1
|
Renaud EA, Maupin AJM, Besteiro S. Iron‑sulfur cluster biogenesis and function in Apicomplexa parasites. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119876. [PMID: 39547273 DOI: 10.1016/j.bbamcr.2024.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Iron‑sulfur cluster are ubiquitous and ancient protein cofactors that support a wide array of essential cellular functions. In eukaryotes, their assembly requires specific and dedicated machineries in each subcellular compartment. Apicomplexans are parasitic protists that are collectively responsible for a significant burden on the health of humans and other animals, and most of them harbor two organelles of endosymbiotic origin: a mitochondrion, and a plastid of high metabolic importance called the apicoplast. Consequently, apicomplexan parasites have distinct iron‑sulfur cluster assembly machineries located to their endosymbiotic organelles, as well as a cytosolic pathway. Recent findings have not only shown the importance of iron‑sulfur cluster assembly for the fitness of these parasites, but also highlighted parasite-specific features that may be promising for the development of targeted anti-parasitic strategies.
Collapse
|
2
|
Silveira AB, Houy A, Ganier O, Özemek B, Vanhuele S, Vincent-Salomon A, Cassoux N, Mariani P, Pierron G, Leyvraz S, Rieke D, Picca A, Bielle F, Yaspo ML, Rodrigues M, Stern MH. Base-excision repair pathway shapes 5-methylcytosine deamination signatures in pan-cancer genomes. Nat Commun 2024; 15:9864. [PMID: 39543136 PMCID: PMC11564873 DOI: 10.1038/s41467-024-54223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Transition of cytosine to thymine in CpG dinucleotides is the most frequent type of mutation in cancer. This increased mutability is commonly attributed to the spontaneous deamination of 5-methylcytosine (5mC), which is normally repaired by the base-excision repair (BER) pathway. However, the contribution of 5mC deamination in the increasing diversity of cancer mutational signatures remains poorly explored. We integrate mutational signatures analysis in a large series of tumor whole genomes with lineage-specific epigenomic data to draw a detailed view of 5mC deamination in cancer. We uncover tumor type-specific patterns of 5mC deamination signatures in CpG and non-CpG contexts. We demonstrate that the BER glycosylase MBD4 preferentially binds to active chromatin and early replicating DNA, which correlates with lower mutational burden in these domains. We validate our findings by modeling BER deficiencies in isogenic cell models. Here, we establish MBD4 as the main actor responsible for 5mC deamination repair in humans.
Collapse
Affiliation(s)
- André Bortolini Silveira
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Alexandre Houy
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Olivier Ganier
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Begüm Özemek
- Otto Warburg Laboratory "Gene Regulation and Systems Biology of Cancer", Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sandra Vanhuele
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, PSL Research University, Paris, France
| | | | - Pascale Mariani
- Department of Surgical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Gaelle Pierron
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Serge Leyvraz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Rieke
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alberto Picca
- Service de Neuro-oncologie, Institut de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
- Service de Neuropathologie, Laboratoire Escourolle, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Yaspo
- Otto Warburg Laboratory "Gene Regulation and Systems Biology of Cancer", Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Manuel Rodrigues
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut Curie, PSL Research University, Paris, France.
