1
|
Tucker SK, McHugh RE, Roe AJ. One problem, multiple potential targets: Where are we now in the development of small molecule inhibitors against Shiga toxin? Cell Signal 2024; 121:111253. [PMID: 38852937 DOI: 10.1016/j.cellsig.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of enteric pathogens which carry phage-encoded Shiga toxins (Stx). STEC infections begin with severe abdominal pain and non-bloody diarrhoea, which can progress to bloody diarrhoea after approximately 4-days post-infection. In high-risk groups such as children and the elderly, patients may develop haemolytic uremic syndrome (HUS). HUS is characterised by microangiopathic haemolytic anaemia, thrombocytopenia, and in severe disease acute renal failure. Traditional antibiotics have been linked with increased toxin production due to the activation of recA-mediated bacterial stress response, resulting in poorer patient outcomes. Therefore, treatment relies on supportive therapies. Antivirulence strategies have been explored as an alternative treatment for bacterial infections and blockers of virulence factors such as the Type III Secretion System. Recent improvements in the mechanistic understanding of the Stx pathway have led to the design of inhibitors to disrupt the pathway, leading to toxin-mediated ribosome damage. However, compounds have yet to progress beyond Phase III clinical trials successfully. This review explores the progress in developing small molecule inhibitors by collating lead compounds derived from in-silico and experimental approaches.
Collapse
Affiliation(s)
- Samantha K Tucker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Rebecca E McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew J Roe
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
2
|
Zhang J, Liu J, Yue Y, Wang L, He Q, Xu S, Li J, Liao Y, Chen Y, Wang S, Xie Y, Zhang B, Bian Y, Dimitrov DS, Yuan Y, Zhu J. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer. J Exp Clin Cancer Res 2024; 43:173. [PMID: 38898487 PMCID: PMC11188579 DOI: 10.1186/s13046-024-03099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Shuyi Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yunji Liao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | | | - Yueqing Xie
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China.
| |
Collapse
|
3
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
4
|
Wu Y, Mahtal N, Paillares E, Swistak L, Sagadiev S, Acharya M, Demeret C, Werf SVD, Guivel-Benhassine F, Schwartz O, Petracchini S, Mettouchi A, Caramelle L, Couvineau P, Thai R, Barbe P, Keck M, Brodin P, Machelart A, Sencio V, Trottein F, Sachse M, Chicanne G, Payrastre B, Ville F, Kreis V, Popoff MR, Johannes L, Cintrat JC, Barbier J, Gillet D, Lemichez E. C910 chemical compound inhibits the traffiking of several bacterial AB toxins with cross-protection against influenza virus. iScience 2022; 25:104537. [PMID: 35769882 PMCID: PMC9234246 DOI: 10.1016/j.isci.2022.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.
Collapse
Affiliation(s)
- Yu Wu
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Nassim Mahtal
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Eléa Paillares
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Léa Swistak
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Sara Sagadiev
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Mridu Acharya
- Seattle Children’s Research Institute, Jack R MacDonald Building, 1900 9th Avenue, Seattle, WA 98101, USA
| | - Caroline Demeret
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Sylvie Van Der Werf
- Unité Génétique Moléculaire des Virus à ARN, UMR 3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Florence Guivel-Benhassine
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Olivier Schwartz
- Unité virus et immunité, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Serena Petracchini
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Amel Mettouchi
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Lucie Caramelle
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Pierre Couvineau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Priscille Brodin
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Arnaud Machelart
