1
|
Liang ZH, Lin SS, Qiu ZY, Pan YC, Pan NF, Liu Y. GLI family zinc finger protein 2 promotes skin fibroblast proliferation and DNA damage repair by targeting the miR-200/ataxia telangiectasia mutated axis in diabetic wound healing. Kaohsiung J Med Sci 2024; 40:422-434. [PMID: 38385859 DOI: 10.1002/kjm2.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetic patients which negatively affects their foot health. This study aimed to estimate the role and mechanism of the miR-200 family in DNA damage of diabetic wound healing. Human foreskin fibroblasts (HFF-1 cells) were stimulated with high glucose (HG). Db/db mice were utilized to conduct the DFU in vivo model. Cell viability was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. Superoxide dismutase activity was determined using detection kits. Reactive oxygen species determination was conducted via dichlorodihydrofluorescein-diacetate assays. Enzyme-linked immunosorbent assay was used to evaluate 8-oxo-7,8-dihydro-2'deoxyguanosine levels. Genes and protein expression were analyzed by quantitative real-time polymerase chain reaction, western blotting, or immunohistochemical analyses. Luciferase reporter gene and RNA immunoprecipitation assays determined the interaction with miR-200a/b/c-3p and GLI family zinc finger protein 2 (GLI2) or ataxia telangiectasia mutated (ATM) kinase. HG repressed cell proliferation and DNA damage repair, promoted miR-200a/b/c-3p expression, and suppressed ATM and GLI2. MiR-200a/b/c-3p inhibition ameliorated HG-induced cell proliferation and DNA damage repair repression. MiR-200a/b/c-3p targeted ATM. Then, the silenced ATM reversed the miR-200a/b/c-3p inhibition-mediated alleviative effects under HG. Next, GLI2 overexpression alleviated the HG-induced cell proliferation and DNA damage repair inhibition via miR-200a/b/c-3p. MiR-200a/b/c-3p inhibition significantly promoted DNA damage repair and wound healing in DFU mice. GLI2 promoted cell proliferation and DNA damage repair by regulating the miR-200/ATM axis to enhance diabetic wound healing in DFU.
Collapse
Affiliation(s)
- Zun-Hong Liang
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Shi-Shuai Lin
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Zhi-Yang Qiu
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Yun-Chuan Pan
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Nan-Fang Pan
- Department of Burn & Skin Repair Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, P.R. China
| | - Yun Liu
- Department of Plastic and Cosmetic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P.R. China
| |
Collapse
|
2
|
Sui JY, Eichenfield DZ, Sun BK. The role of enhancers in psoriasis and atopic dermatitis. Br J Dermatol 2023; 190:10-19. [PMID: 37658835 DOI: 10.1093/bjd/ljad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Regulatory elements, particularly enhancers, play a crucial role in disease susceptibility and progression. Enhancers are DNA sequences that activate gene expression and can be affected by epigenetic modifications, interactions with transcription factors (TFs) or changes to the enhancer DNA sequence itself. Altered enhancer activity impacts gene expression and contributes to disease. In this review, we define enhancers and the experimental techniques used to identify and characterize them. We also discuss recent studies that examine how enhancers contribute to atopic dermatitis (AD) and psoriasis. Articles in the PubMed database were identified (from 1 January 2010 to 28 February 2023) that were relevant to enhancer variants, enhancer-associated TFs and enhancer histone modifications in psoriasis or AD. Most enhancers associated with these conditions regulate genes affecting epidermal homeostasis or immune function. These discoveries present potential therapeutic targets to complement existing treatment options for AD and psoriasis.