- Department of Genetics, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Shaw AE, Mihelich MN, Whitted JE, Reitman HJ, Timmerman AJ, Tehseen M, Hamdan SM, Schauer GD. Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative. Proc Natl Acad Sci U S A 2024; 121:e2404470121. [PMID: 39374399 PMCID: PMC11494364 DOI: 10.1073/pnas.2404470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Replication stress describes endogenous and exogenous challenges to DNA replication in the S-phase. Stress during this critical process causes helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response in yeast is hydroxyurea (HU), a clinically used chemotherapeutic. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of deoxynucleotide triphosphate synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, facilitated by the replisome-associated mediator Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast and human cells and show that antioxidants restore growth of yeast in HU. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron-sulfur (Fe-S) clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| |
Collapse
|
4
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krauß N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. Chem 2024; 10:2103-2130. [PMID: 39170732 PMCID: PMC11335340 DOI: 10.1016/j.chempr.2024.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes. The prokaryotic DNA repair photolyase PhrB carries a four-iron-four-sulfur cluster ([4Fe4S]) in addition to the catalytic flavin adenine dinucleotide (FAD) and a second cofactor ribolumazine. Our recent study suggested that the [4Fe4S] cluster functions as an electron cache to coordinate two interdependent photoreactions of the FAD and ribolumazine. Here we report the crystallography observations of light-induced responses in PhrB using the cryo-trapping method and in situ serial Laue diffraction at room temperature. We capture strong signals that depict electron density changes arising from quantized electronic movements in the [4Fe4S] cluster. Our data reveal the mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light-induced redox changes. The quantum effects imaged by decomposition of electron density changes have shed light on the emerging roles of metal clusters in proteins.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Renz Research, Inc., Westmont, IL 60559, USA
- Lead contact
| | - Fan Zhang
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Weijia Kang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Cong Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Heewhan Shin
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Semini Gunawardana
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Kalinga Bowatte
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Shaw AE, Whitted JE, Mihelich MN, Reitman HJ, Timmerman AJ, Schauer GD. Revised Mechanism of Hydroxyurea Induced Cell Cycle Arrest and an Improved Alternative. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583010. [PMID: 38496404 PMCID: PMC10942336 DOI: 10.1101/2024.03.02.583010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Replication stress describes various types of endogenous and exogenous challenges to DNA replication in S-phase. Stress during this critical process results in helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response is hydroxyurea (HU), a chemotherapeutic agent. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of dNTP synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, mediated by the replisome associated effector kinase Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast nuclei. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron sulfur Fe-S clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| |
Collapse
|
6
|
Lózsa R, Németh E, Gervai JZ, Márkus BG, Kollarics S, Gyüre Z, Tóth J, Simon F, Szüts D. DNA mismatch repair protects the genome from oxygen-induced replicative mutagenesis. Nucleic Acids Res 2023; 51:11040-11055. [PMID: 37791890 PMCID: PMC10639081 DOI: 10.1093/nar/gkad775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.
Collapse
Affiliation(s)
- Rita Lózsa
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Bence G Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Sándor Kollarics
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, H-1085 Budapest, Hungary
- Turbine Simulated Cell Technologies, H-1027 Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ferenc Simon
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krau Ü N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523341. [PMID: 36711581 PMCID: PMC9882091 DOI: 10.1101/2023.01.09.523341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes including DNA processing. The prokaryotic DNA repair enzyme PhrB, a member of the protein family of cryptochromes and photolyases, carries a four-iron-four-sulfur cluster [4Fe4S] in addition to the catalytic cofactor flavin adenine dinucleotide (FAD) and a second pigment 6,7-dimethyl-8-ribityllumazine (DMRL). The light-induced redox reactions of this multi-cofactor protein complex were recently shown as two interdependent photoreductions of FAD and DMRL mediated by the [4Fe4S] cluster functioning as an electron cache to hold a fine balance of electrons. Here, we apply the more traditional temperature-scan cryo-trapping technique in protein crystallography and the newly developed technology of in situ serial Laue diffraction at room temperature. These diffraction methods in dynamic crystallography enable us to capture strong signals of electron density changes in the [4Fe4S] cluster that depict quantized electronic movements. The mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light illumination are observed directly in our difference maps between its redox states. These direct observations of the quantum effects in a protein bound iron-sulfur cluster have thus opened a window into the mechanistic understanding of metal clusters in biological systems.
Collapse
|
8
|
Petronek MS, Allen BG. Maintenance of genome integrity by the late-acting cytoplasmic iron-sulfur assembly (CIA) complex. Front Genet 2023; 14:1152398. [PMID: 36968611 PMCID: PMC10031043 DOI: 10.3389/fgene.2023.1152398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and coordination result from highly coordinated, evolutionarily conserved biosynthetic processes. The initial Fe-S cluster synthesis occurs within the mitochondria; however, the maturation of Fe-S clusters culminating in their ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several nuclear proteins involved in DNA replication and repair interact with the CIA complex and contain Fe-S clusters necessary for proper enzymatic activity. Moreover, it is currently hypothesized that the late-acting CIA complex regulates the maintenance of genome integrity and is an integral feature of DNA metabolism. This review describes the late-acting CIA complex and several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome stability.