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | - Gaëtan Chicanne
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Bernard Payrastre
- Inserm, UMR1297 and Université Toulouse III Paul Sabatier, I2MC, 31024 Toulouse, France
| | - Florian Ville
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Victor Kreis
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Michel-Robert Popoff
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, Endocytic Trafficking and Intracellular Delivery team, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SCBM, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France
| | - Emmanuel Lemichez
- Unité des Toxines Bactériennes, UMR CNRS 6047, Inserm U1306, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
5
|
Repurposing of the Tamoxifen Metabolites to Treat Methicillin-Resistant Staphylococcus epidermidis and Vancomycin-Resistant Enterococcus faecalis Infections. Microbiol Spectr 2021; 9:e0040321. [PMID: 34668743 PMCID: PMC8528103 DOI: 10.1128/spectrum.00403-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repurposing drugs provides a new approach to the fight against multidrug-resistant (MDR) bacteria. We have reported that three major tamoxifen metabolites, N-desmethyltamoxifen (DTAM), 4-hydroxytamoxifen (HTAM), and endoxifen (ENDX), presented bactericidal activity against Acinetobacter baumannii and Escherichia coli. Here, we aimed to analyze the activity of a mixture of the three tamoxifen metabolites against methicillin-resistant Staphylococcus epidermidis (MRSE) and Enterococcus species. MRSE (n = 17) and Enterococcus species (Enterococcus faecalisn = 8 and Enterococcus faeciumn = 10) strains were used. MIC of the mixture of DTAM, HTAM, and ENDX and that of vancomycin were determined by microdilution assay. The bactericidal activity of the three metabolites together and of vancomycin against MRSE (SE385 and SE742) and vancomycin-resistant E. faecalis (EVR1 and EVR2) strains was determined by time-kill curve assays. Finally, changes in membrane permeability of SE742 and EVR1 strains were analyzed using fluorescence assays. MIC90 of tamoxifen metabolites was 1 mg/liter for MRSE strains and 2 mg/liter for E. faecalis and E. faecium strains. In the time-killing assays, tamoxifen metabolites mixture showed bactericidal activity at 4× MIC for MRSE (SE385 and SE742) and at 2× MIC and 4× MIC for E. faecalis (EVR1 and EVR2) strains, respectively. SE385 and EVR2 strains treated with the tamoxifen metabolites mixture presented higher membrane permeabilization. Altogether, these results showed that tamoxifen metabolites presented antibacterial activity against MRSE and vancomycin-resistant E. faecalis, suggesting that tamoxifen metabolites might increase the arsenal of drug treatments against these bacterial pathogens. IMPORTANCE The development of new antimicrobial therapeutic strategies requires immediate attention to avoid the tens of millions of deaths predicted to occur by 2050 as a result of MDR bacterial infections. In this study, we assessed the antibacterial activity of three major tamoxifen metabolites, N-desmethyltamoxifen (DTAM), 4-hydroxytamoxifen (HTAM), and endoxifen (ENDX), against methicillin-resistant Staphylococcus epidermidis (MRSE) and Enterococcus spp. (E. faecalis and E. faecium). We found that the tamoxifen metabolites have antibacterial activity against MRSE, E. faecalis, and E. faecium strains by presenting MIC90 between 1 and 2 mg/liter and bactericidal activity over 24 h. In addition, this antibacterial activity is paralleled by an increased membrane permeability of these strains. Our results showed that tamoxifen metabolites might be potentially used as a therapeutic alternative when treating MRSE and E. faecalis strains in an animal model of infection.
Collapse
|
6
|
Soldati C, Lopez‐Fabuel I, Wanderlingh LG, Garcia‐Macia M, Monfregola J, Esposito A, Napolitano G, Guevara‐Ferrer M, Scotto Rosato A, Krogsaeter EK, Paquet D, Grimm CM, Montefusco S, Braulke T, Storch S, Mole SE, De Matteis MA, Ballabio A, Sampaio JL, McKay T, Johannes L, Bolaños JP, Medina DL. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med 2021; 13:e13742. [PMID: 34411438 PMCID: PMC8495452 DOI: 10.15252/emmm.202013742] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.
