polymorphisms can influence susceptibility, progression and severity of SARS-CoV-2 infection. The crucial role played by HLA molecules in the immune response, especially through pathogen-derived peptide presentation, and the huge molecular variability of HLA alleles in the human populations could be responsible for the different rates of infection and the different patients following COVID-19 infection.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Ernesto Torsiello
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Spiezia
- Ospedale San Carlo Potenza, Via Potito Petrone, 85100, Potenza, Italy
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Markus Tingart
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
- Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent, England
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
| |
Collapse
|
8
|
Bafna K, White K, Harish B, Rosales R, Ramelot TA, Acton TB, Moreno E, Kehrer T, Miorin L, Royer CA, García-Sastre A, Krug RM, Montelione GT. Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Cell Rep 2021. [PMID: 33984267 DOI: 10.1101/2020.12.13.422511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Effective control of COVID-19 requires antivirals directed against SARS-CoV-2. We assessed 10 hepatitis C virus (HCV) protease-inhibitor drugs as potential SARS-CoV-2 antivirals. There is a striking structural similarity of the substrate binding clefts of SARS-CoV-2 main protease (Mpro) and HCV NS3/4A protease. Virtual docking experiments show that these HCV drugs can potentially bind into the Mpro substrate-binding cleft. We show that seven HCV drugs inhibit both SARS-CoV-2 Mpro protease activity and SARS-CoV-2 virus replication in Vero and/or human cells. However, their Mpro inhibiting activities did not correlate with their antiviral activities. This conundrum is resolved by demonstrating that four HCV protease inhibitor drugs, simeprevir, vaniprevir, paritaprevir, and grazoprevir inhibit the SARS CoV-2 papain-like protease (PLpro). HCV drugs that inhibit PLpro synergize with the viral polymerase inhibitor remdesivir to inhibit virus replication, increasing remdesivir's antiviral activity as much as 10-fold, while those that only inhibit Mpro do not synergize with remdesivir.
Collapse
Affiliation(s)
- Khushboo Bafna
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kris White
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balasubramanian Harish
- Department of Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Romel Rosales
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Thomas B Acton
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Elena Moreno
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine A Royer
- Department of Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Adolfo García-Sastre
- Department of Microbiology, and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Robert M Krug
- Department of Molecular Biosciences, John Ring LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
9
|
Mandal A, Jha AK, Hazra B. Plant Products as Inhibitors of Coronavirus 3CL Protease. Front Pharmacol 2021; 12:583387. [PMID: 33767619 PMCID: PMC7985176 DOI: 10.3389/fphar.2021.583387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The ongoing COVID-19 pandemic has created an alarming situation due to extensive loss of human lives and economy, posing enormous threat to global health security. Till date, no antiviral drug or vaccine against SARS-CoV-2 has reached the market, although a number of clinical trials are under way. The viral 3-chymotrypsin-like cysteine protease (3CLpro), playing pivotal roles in coronavirus replication and polyprotein processing, is essential for its life cycle. In fact, 3CLpro is already a proven drug discovery target for SARS- and MERS-CoVs. This underlines the importance of 3CL protease in the design of potent drugs against COVID-19. Methods: We have collected one hundred twenty-seven relevant literatures to prepare the review article. PubMed, Google Scholar and other scientific search engines were used to collect the literature based on keywords, like "SARS-CoVs-3CL protease," "medicinal plant and anti-SARS-CoVs-3CL protease" published during 2003-2020. However, earlier publications related to this topic are also cited for necessary illustration and discussion. Repetitive articles and non-English studies were excluded. Results: From the literature search, we have enlisted medicinal plants reported to inhibit coronavirus 3CL protease. Some of the plants like Isatis tinctoria L. (syn. Isatis indigotica Fort.), Torreya nucifera (L.) Siebold and Zucc., Psoralea corylifolia L., and Rheum palmatum L. have exhibited strong anti-3CLpro activity. We have also discussed about the phytochemicals with encouraging antiviral activity, such as, bavachinin, psoralidin, betulinic acid, curcumin and hinokinin, isolated from traditional medicinal plants. Conclusion: Currently, searching for a plant-derived novel drug with better therapeutic index is highly desirable due to lack of specific treatment for SARS-CoV-2. It is expected that in-depth evaluation of medicinally important plants would reveal new molecules with significant potential to inhibit coronavirus 3CL protease for development into approved antiviral drug against COVID-19 in future.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, India
| | - Ajeet Kumar Jha
- Animal Health Research Division, Nepal Agricultural Research Council, Kathmandu, Nepal
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|