Collapse
|
9
|
Chopra M, Caswell R, Barcia G, Rondeau S, Jonard L, Nitchké P, Amram D, Bellaiche ML, Abadie V, Parodi M, Denoyelle F, Hattersley A, Bole C, Lyonnet S, Marlin S. Mild MDPL in a patient with a novel de novo missense variant in the Cys-B region of POLD1. Eur J Hum Genet 2022; 30:960-966. [PMID: 35590056 PMCID: PMC9349287 DOI: 10.1038/s41431-022-01118-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2021] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
DNA polymerase δ is one of the three main enzymes responsible for DNA replication. POLD1 heterozygous missense variants in the exonuclease domain result in a cancer predisposition phenotype. In contrast, heterozygous variants in POLD1 polymerase domain have more recently been shown to be the underlying basis of the distinct autosomal dominant multisystem lipodystrophy disorder, MDPL (mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome OMIM # 615381), most commonly a recurrent in-frame deletion of serine at position 604, accounting for 18 of the 21 reported cases of this condition. One patient with an unusually severe phenotype has been reported, caused by a de novo c. 3209 T > A, (p.(Ile1070Asn)) variant in the highly conserved CysB motif in the C-terminal of the POLD1 protein. This region has recently been shown to bind an iron-sulphur cluster of the 4Fe-4S type. This report concerns a novel de novo missense variant in the CysB region, c.3219 G > C, (p.(Ser1073Arg)) in a male child with a milder phenotype. Using in silico analysis in the context of the recently published structure of human Polymerase δ holoenzyme, we compared these and other variants which lie in close proximity but result in differing degrees of severity and varying features. We hypothesise that the c.3219 G > C, (p.(Ser1073Arg)) substitution likely causes reduced binding of the iron-sulphur cluster without significant disruption of protein structure, while the previously reported c.3209 T > A (p.(Ile1070Asn)) variant likely has a more profound impact on structure and folding in the region. Our analysis supports a central role for the CysB region in regulating POLD1 activity in health and disease.
Collapse
Affiliation(s)
- Maya Chopra
- Service de Génétique Clinique, Hôpital Necker, Assistance Publique Hôpitaux de Paris (AP-HP), and Imagine Institute, 75015, Paris, France.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA
| | - Richard Caswell
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, UK
| | - Giulia Barcia
- Service de Génétique Moléculaire, Hôpital Necker, AP-HP, Paris, France
| | - Sophie Rondeau
- Service de Génétique Moléculaire, Hôpital Necker, AP-HP, Paris, France
| | - Laurence Jonard
- Service de Génétique Moléculaire, Hôpital Necker, AP-HP, Paris, France.,Centre de Référence des Surdités Génétiques, Institut Imagine, Hôpital Necker, AP-HP, Paris, France
| | - Patrick Nitchké
- Bioinformatics Platform, Institut Imagine, Université Paris Descartes, Paris, France
| | - Daniel Amram
- Service de Génétique Clinique, Centre Hopsitalier Intercommunal de Créteil, Créteil, France
| | - Marc-Lionel Bellaiche
- Service de Gastroentérologie pédiatrique, Hôpital Robert Debré, AP-HP, Paris, France
| | | | - Marine Parodi
- Service d'ORL pédiatrique, Hôpital Necker, AP-HP, Paris, France
| | | | - Andrew Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, UK
| | - Christine Bole
- Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris, France.,Genomics Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Stanislas Lyonnet
- Service de Génétique Clinique, Hôpital Necker, Assistance Publique Hôpitaux de Paris (AP-HP), and Imagine Institute, 75015, Paris, France.,Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris, France.,INSERM-UMR1163, Institut Imagine, Paris, France
| | - Sandrine Marlin
- Service de Génétique Clinique, Hôpital Necker, Assistance Publique Hôpitaux de Paris (AP-HP), and Imagine Institute, 75015, Paris, France. .,Centre de Référence des Surdités Génétiques, Institut Imagine, Hôpital Necker, AP-HP, Paris, France. .,INSERM-UMR1163, Institut Imagine, Paris, France.