Collapse
Affiliation(s)
- Jennifer Y Sui
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Dawn Z Eichenfield
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
| |
Collapse
|
3
|
Natoli V, Charras A, Hofmann SR, Northey S, Russ S, Schulze F, McCann L, Abraham S, Hedrich CM. DNA methylation patterns in CD4 + T-cells separate psoriasis patients from healthy controls, and skin psoriasis from psoriatic arthritis. Front Immunol 2023; 14:1245876. [PMID: 37662940 PMCID: PMC10472451 DOI: 10.3389/fimmu.2023.1245876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is an autoimmune/inflammatory disorder primarily affecting the skin. Chronic joint inflammation triggers the diagnosis of psoriatic arthritis (PsA) in approximately one-third of psoriasis patients. Although joint disease typically follows the onset of skin psoriasis, in around 15% of cases it is the initial presentation, which can result in diagnostic delays. The pathophysiological mechanisms underlying psoriasis and PsA are not yet fully understood, but there is evidence pointing towards epigenetic dysregulation involving CD4+ and CD8+ T-cells. Objectives The aim of this study was to investigate disease-associated DNA methylation patterns in CD4+ T-cells from psoriasis and PsA patients that may represent potential diagnostic and/or prognostic biomarkers. Methods PBMCs were collected from 12 patients with chronic plaque psoriasis and 8 PsA patients, and 8 healthy controls. CD4+ T-cells were separated through FACS sorting, and DNA methylation profiling was performed (Illumina EPIC850K arrays). Bioinformatic analyses, including gene ontology (GO) and KEGG pathway analysis, were performed using R. To identify genes under the control of interferon (IFN), the Interferome database was consulted, and DNA Methylation Scores were calculated. Results Numbers and proportions of CD4+ T-cell subsets (naïve, central memory, effector memory, CD45RA re-expressing effector memory cells) did not vary between controls, skin psoriasis and PsA patients. 883 differentially methylated positions (DMPs) affecting 548 genes were identified between controls and "all" psoriasis patients. Principal component and partial least-squares discriminant analysis separated controls from skin psoriasis and PsA patients. GO analysis considering promoter DMPs delivered hypermethylation of genes involved in "regulation of wound healing, spreading of epidermal cells", "negative regulation of cell-substrate junction organization" and "negative regulation of focal adhesion assembly". Comparing controls and "all" psoriasis, a majority of DMPs mapped to IFN-related genes (69.2%). Notably, DNA methylation profiles also distinguished skin psoriasis from PsA patients (2,949 DMPs/1,084 genes) through genes affecting "cAMP-dependent protein kinase inhibitor activity" and "cAMP-dependent protein kinase regulator activity". Treatment with cytokine inhibitors (IL-17/TNF) corrected DNA methylation patterns of IL-17/TNF-associated genes, and methylation scores correlated with skin disease activity scores (PASI). Conclusion DNA methylation profiles in CD4+ T-cells discriminate between skin psoriasis and PsA. DNA methylation signatures may be applied for quantification of disease activity and patient stratification towards individualized treatment.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili (DINOGMI), Genoa, Italy
| | - Amandine Charras
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sigrun R. Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Liza McCann
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Susanne Abraham
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M. Hedrich
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
4
|
Ben Yamin B, Ahmed-Seghir S, Tomida J, Despras E, Pouvelle C, Yurchenko A, Goulas J, Corre R, Delacour Q, Droin N, Dessen P, Goidin D, Lange SS, Bhetawal S, Mitjavila-Garcia MT, Baldacci G, Nikolaev S, Cadoret JC, Wood RD, Kannouche PL. DNA polymerase zeta contributes to heterochromatin replication to prevent genome instability. EMBO J 2021; 40:e104543. [PMID: 34533226 PMCID: PMC8561639 DOI: 10.15252/embj.2020104543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The DNA polymerase zeta (Polζ) plays a critical role in bypassing DNA damage. REV3L, the catalytic subunit of Polζ, is also essential in mouse embryonic development and cell proliferation for reasons that remain incompletely understood. In this study, we reveal that REV3L protein interacts with heterochromatin components including repressive histone marks and localizes in pericentromeric regions through direct interaction with HP1 dimer. We demonstrate that Polζ/REV3L ensures progression of replication forks through difficult‐to‐replicate pericentromeric heterochromatin, thereby preventing spontaneous chromosome break formation. We also find that Rev3l‐deficient cells are compromised in the repair of heterochromatin‐associated double‐stranded breaks, eliciting deletions in late‐replicating regions. Lack of REV3L leads to further consequences that may be ascribed to heterochromatin replication and repair‐associated functions of Polζ, with a disruption of the temporal replication program at specific loci. This is correlated with changes in epigenetic landscape and transcriptional control of developmentally regulated genes. These results reveal a new function of Polζ in preventing chromosome instability during replication of heterochromatic regions.