Collapse
Affiliation(s)
- Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Irene Lopez‐Fabuel
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Luca G Wanderlingh
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Marina Garcia‐Macia
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | | | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | - Anna Scotto Rosato
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Einar K Krogsaeter
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Christian M Grimm
- Faculty of MedicineWalther Straub Institute of Pharmacology and ToxicologyLudwig‐Maximilians UniversityMunichGermany
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
| | - Thomas Braulke
- Department Osteology & BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stephan Storch
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sara E Mole
- Medical Research Council Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Maria A De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Napoli Federico IINaplesItaly
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
- Baylor College of MedicineHoustonTXUSA
- Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTXUSA
| | - Julio L Sampaio
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Tristan McKay
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterUK
| | - Ludger Johannes
- Cellular and Chemical Biology DepartmentInstitut Curie, U1143 INSERM, UMR3666 CNRSPSL Research UniversityParisFrance
| | - Juan P Bolaños
- Institute of Functional Biology and GenomicsCSICUniversity of SalamancaSalamancaSpain
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Institute of Biomedical Research of SalamancaUniversity Hospital of SalamancaCSICUniversity of SalamancaSalamancaSpain
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), PozzuoliNaplesItaly
- Medical Genetics UnitDepartment of Medical and Translational ScienceFederico II UniversityNaplesItaly
| |
Collapse
|
7
|
Li D, Mukhopadhyay S. A three-pocket model for substrate coordination and selectivity by the nucleotide sugar transporters SLC35A1 and SLC35A2. J Biol Chem 2021; 297:101069. [PMID: 34384782 PMCID: PMC8411240 DOI: 10.1016/j.jbc.2021.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/25/2022] Open
Abstract
The CMP-sialic acid transporter SLC35A1 and UDP-galactose transporter SLC35A2 are two well-characterized nucleotide sugar transporters with distinctive substrate specificities. Mutations in either induce congenital disorders of glycosylation. Despite the biomedical relevance, mechanisms of substrate specificity are unclear. To address this critical issue, we utilized a structure-guided mutagenesis strategy and assayed a series of SLC35A2 and SLC35A1 mutants using a rescue approach. Our results suggest that three pockets in the central cavity of each transporter provide substrate specificity. The pockets comprise (1) nucleobase (residues E52, K55, and Y214 of SLC35A1; E75, K78, N235, and G239 of SLC35A2); (2) middle (residues Q101, N102, and T260 of SLC35A1; Q125, N126, Q129, Y130, and Q278 of SLC35A2); and (3) sugar (residues K124, T128, S188, and K272 of SLC35A1; K148, T152, S213, and K297 of SLC35A2) pockets. Within these pockets, two components appear to be especially critical for substrate specificity. Y214 (for SLC35A1) and G239 (for SLC35A2) in the nucleobase pocket appear to discriminate cytosine from uracil. Furthermore, Q129 and Q278 of SLC35A2 in the middle pocket appear to interact specifically with the β-phosphate of UDP while the corresponding A105 and A253 residues in SLC35A1 do not interact with CMP, which lacks a β-phosphate. Overall, our findings contribute to a molecular understanding of substrate specificity and coordination in SLC35A1 and SLC35A2, and have important implications for the understanding and treatment of diseases associated with mutations or dysregulations of these two transporters.
Collapse
Affiliation(s)
- Danyang Li
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712.
| |
Collapse
|
8
|
Selyunin AS, Nieves-Merced K, Li D, McHardy SF, Mukhopadhyay S. Tamoxifen Derivatives Alter Retromer-Dependent Endosomal Tubulation and Sorting to Block Retrograde Trafficking of Shiga Toxins. Toxins (Basel) 2021; 13:toxins13060424. [PMID: 34203879 PMCID: PMC8232625 DOI: 10.3390/toxins13060424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Shiga toxin 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol of cells where they target ribosomes. As retrograde trafficking is essential for disease, inhibiting STx1/STx2 trafficking is therapeutically promising. Recently, we discovered that the chemotherapeutic drug tamoxifen potently inhibits the trafficking of STx1/STx2 at the critical early endosome-to-Golgi step. We further reported that the activity of tamoxifen against STx1/STx2 is independent of its selective estrogen receptor modulator (SERM) property and instead depends on its weakly basic chemical nature, which allows tamoxifen to increase endolysosomal pH and alter the recruitment of retromer to endosomes. The goal of the current work was to obtain a better understanding of the mechanism of action of tamoxifen against the more disease-relevant toxin STx2, and to differentiate between the roles of changes in endolysosomal pH and retromer function. Structure activity relationship (SAR) analyses revealed that a weakly basic amine group was essential for anti-STx2 activity. However, ability to deacidify endolysosomes was not obligatorily necessary because a tamoxifen derivative that did not increase endolysosomal pH exerted reduced, but measurable, activity. Additional assays demonstrated that protective derivatives inhibited the formation of retromer-dependent, Golgi-directed, endosomal tubules, which mediate endosome-to-Golgi transport, and the sorting of STx2 into these tubules. These results identify retromer-mediated endosomal tubulation and sorting to be fundamental processes impacted by tamoxifen; provide an explanation for the inhibitory effect of tamoxifen on STx2; and have important implications for the therapeutic use of tamoxifen, including its development for treating Shiga toxicosis.
Collapse
Affiliation(s)
- Andrey S. Selyunin
- Division of Pharmacology and Toxicology, Institute for Neuroscience, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (A.S.S.); (D.L.)
| | - Karinel Nieves-Merced
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Danyang Li
- Division of Pharmacology and Toxicology, Institute for Neuroscience, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (A.S.S.); (D.L.)
| | - Stanton F. McHardy
- Center for Innovative Drug Discovery, Department of Chemistry, University of Texas San Antonio, San Antonio, TX 78249, USA;
- Correspondence: (S.F.M.); (S.M.)