| |
Collapse
|
10
|
TGF-β1 in Seminal Plasma Promotes Endometrial Mesenchymal Stem Cell Growth via p42/44 and Akt Pathway in Patients With or Without Endometriosis. Reprod Sci 2022; 29:723-733. [PMID: 34981457 DOI: 10.1007/s43032-021-00562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/28/2021] [Indexed: 10/19/2022]
Abstract
The cause of endometriosis, which is characterized by the existence of functional endometrial tissue outside the uterine cavity, is poorly understood. Seminal plasma (SP) is rich in multiple cytokines that may promote endometrial tissue survival. Here, we evaluated the effect of SP on growth of endometrial mesenchymal stem cells (MSCs) from women with endometriosis (E-MSCs) and women without endometriosis (NE-MSCs). Proliferation, cell foci formation, cell cycle progression, and growth marker expression of E- and NE-MSCs were promoted by SP. These effects may be mediated through activation of transforming growth factor beta 1 (TGF-β1), Akt, and p42/44 signaling, which enhances CDK2 and CDK6 expression and accelerates cell cycle progression. Xenografts exposed to SP exhibited a three-fold increase in volume and four-fold increase in weight after 14 days. Our findings demonstrate that TGF-β1 in SP may promote endometrial tissue survival which will allow us to understand the pathogenesis and develop novel approaches for prevention and therapies of endometriosis.
Collapse
|
11
|
Shi R, Hou W, Wang ZQ, Xu X. Biogenesis of Iron-Sulfur Clusters and Their Role in DNA Metabolism. Front Cell Dev Biol 2021; 9:735678. [PMID: 34660592 PMCID: PMC8514734 DOI: 10.3389/fcell.2021.735678] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
Iron–sulfur (Fe/S) clusters (ISCs) are redox-active protein cofactors that their synthesis, transfer, and insertion into target proteins require many components. Mitochondrial ISC assembly is the foundation of all cellular ISCs in eukaryotic cells. The mitochondrial ISC cooperates with the cytosolic Fe/S protein assembly (CIA) systems to accomplish the cytosolic and nuclear Fe/S clusters maturation. ISCs are needed for diverse cellular functions, including nitrogen fixation, oxidative phosphorylation, mitochondrial respiratory pathways, and ribosome assembly. Recent research advances have confirmed the existence of different ISCs in enzymes that regulate DNA metabolism, including helicases, nucleases, primases, DNA polymerases, and glycosylases. Here we outline the synthesis of mitochondrial, cytosolic and nuclear ISCs and highlight their functions in DNA metabolism.
Collapse
Affiliation(s)
- Ruifeng Shi
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenya Hou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xingzhi Xu
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
12
|
Gladys B, René W, Anabelle D, Ahmad M, Caroline F, Etienne S, Deniz K, Valerie B, Anick C, Jean-Paul M, Benoît M, Philippe K, Isabelle M. Child to adulthood clinical description of MDPL syndrome due to a novel variant in POLD1. Eur J Med Genet 2021; 64:104333. [PMID: 34517090 DOI: 10.1016/j.ejmg.2021.104333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Mandibular hypoplasia, Deafness, Progeroid features, and Lipodystrophy (MDPL) syndrome is a rare autosomal dominant disorder caused by mutations in POLD1 gene and characterized by mandibular hypoplasia, deafness, progeroid features and lipodystrophy. One recurrent mutation p.(Ser605del) was reported in almost all affected patients. We report a novel de novo c.3214A>C p.(Thr1072Pro) variant in POLD1 in a 28-year-old male with MDPL syndrome. We provide a clinical description, molecular/immunohistological results, and literature review.