Collapse
Affiliation(s)
- Barbara Ben Yamin
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Sana Ahmed-Seghir
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Junya Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Emmanuelle Despras
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Caroline Pouvelle
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Andrey Yurchenko
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jordane Goulas
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Raphael Corre
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | - Quentin Delacour
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| | | | - Philippe Dessen
- Bioinformatics Core Facility, Gustave Roussy, Villejuif, France
| | - Didier Goidin
- Life Sciences and Diagnostics Group, Agilent Technologies France, Les Ulis, France
| | - Sabine S Lange
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sarita Bhetawal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Giuseppe Baldacci
- Institut Jacques Monod, UMR7592, CNRS and University of Paris, Paris, France
| | - Sergey Nikolaev
- INSERM U981, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Patricia L Kannouche
- CNRS-UMR9019, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Paris-Saclay Université, Villejuif, France
| |
Collapse
|
5
|
Bui A, Liu J, Hong J, Hadeler E, Mosca M, Brownstone N, Liao W. Identifying Novel Psoriatic Disease Drug Targets Using a Genetics-Based Priority Index Pipeline. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2021; 6:185-197. [PMID: 35756599 PMCID: PMC9229908 DOI: 10.1177/24755303211026023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Despite numerous genome-wide association studies conducted in psoriasis and psoriatic arthritis, only a small fraction of the identified genes has been therapeutically targeted. OBJECTIVE We sought to identify and analyze potential therapeutic targets for psoriasis and psoriatic arthritis (PsA) using the priority index (Pi), a genetics-dependent drug target prioritization approach. METHODS Significant genetic variants from GWAS for psoriasis, PsA, and combined psoriatic disease were annotated and run through the Pi pipeline. Potential drug targets were identified based on genomic predictors, annotation predictors, pathway enrichment, and pathway crosstalk. RESULTS Several gene targets were identified for psoriasis and PsA that demonstrated biological associations to their respective diseases. Some are currently being explored as potential therapeutic targets (i.e. ICAM1, NF-kB, REV3L, ADRA1B for psoriasis; CCL11 for PsA); others have not yet been investigated (i.e. LNPEP, LCE3 for psoriasis; UBLCP1 for PsA). Additionally, many nodal points of potential intervention were identified as promising therapeutic targets. Of these, some are currently being studied such as TYK2 for psoriasis, and others have yet to be explored (i.e. PPP2CA, YAP1, PI3K, AKT, FOXO1, RELA, CSF2, IFNGR1, IFNGR2 for psoriasis; GNAQ, PLCB1, GNAI2 for PsA). CONCLUSION Through Pi, we identified data-driven candidate therapeutic gene targets and pathways for psoriasis and PsA. Given the sparse PsA specific genetic studies and PsA specific drug targets, this analysis could prove to be particularly valuable in the pipeline for novel psoriatic therapies.
Collapse
Affiliation(s)
- Audrey Bui
- Department of Dermatology, University of California, San Francisco, CA 94015
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY 14778
| | - Jared Liu
- Department of Dermatology, University of California, San Francisco, CA 94015
| | - Julie Hong
- Department of Dermatology, University of California, San Francisco, CA 94015
| | - Edward Hadeler
- Department of Dermatology, University of California, San Francisco, CA 94015
| | - Megan Mosca
- Department of Dermatology, University of California, San Francisco, CA 94015
| | - Nicholas Brownstone
- Department of Dermatology, University of California, San Francisco, CA 94015
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA 94015
| |
Collapse
|
6
|
Martin SK, Tomida J, Wood RD. Disruption of DNA polymerase ζ engages an innate immune response. Cell Rep 2021; 34:108775. [PMID: 33626348 PMCID: PMC7990024 DOI: 10.1016/j.celrep.2021.108775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
In mammalian cells, specialized DNA polymerase ζ (pol ζ) contributes to genomic stability during normal DNA replication. Disruption of the catalytic subunit Rev3l is toxic and results in constitutive chromosome damage, including micronuclei. As manifestations of this genomic stress are unknown, we examined the transcriptome of pol ζ-defective cells by RNA sequencing (RNA-seq). Expression of 1,117 transcripts is altered by ≥4-fold in Rev3l-disrupted cells, with a pattern consistent with an induction of an innate immune response. Increased expression of interferon-stimulated genes at the mRNA and protein levels in pol ζ-defective cells is driven by the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-signaling partner stimulator of interferon genes (STING) pathway. Expression of key interferon-stimulated chemokines is elevated in basal epithelial mouse skin cells with a disruption of Rev3l. These results indicate that the disruption of pol ζ may simultaneously increase sensitivity to genotoxins and potentially engage parts of the innate immune response, which could add an additional benefit to targeting pol ζ in cancer therapies.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78507, USA; The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Junya Tomida