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, Institute for Neuroscience, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (A.S.S.); (D.L.)
- Correspondence: (S.F.M.); (S.M.)
| |
Collapse
|
9
|
Goldstein J, Nuñez-Goluboay K, Pinto A. Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli. Curr Neuropharmacol 2021; 19:24-44. [PMID: 32077828 PMCID: PMC7903495 DOI: 10.2174/1570159x18666200220143001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.
Collapse
Affiliation(s)
- Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Krista Nuñez-Goluboay
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| |
Collapse
|
10
|
Nuclear Receptors as Autophagy-Based Antimicrobial Therapeutics. Cells 2020; 9:cells9091979. [PMID: 32867365 PMCID: PMC7563212 DOI: 10.3390/cells9091979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an intracellular process that targets intracellular pathogens for lysosomal degradation. Autophagy is tightly controlled at transcriptional and post-translational levels. Nuclear receptors (NRs) are a family of transcriptional factors that regulate the expression of gene sets involved in, for example, metabolic and immune homeostasis. Several NRs show promise as host-directed anti-infectives through the modulation of autophagy activities by their natural ligands or small molecules (agonists/antagonists). Here, we review the roles and mechanisms of NRs (vitamin D receptors, estrogen receptors, estrogen-related receptors, and peroxisome proliferator-activated receptors) in linking immunity and autophagy during infection. We also discuss the potential of emerging NRs (REV-ERBs, retinoic acid receptors, retinoic acid-related orphan receptors, liver X receptors, farnesoid X receptors, and thyroid hormone receptors) as candidate antimicrobials. The identification of novel roles and mechanisms for NRs will enable the development of autophagy-adjunctive therapeutics for emerging and re-emerging infectious diseases.
Collapse
|
11
|
Abdelkafi H, Michau A, Pons V, Ngadjeua F, Clerget A, Ait Ouarab L, Buisson DA, Montoir D, Caramelle L, Gillet D, Barbier J, Cintrat JC. Structure-Activity Relationship Studies of Retro-1 Analogues against Shiga Toxin. J Med Chem 2020; 63:8114-8133. [PMID: 32648758 DOI: 10.1021/acs.jmedchem.0c00298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High-throughput screening has shown that Retro-1 inhibits ricin and Shiga toxins by diminishing their intracellular trafficking via the retrograde route, from early endosomes to the Golgi apparatus. To improve the activity of Retro-1, a structure-activity relationship (SAR) study was undertaken and yielded an analogue with a roughly 70-fold better half-maximal effective concentration (EC50) against Shiga toxin cytotoxicity measured in a cell protein synthesis assay.
Collapse
Affiliation(s)
- Hajer Abdelkafi
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Aurélien Michau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Valérie Pons
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Flora Ngadjeua
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Alexandra Clerget
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Lilia Ait Ouarab
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - David-Alexandre Buisson
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - David Montoir
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Lucie Caramelle
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Targeting the Early Endosome-to-Golgi Transport of Shiga Toxins as a Therapeutic Strategy. Toxins (Basel) 2020; 12:toxins12050342. [PMID: 32456007 PMCID: PMC7290323 DOI: 10.3390/toxins12050342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Shiga toxin (STx) produced by Shigella and closely related Shiga toxin 1 and 2 (STx1 and STx2) synthesized by Shiga toxin-producing Escherichia coli (STEC) are bacterial AB5 toxins. All three toxins target kidney cells and may cause life-threatening renal disease. While Shigella infections can be treated with antibiotics, resistance is increasing. Moreover, antibiotic therapy is contraindicated for STEC, and there are no definitive treatments for STEC-induced disease. To exert cellular toxicity, STx, STx1, and STx2 must undergo retrograde trafficking to reach their cytosolic target, ribosomes. Direct transport from early endosomes to the Golgi apparatus is an essential step that allows the toxins to bypass degradative late endosomes and lysosomes. The essentiality of this transport step also makes it an ideal target for the development of small-molecule inhibitors of toxin trafficking as potential therapeutics. Here, we review the recent advances in understanding the molecular mechanisms of the early endosome-to-Golgi transport of STx, STx1, and STx2, as well as the development of small-molecule inhibitors of toxin trafficking that act at the endosome/Golgi interface.
Collapse
|