Collapse
Affiliation(s)
- Battisti Gladys
- Centre for Human Genetics, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Wintjens René
- Laboratory of Microbiology, Bioorganic and Macromolecular Chemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Decottignies Anabelle
- Telomeres Research Group, Genetic & Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Merhi Ahmad
- IPG BioBank and Laboratory of Translational Oncology, Institut de Pathologie et de Génétique/Grand Hôpital de Charleroi, Gosselies, Belgium
| | - Fervaille Caroline
- Department of Anatomopathology, Cliniques de Mont-Godinne, CHU-UCL-Namur, Godinne, Belgium
| | - Sokal Etienne
- UCLouvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, 10 Av Hippocrate, Bruxelles, Belgium
| | - Karadurmus Deniz
- Centre for Human Genetics, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Benoit Valerie
- Centre for Human Genetics, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Claessens Anick
- Department of Endocrinology, Vivalia, Cliniques Sud Luxembourg, Arlon, Belgium
| | - Martinet Jean-Paul
- Department of Hepato-Gastro-Enterology, Cliniques de Mont-Godinne, CHU-UCL-Namur, Godinne, Belgium
| | - Martiat Benoît
- Department of Oto-Rhino-Laryngology, Vivalia, Cliniques Sud Luxembourg, Arlon, Belgium
| | - Kinzinger Philippe
- Department of Orthopedic Surgery, Vivalia, Cliniques Sud Luxembourg, Arlon, Belgium
| | - Maystadt Isabelle
- Centre for Human Genetics, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium; Faculty of Medicine, Unamur, Namur, Belgium.
| |
Collapse
|
13
|
Kiktev DA, Dominska M, Zhang T, Dahl J, Stepchenkova EI, Mieczkowski P, Burgers PM, Lujan S, Burkholder A, Kunkel TA, Petes TD. The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe-S cluster in DNA polymerase δ. Nucleic Acids Res 2021; 49:5623-5636. [PMID: 34019669 PMCID: PMC8191807 DOI: 10.1093/nar/gkab371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 05/16/2021] [Indexed: 11/12/2022] Open
Abstract
Iron-sulfur clusters (4Fe–4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol δ) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol δ are the observations that Pol δ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme.
Collapse
Affiliation(s)
- Denis A Kiktev
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony Zhang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joseph Dahl
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elena I Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, St. Petersburg, Russia.,Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russia
| | - Piotr Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
14
|
Chanet R, Baïlle D, Golinelli-Cohen MP, Riquier S, Guittet O, Lepoivre M, Huang ME, Vernis L. Fe-S coordination defects in the replicative DNA polymerase delta cause deleterious DNA replication in vivo and subsequent DNA damage in the yeast Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6261760. [PMID: 34009341 PMCID: PMC8495945 DOI: 10.1093/g3journal/jkab124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 11/12/2022]
Abstract
B-type eukaryotic polymerases contain a [4Fe-4S] cluster in their C-terminus domain, whose role is not fully understood yet. Among them, DNA polymerase delta (Polδ) plays an essential role in chromosomal DNA replication, mostly during lagging strand synthesis. Previous in vitro work suggested that the Fe-S cluster in Polδ is required for efficient binding of the Pol31 subunit, ensuring stability of the Polδ complex. Here we analyzed the in vivo consequences resulting from an impaired coordination of the Fe-S cluster in Polδ. We show that a single substitution of the very last cysteine coordinating the cluster by a serine is responsible for the generation of massive DNA damage during S phase, leading to checkpoint activation, requirement of homologous recombination for repair, and ultimately to cell death when the repair capacities of the cells are overwhelmed. These data indicate that impaired Fe-S cluster coordination in Polδ is responsible for aberrant replication. More generally, Fe-S in Polδ may be compromised by various stress including anti-cancer drugs. Possible in vivo Polδ Fe-S cluster oxidation and collapse may thus occur, and we speculate this could contribute to induced genomic instability and cell death, comparable to that observed in pol3-13 cells.
Collapse
Affiliation(s)
- Roland Chanet
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Sylvie Riquier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Olivier Guittet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Michel Lepoivre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France.,Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France.,Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Abstract
The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.