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78507, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78507, USA; The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
7
|
Sahlén P, Spalinskas R, Asad S, Mahapatra KD, Höjer P, Anil A, Eisfeldt J, Srivastava A, Nikamo P, Mukherjee A, Kim KH, Bergman O, Ståhle M, Sonkoly E, Pivarcsi A, Wahlgren CF, Nordenskjöld M, Taylan F, Bradley M, Tapia-Páez I. Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis- and psoriasis-associated genes. J Allergy Clin Immunol 2020; 147:1742-1752. [PMID: 33069716 DOI: 10.1016/j.jaci.2020.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hundreds of variants associated with atopic dermatitis (AD) and psoriasis, 2 common inflammatory skin disorders, have previously been discovered through genome-wide association studies (GWASs). The majority of these variants are in noncoding regions, and their target genes remain largely unclear. OBJECTIVE We sought to understand the effects of these noncoding variants on the development of AD and psoriasis by linking them to the genes that they regulate. METHODS We constructed genomic 3-dimensional maps of human keratinocytes during differentiation by using targeted chromosome conformation capture (Capture Hi-C) targeting more than 20,000 promoters and 214 GWAS variants and combined these data with transcriptome and epigenomic data sets. We validated our results with reporter assays, clustered regularly interspaced short palindromic repeats activation, and examination of patient gene expression from previous studies. RESULTS We identified 118 target genes of 82 AD and psoriasis GWAS variants. Differential expression of 58 of the 118 target genes (49%) occurred in either AD or psoriatic lesions, many of which were not previously linked to any skin disease. We highlighted the genes AFG1L, CLINT1, ADO, LINC00302, and RP1-140J1.1 and provided further evidence for their potential roles in AD and psoriasis. CONCLUSIONS Our work focused on skin barrier pathology through investigation of the interaction profile of GWAS variants during keratinocyte differentiation. We have provided a catalogue of candidate genes that could modulate the risk of AD and psoriasis. Given that only 35% of the target genes are the gene nearest to the known GWAS variants, we expect that our work will contribute to the discovery of novel pathways involved in AD and psoriasis.
Collapse
Affiliation(s)
- Pelin Sahlén
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden.
| | - Rapolas Spalinskas
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Samina Asad
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kunal Das Mahapatra
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Höjer
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Anandashankar Anil
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ankit Srivastava
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pernilla Nikamo
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anaya Mukherjee
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kyu-Han Kim
- Basic Research and Innovation Division, Research and Development Unit, AmorePacific Corporation, Yongin-si, Korea
| | - Otto Bergman
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Mona Ståhle
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Dermatology Unit, Karolinska University Hospital, Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl-Fredrik Wahlgren
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Bradley
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Dermatology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Isabel Tapia-Páez
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Martin SK, Wood RD. DNA polymerase ζ in DNA replication and repair. Nucleic Acids Res 2019; 47:8348-8361. [PMID: 31410467 PMCID: PMC6895278 DOI: 10.1093/nar/gkz705] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Here, we survey the diverse functions of DNA polymerase ζ (pol ζ) in eukaryotes. In mammalian cells, REV3L (3130 residues) is the largest catalytic subunit of the DNA polymerases. The orthologous subunit in yeast is Rev3p. Pol ζ also includes REV7 subunits (encoded by Rev7 in yeast and MAD2L2 in mammalian cells) and two subunits shared with the replicative DNA polymerase, pol δ. Pol ζ is used in response to circumstances that stall DNA replication forks in both yeast and mammalian cells. The best-examined situation is translesion synthesis at sites of covalent DNA lesions such as UV radiation-induced photoproducts. We also highlight recent evidence that uncovers various roles of pol ζ that extend beyond translesion synthesis. For instance, pol ζ is also employed when the replisome operates sub-optimally or at difficult-to-replicate DNA sequences. Pol ζ also participates in repair by microhomology mediated break-induced replication. A rev3 deletion is tolerated in yeast but Rev3l disruption results in embryonic lethality in mice. Inactivation of mammalian Rev3l results in genomic instability and invokes cell death and senescence programs. Targeting of pol ζ function may be a useful strategy in cancer therapy, although chromosomal instability associated with pol ζ deficiency must be considered.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| |
Collapse
|