Collapse
Affiliation(s)
- Ilan Attali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
16
|
Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends Genet 2021; 37:476-487. [PMID: 33608117 DOI: 10.1016/j.tig.2020.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
Collapse
Affiliation(s)
- Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
| |
Collapse
|
17
|
Wang S, Maxwell CA, Akella NM. Diet as a Potential Moderator for Genome Stability and Immune Response in Pediatric Leukemia. Cancers (Basel) 2021; 13:cancers13030413. [PMID: 33499176 PMCID: PMC7865408 DOI: 10.3390/cancers13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pediatric acute lymphoblastic leukemia (ALL) is the most prevalent cancer affecting children in developed societies. Here, we review the role of diet in control of the incidence and progression of childhood ALL. Prenatally, ALL risk is associated with higher birthweights of newborns, suggesting that ALL begins to evolve in-utero. Indeed, maternal diet influences the fetal genome and immune development. Postnatally, breastfeeding associates with decreased risk of ALL development. Finally, for the ALL-affected child, certain dietary regimens that impact the hormonal environment may impede disease progression. Improved understanding of the dietary regulation of hormones and immunity may inform better approaches to predict, protect, and ultimately save children afflicted with pediatric leukemia. Abstract Pediatric leukemias are the most prevalent cancers affecting children in developed societies, with childhood acute lymphoblastic leukemia (ALL) being the most common subtype. As diet is a likely modulator of many diseases, this review focuses on the potential for diet to influence the incidence and progression of childhood ALL. In particular, the potential effect of diets on genome stability and immunity during the prenatal and postnatal stages of early childhood development are discussed. Maternal diet plays an integral role in shaping the bodily composition of the newborn, and thus may influence fetal genome stability and immune system development. Indeed, higher birth weights of newborns are associated with increased risk of ALL, which suggests in-utero biology may shape the evolution of preleukemic clones. Postnatally, the ingestion of maternal breastmilk both nourishes the infant, and provides essential components that strengthen and educate the developing immune system. Consistently, breast-feeding associates with decreased risk of ALL development. For children already suffering from ALL, certain dietary regimens have been proposed. These regimens, which have been validated in both animals and humans, alter the internal hormonal environment. Thus, hormonal regulation by diet may shape childhood metabolism and immunity in a manner that is detrimental to the evolution or expansion of preleukemic and leukemic ALL clones.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Christopher A. Maxwell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
- Correspondence: (C.A.M.); (N.M.A.)
| | - Neha M. Akella
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
- Correspondence: (C.A.M.); (N.M.A.)
| |
Collapse
|
18
|
Arun S, Chaiyamoon A, Lapyuneyong N, Bunsueb S, Wu ATH, Iamsaard S. Chronic stress affects tyrosine phosphorylated protein expression and secretion of male rat epididymis. Andrologia 2021; 53:e13981. [PMID: 33469986 DOI: 10.1111/and.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress (CS) is shown to decrease the semen quality with changed expression of tyrosine phosphorylated (TyrPho) proteins in testicular and seminal tissues. However, the alterations of such proteins and fluid contents in the epididymis, producing sperm maturation factors, have never been reported. Sixteen adult rats were randomly divided into 2 groups (n = 8). The control animals were not subjected to stressors whereas CS rats were immobilised within restraint cage (4 hr/day) before cold forced-water swimming (15 min/day) for 60 days. Corticosterone, testosterone, blood glucose level (BGL), malondialdehyde (MDA) and biochemical components in epididymal fluid were assayed. Expressions of heat shock protein 70 (HSP-70), androgen receptor (AR) and TyrPho protein were investigated in epididymal tissue and fluid. Significantly, CS increased the corticosterone and BGL but decreased testosterone and epididymal substance levels. MDA level in tail epididymal fluid and HSP-70 expression in both regions of epididymal tissues and fluids, except in head epididymal fluid of CS were increased. Epididymal tissues showed the decrease of AR expression. Presence and changes of many TyrPho proteins were observed in CS. In conclusion, CS could affect functional proteins particularly TyrPho in epididymis, resulted in low semen quality.
Collapse
Affiliation(s)
- Supatcharee Arun
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Natthapol Lapyuneyong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sudtida Bunsueb
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alexander Tsang-Hsien Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
19
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|
20
|
Mariotti L, Wild S, Brunoldi G, Piceni A, Ceppi I, Kummer S, Lutz RE, Cejka P, Gari K. The iron-sulphur cluster in human DNA2 is required for all biochemical activities of DNA2. Commun Biol 2020; 3:322. [PMID: 32576938 PMCID: PMC7311471 DOI: 10.1038/s42003-020-1048-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
The nuclease/helicase DNA2 plays important roles in DNA replication, repair and processing of stalled replication forks. DNA2 contains an iron-sulphur (FeS) cluster, conserved in eukaryotes and in a related bacterial nuclease. FeS clusters in DNA maintenance proteins are required for structural integrity and/or act as redox-sensors. Here, we demonstrate that loss of the FeS cluster affects binding of human DNA2 to specific DNA substrates, likely through a conformational change that distorts the central DNA binding tunnel. Moreover, we show that the FeS cluster is required for DNA2’s nuclease, helicase and ATPase activities. Our data also establish that oxidation of DNA2 impairs DNA binding in vitro, an effect that is reversible upon reduction. Unexpectedly, though, this redox-regulation is independent of the presence of the FeS cluster. Together, our study establishes an important structural role for the FeS cluster in human DNA2 and discovers a redox-regulatory mechanism to control DNA binding. Mariotti et al. show that the iron-sulphur cluster in human DNA2 is required for its nuclease, helicase and ATPase activities. This study highlights the structural importance of the iron-sulphur cluster in human DNA2 and presents a separate redox-regulatory mechanism that controls DNA binding.
Collapse
Affiliation(s)
- Laura Mariotti
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Giulia Brunoldi
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Alessandra Piceni
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, 8092, Zurich, Switzerland
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Richard E Lutz
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, 8092, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Odermatt DC, Lee WTC, Wild S, Jozwiakowski SK, Rothenberg E, Gari K. Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism. PLoS Genet 2020; 16:e1008740. [PMID: 32542039 PMCID: PMC7316351 DOI: 10.1371/journal.pgen.1008740] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/25/2020] [Accepted: 03/25/2020] [Indexed: 11/19/2022] Open
Abstract
FANCJ/BRIP1 is an iron-sulfur (FeS) cluster-binding DNA helicase involved in DNA inter-strand cross-link (ICL) repair and G-quadruplex (G4) metabolism. Mutations in FANCJ are associated with Fanconi anemia and an increased risk for developing breast and ovarian cancer. Several cancer-associated mutations are located in the FeS domain of FANCJ, but how they affect FeS cluster binding and/or FANCJ activity has remained mostly unclear. Here we show that the FeS cluster is indispensable for FANCJ's ability to unwind DNA substrates in vitro and to provide cellular resistance to agents that induce ICLs. Moreover, we find that FANCJ requires an intact FeS cluster for its ability to unfold G4 structures on the DNA template in a primer extension assay with the lagging-strand DNA polymerase delta. Surprisingly, however, FANCJ variants that are unable to bind an FeS cluster and to unwind DNA in vitro can partially suppress the formation of replisome-associated G4 structures that we observe in a FANCJ knock-out cell line. This may suggest a partially retained cellular activity of FANCJ variants with alterations in the FeS domain. On the other hand, FANCJ knock-out cells expressing FeS cluster-deficient variants display a similar-enhanced-sensitivity towards pyridostatin (PDS) and CX-5461, two agents that stabilise G4 structures, as FANCJ knock-out cells. Mutations in FANCJ that abolish FeS cluster binding may hence be predictive of an increased cellular sensitivity towards G4-stabilising agents.
Collapse
Affiliation(s)
- Diana C. Odermatt
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Wei Ting C. Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Lancey C, Tehseen M, Raducanu VS, Rashid F, Merino N, Ragan TJ, Savva CG, Zaher MS, Shirbini A, Blanco FJ, Hamdan SM, De Biasio A. Structure of the processive human Pol δ holoenzyme. Nat Commun 2020; 11:1109. [PMID: 32111820 PMCID: PMC7048817 DOI: 10.1038/s41467-020-14898-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 01/01/2023] Open
Abstract
In eukaryotes, DNA polymerase δ (Pol δ) bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. We present the high-resolution cryo-EM structure of the human processive Pol δ–DNA–PCNA complex in the absence and presence of FEN1. Pol δ is anchored to one of the three PCNA monomers through the C-terminal domain of the catalytic subunit. The catalytic core sits on top of PCNA in an open configuration while the regulatory subunits project laterally. This arrangement allows PCNA to thread and stabilize the DNA exiting the catalytic cleft and recruit FEN1 to one unoccupied monomer in a toolbelt fashion. Alternative holoenzyme conformations reveal important functional interactions that maintain PCNA orientation during synthesis. This work sheds light on the structural basis of Pol δ’s activity in replicating the human genome. Pol δ bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand in eukaryotes and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. Here, the authors present a Cryo-EM structure of the human 4-subunit Pol δ bound to DNA and PCNA in a replicating state with an incoming nucleotide in the active site.
Collapse
Affiliation(s)
- Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Fahad Rashid
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160, Derio, Spain
| | - Timothy J Ragan
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Christos G Savva
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Manal S Zaher
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Afnan Shirbini
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK.
| |
Collapse
|
23
|
Simon AK, Kummer S, Wild S, Lezaja A, Teloni F, Jozwiakowski SK, Altmeyer M, Gari K. The iron-sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation. Life Sci Alliance 2020; 3:3/3/e201900547. [PMID: 32071282 PMCID: PMC7032568 DOI: 10.26508/lsa.201900547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
The iron–sulfur cluster helicase DDX11 promotes the generation of ssDNA and the phosphorylation of CHK1 at serine-345, possibly by unwinding replication-dependent DNA secondary structures. The iron–sulfur (FeS) cluster helicase DDX11 is associated with a human disorder termed Warsaw Breakage Syndrome. Interestingly, one disease-associated mutation affects the highly conserved arginine-263 in the FeS cluster-binding motif. Here, we demonstrate that the FeS cluster in DDX11 is required for DNA binding, ATP hydrolysis, and DNA helicase activity, and that arginine-263 affects FeS cluster binding, most likely because of its positive charge. We further show that DDX11 interacts with the replication factors DNA polymerase delta and WDHD1. In vitro, DDX11 can remove DNA obstacles ahead of Pol δ in an ATPase- and FeS domain-dependent manner, and hence generate single-stranded DNA. Accordingly, depletion of DDX11 causes reduced levels of single-stranded DNA, a reduction of chromatin-bound replication protein A, and impaired CHK1 phosphorylation at serine-345. Taken together, we propose that DDX11 plays a role in dismantling secondary structures during DNA replication, thereby promoting CHK1 activation.
Collapse
Affiliation(s)
- Anna K Simon
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Jain R, Rice WJ, Malik R, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. Cryo-EM structure and dynamics of eukaryotic DNA polymerase δ holoenzyme. Nat Struct Mol Biol 2019; 26:955-962. [PMID: 31582849 DOI: 10.1038/s41594-019-0305-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 11/09/2022]
Abstract
DNA polymerase δ (Polδ) plays pivotal roles in eukaryotic DNA replication and repair. Polδ is conserved from yeast to humans, and mutations in human Polδ have been implicated in various cancers. Saccharomyces cerevisiae Polδ consists of catalytic Pol3 and the regulatory Pol31 and Pol32 subunits. Here, we present the near atomic resolution (3.2 Å) cryo-EM structure of yeast Polδ holoenzyme in the act of DNA synthesis. The structure reveals an unexpected arrangement in which the regulatory subunits (Pol31 and Pol32) lie next to the exonuclease domain of Pol3 but do not engage the DNA. The Pol3 C-terminal domain contains a 4Fe-4S cluster and emerges as the keystone of Polδ assembly. We also show that the catalytic and regulatory subunits rotate relative to each other and that this is an intrinsic feature of the Polδ architecture. Collectively, the structure provides a framework for understanding DNA transactions at the replication fork.
Collapse
Affiliation(s)
- Rinku Jain
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Radhika Malik
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Khodour Y, Kaguni LS, Stiban J. Iron-sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. Enzymes 2019; 45:225-256. [PMID: 31627878 DOI: 10.1016/bs.enz.2019.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite their relative simplicity, iron-sulfur clusters have been omnipresent as cofactors in myriad cellular processes such as oxidative phosphorylation and other respiratory pathways. Recent research advances confirm the presence of different clusters in enzymes involved in nucleic acid metabolism. Iron-sulfur clusters can therefore be considered hallmarks of cellular metabolism. Helicases, nucleases, glycosylases, DNA polymerases and transcription factors, among others, incorporate various types of clusters that serve differing roles. In this chapter, we review our current understanding of the identity and functions of iron-sulfur clusters in DNA and RNA metabolizing enzymes, highlighting their importance as regulators of cellular function.
Collapse
Affiliation(s)
- Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|